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Abstract. This paper resumes the study of regular sets of Message 1Baxjue
Charts initiated by Henriksen, Mukund, Narayan Kumar & Haisjan [10].
Differently from their results, we consider infinite MSCs$.i$ shown that for
bounded sets of infinite MSCs, the notions of recognizabgixiomatizability in
monadic second order logic, and acceptance by a deterivihiessage Passing
Automaton with Muller acceptance condition coincide. WetHarmore charac-
terize the expressive power of first order logic and of itesgton by modulo-
counting quantifiers over bounded infinite MSCs.

Complete proofs can be found in the Technical Report [15].

1 Introduction

Message sequence charts (MSCs) form a popular visual fammaised in the soft-
ware development. In its simplest incarnation, an MSC depilte desired exchange
of messages and corresponds to a single partial-order toea@f the system. Sev-
eral methods to specify sets of MSCs have been considereshgathem MSC-graphs
or High-level MSCs (HMSCs) that generate sets of MSCs by atamating “building
blocks”, (Biichi-)automata that accept the linear exemsiof MSCs, and logics. In
general, these formalisms have different expressive power

In [1], Alur & Yannakakis show that the collection of MSCs geated by a “boun-
ded” (“locally synchronized” in the terminology of [10]) MSgraph can be represented
as a string language recognizable by a finite deterministioraaton. Based on this
observation, Henriksen et al. [10] study sets of MSCs whipsal extensions form a
regular string language. | will call these sets of MSCs “gaumable”. The notion of
recognizability has proven to be robust and fruitful in eéifnt settings like strings,
trees, Mazurkiewicz traces and other classes of parti@rertboth finite and infinite).
The robustness is reflected by the fact that, in all thesangsitrecognizable sets can
be presented by finite-state devices, by congruences df firdex, or by sentences of
monadic second order logic. The main results in [10] showlairequivalences for sets
of B-bounded finite MSCs (an MSC B-bounded if in any execution, any buffer will
contain at mosB messages at any given time). In particular, they prove theakgnce
of the following three concepts for seks of B-bounded finite MSCs:



1. The set of linear extensions &f can be accepted by a finite deterministic automa-
ton.

2. There is a sentence of the monadic second order logic such thais the set of
B-bounded finite MSCs that satisfy

3. Some finite nondeterministic message passing autometepesX .

This result was sharpened in [20] where it is shown that detestic message passing
automata suffice.

The main focus of this paper is the extension of these retulets of infinite
MSCs. These infinite MSCs occur naturally as executionsstesys that are not meant
to stop, e.g., distributed operating systems or teleconication networks. In the first
part, we will extend the equivalence between the first anddieend statement. We will
also consider two fragments of monadic second order logitaly first-order logidO
and its extension by modulo-counting quantifie3+MOD(n) [22]. We describe the
expressive power of these logics in the spirit of Biichisatem: for a set aB-bounded
possibly infinite MSCZX, the following statements are equivalent (Theorems 3.3 and
4.6)

1. The set of linear extensions &f is recognizabler(-solvable, aperiodic, resp.).
2. The setK is axiomatizable by a sentence of monadic second order (ofithe
logic FO+MOD(n), first-order logic, resp.) relative to all possibly infinMSCs.

The proof of the implication +:2 relies on a first-order interpretation of 2+
bounded MSC in any of its linearisations as well as on thetfattthe set of all lineari-
sations ofB-bounded MSCs is aperiodic. This allows us to use resulta f&) 17] and
[22] that characterize the expressive power of the logiauiestion for infinite words.
The proof 2-1 for finite MSCs from [10] uses a first-order interpretation of the lexic
graphically least linear extension ofn the finite MSCt. This proof method does not
extend to the current setting since in general no lineamsit@ of order typev can
be defined in an infinite MSC. To overcome this problem, we dsas from [23] by
choping an infinite MSC into its finite and its infinite parttlirns out that the infinite
part is the disjoint union of infinite posets to which the sdacal” method from [10] is
applicable.

The second part of the paper gives a characterization ofjrezable sets of infinite
MSCs in terms of message passing automata. To this aim, wadxkthe model from
[10] by a Muller-acceptance condition. It is shown that faed of B-bounded possibly
infinite MSCsK, the following statements are equivalent (Theorem 5.7).

1. The set of linear extensions &f is recognizable.
3. Some finite deterministic message passing automatoriMuitler-acceptance con-
dition acceptsx.

The proof of the implication 3>1 is an obvious variant of similar proofs for finite
automata for words (cf. [24]), asynchronous automata fards [25], or asynchronous
cellular automata for pomsets without autoconcurrency8]kund et al. proved the
implication 1—3 for finite MSCs. In order to do so, they had to reprove sevesllts
from the theory of Mazurkiewicz traces in the more compleadmeof MSCs. Differ-
ently, my proof for infinite MSCs refers to deep results in theory of Mazurkiewicz



traces directly, in particular to the theory of asynchramappings [4, 6]. These re-
sults are applicable since any recognizable set of MSCs eaagresented as a set of
traces up to an easy relabeling. This constitutes a newbodésed relation between
Mazurkiewicz traces and MSCs that differs fundamentatiyrfthose used e.g. in [21]
for the investigation of race condition and confluence prige and in [10] for some
undecidability results. This new observation has in my mpirseveral nice aspects: (1)
it simplifies the proof, (2) it also results in smaller messagssing automata for finite
MSCs, and (3) it highlights the similarity of MSCs and Mazexkicz traces and the
unifying role that Mazurkiewicz traces can play in the theof distributed systems.
This last point is also stressed by the fact that similar ptechniques have been used,
e.g.,in[2,7,14,8,16,19].

2 Notation

Let P be a finite set of processes (or agents) which communicate egith other
through messages via reliable FIFO-channels.X dte the set of communication ac-
tions plq andp?q for p, g € P distinct. The actiorp!q is to be read asp'sends ta;”
andp?q is to be read asp'receives fromy”. Hencepfq is performed by the process
p, denotedbroc(pfq) = p. Following [10], we shall not be concerned with the internal
actions of the agents which is no essential restrictioresine results of this paper can
be extended to deal with internal actions. We will also natsider the actual messages
that are sent and received.

A X-labeled poset is a structute= (V, <, \) where(V, <) is a partially ordered
set,\ : V — Y is a mappingA~!(c) C V is linearly ordered for any € ¥, and
anyv € V dominates a finite set. A subs&t C V is anorder idealif it is downwards
closed, i.e.,ift € X,v € Vandv < zimplyv € X.ForA C X, letw(¢) denote the
restriction oft to A[4], i.e., to theA-labeled nodes. Far € V, we writeproc(v) as a
shorthand forproc o A\)(v). Furthermore, we defingy = {u € V' | u < v}. In order
to define message sequence charts, forlabeled poset, we define the relations»
andC as follows:

— v Cp wiff proc(v) = proc(w) andv < w.
— v Cwiff A\(v) = plg, A(w) = ¢?p, and||v N A" (plg)| = |Lw N A~1(g?p)| for
somep, ¢ € P distinct.

Definition 2.1. A message sequence chart or M®€short is aX'-labeled poset =
(V, <, A) satisfying

- <=(LCpuUD),
— proc~!(p) C V is linearly ordered for any € P, and
— [A7Y(plg)| = [\~ (q?p)] for anyp, ¢ € P distinct.

The MSGC is B-boundedor someB € N if, for anyv € V, we have |[vn A~ (plq)| —

[lv N A~ (g?p)| < B. By MSC™, we denote the set of all message sequence charts
while MSC denotes the set of finite MSCs. Furthermdd&,C s andMSC% denote the
sets ofB-bounded (finite) MSCs. FinallyMSC denotes the set of order ideals in finite
MSCs, and MSC% etc are defined similarly.



Letw = wowiws... be a finite or infinite word oveE'. We writew|[; = wowy ...w;
for the prefix ofw of lengthi + 1 where0 < i < |w|. The wordw is proper if, for
any0 < i < |w| and anyp, g € P distinct, we havéw];|p, > |wlilq7p (Wherejw|,
denotes the number of occurrences of the letter the wordw). From a proper word
w, we can define th&’-labeled pose¥ISC(w) as follows:

—V=dom(w)={ieN|0<i<|w|},

— A(i) = Ap(i) = w;, and

— <= R* where(i,j) € Riff i < j and eithemproc(w;) = proc(w;) orw; = plg,
w; = q?pand|wlilpg = [wljlezp-

It is easily seen thatISC(w) is an element of MSC*, i.e., an ideal in an MSC. The
proper wordw is B-bounded if, for any) < i < |w|, we havew];|,1; — |w]i|g7p < B.
Note that an MSG is B-bounded iff any proper wora with MSC(w) = ¢ is B-
bounded. On the other hand, there are prdpdrounded wordsv for which MSC(w)

is not B-bounded (e.gw = (p!q q?p)“). We call a proper wordy completeprovided
|w|pig = |wlg2p fOr p, g € P or, equivalently, iMSC(w) is an MSC.

For an ideal in a MSQ@, let Lin, (t) denote the set of all proper words with
MSC(w) = t. ForK C |MSC®, letLin, [K] denote the union of all sefsin,, (¢) for
t € K. Using this set of words, we define below recognizable sei$S€Es.

Recall that a sel of finite words overY' is recognizable (by a finite deterministic
automaton) iff there exists a finite mono$dand a homomorphism : X* — S such
that L = n~n(L). The setL is aperiodic ifS can be assumed to be aperiodic (i.e.,
groupfree). Finally, we call. n-solvable (for some. € N) if we can assume that any
group insS'is solvable and has order dividing some power obimilarly, one can define
recognizablep-solvable, and aperiodic sets of wordsiii®: I. C X'*° is recognizable
iff there exists a finite monoid and a homomorphism : X* — S such that, for any
ug,v; € X* with n(u;) = n(v;) anduguiug - -+ € L, we getvgvivs - - - € L. The set
L is said to ben-solvable or aperiodic if the monoifl can be assumed to satisfy the
corresponding conditions.

Definition 2.2. AsetK C |[MSC® isrecognizablen-solvable or aperiodiaf Lin,, [K]
is recognizablep-solvable, or aperiodic, respectively.

In [10], it was shown that any recognizable set of finite MSE#&ibounded for
someB € N. The proof for ideals in possibly infinite MSCs goes throughbatimly
(note that any:-solvable or aperiodic set is recognizable):

Proposition 2.3 (cf. [12, Prop. 3.2])Let K C |[MSC™ be recognizable. TheA is
bounded, i.e., there exists a positive integeesuch thatl C |[MSC% .

The sets of recognizable;solvable, and aperiodic word languages have been char-
acterized in terms of fragments of monadic second ordeclgyil7,22]. In the first
part of this paper, these results will be extended to sulo$dfs[SC™.

Formulas of the monadic second order langultO over X involve first order
variablesr, y, z... for nodes and set variablg§ Y, Z... for sets of nodes. They are built
up from the atomic formulas(z) = o foro € ¥, x < y, andz € X by means of the
boolean connectives, A and the quantifief (both for first order and for set variables).



Afirst order formula is a formula without set variables. Fotas without free variables

are called sentences. The satisfaction relati¢a ¢ betweenX'-labeled posets and

formulasy is defined canonically. LeX be a set of-labeled posets. A sét C X is

axiomatizable relative t& iff there is a sentence such that’ = {t € X | ¢ |= ¢}.
Formulas of the logi&O+MOD(n) are built up from the atomic formulagz) =

a andz < y be the connectives and—- and the first-order quantifieesand3™ for

0 <m < n. A X-labeled poset = (V, <, \) satisfiesd™ y(x) if the number of nodes

v € V such thatt &= ¢(v) is finite and congruent: mod n. Thus, syntactically,

FO+MOD(n) is not a fragment oMSO, but since MSCs have width at md#t|, any

FO+MOD(n)-definable set of MSCs can alternatively be defineNBO.

3 From logics to monoids

Proposition 3.1. The sets oB-bounded and proper (complete, resp.) wordsihand
¢ are aperiodic.

Proof. The set of B-bounded, proper and finite wordscan be accepted by a finite
deterministic automaton withB + 1)I”1” + 1 states. Ifuv5w € L, then|v|,, =
|v|42p fOr p, ¢ € P distinct. Hencew®w anduv®+2w belong toL, i.e., L is aperiodic.
From this result, the remaining assertions follow easily. a

Hence the set oB-bounded, proper, and finite words is first-order axiométiza
relative toX* [18]. Using a similar idea, one can define the relatidfrom the defi-
nition of MSC(w) in the B-bounded and proper word € X°°. This then allows to
interpretMSC(w) in the B-bounded and proper word by a first-order formula, i.e.,
we obtain the following result:

Proposition 3.2. Let B € N. There exists a first-order formula(z, y) such that for
any B-bounded and proper word € 3°°, we have

(dom(w), p*, A\y) = MSC(w)
wherep® = {(i,7) [ 0 <4,j < |w|,w | ¢(i,j)}.

Let ¢ be some sentence 80, FO+MOD(n), or MSO. Replace in this sentence
any subformula of the form < y by ¢(z,y) from the lemma above. SindeO is a
fragment of all the other logics, the resulting sentencergs toFO, FO+MOD(n), or
MSO, respectively. By Prop. 3.2 and 3.1, the set of proper wardsth MSC(w) | v
is axiomatizable in the respective logic. Hence we can ajiy@yalgebraic characteriza-
tions of these sets from [3, 17, 22] and obtain

Theorem 3.3. Let K C |MSC™ be bounded and axiomatizable by a sentence of
MSO / FO+MOD(n) / FO. ThenK is recognizable f-solvable / aperiodic, respec-
tively.



4 From monoids to logics

Henrikseret al.[10] showed that any recognizable g€tof finite MSCs is axiomatiz-
able in monadic second order logic relativeMiS§C g for someB. Their proof strategy
follows the idea from [9] to interpret the lexicographigaleast linear extension of
an MSCt in t. This interpretation is possible for infinite MSCs, too, s following
lemma shows.

Let < be a fixed linear order o' Let furthermoreX be a subset of an MSC
Then < defines the lexicographic order on the linear extensiong of Since these
linear extensions are well orders, the lexicographic orsler well order, too. Hence
there is a lexicographically least linear extension|gf that we denote biexNF (¢ x ).

Lemma 4.1. There exists a first-order formula with two free variables such that for
anyt = (V,<,)\) € [MSC™ and X C V, we have X, o!*, \] x) = lexNF(t] x).

The proof is an immediate adaptation of the correspondiagfgor Mazurkiewicz
traces, cf. [5].

The proof from [10] for finite MSCs then refers to Biichi’s tiem for finite words.
We cannot continue that way since the lexicographicallgtiéaear extension og.g,
MSC((plq q?p)~) with plg =< ¢?p, is now-word (it equalgplq)“ (¢7p)~). Even worse,
the MSCMSC((plq ¢?pp'l¢’ ¢'7p')* has no definable linear extension of order type
at all. Hence we cannot generalize the proof from [10] to itdiMSCs. To overcome
this problem, we will chop an MSC into pieces, consider th@sees independently,
and combine the results obtained for them.

Now lett = (V,<,A) € |[MSC™. Thenalph(¢t) = A[V] andalphlnf(t) = {o €
X | A~Y(o0) is infinite}. Let Y be the largest filter in with A\[Y] C alphInf(¢) and let
X = V' \ Y. Then thefinitary part oft is defined byFin(¢) = ¢[x and theinfinitary
part of t by Inf(t) = t|y. ThenFin(¢) is an ideal in a finite MSC while in general
Inf(t) is only aX-labeled poset.

Let E C X2 contain all pairso,7 € X with proc(o) = proc(r) or {o,7} =
{plq, q?p} for somep, ¢ € P. Then(X, E) is an undirected graph.

Lemma 4.2. Lett = (V,<,\) € [MSC%, andA = alphInf(¢). Let(A;)1<i<n be the
connected components of the graph F). Then we have fof < i < n:

1. theX-labeled poset; = w4, (Inf(¢)) is directed (i.e., it does not contain two dis-
joint filters),

2. any linear extension af is of order typew, and

3. Inf(t) = Ur<icpti-

Note that the MSQVISC(((p!q)(¢?p))“) is directed, but it has a linear extension of
typew + w, namely(plq)“(¢?p)~. Thus, to prove the second statement of the lemma
above, one indeed needs tBeboundedness af

By uLLlv we denote the set of all shuffles of the wordsindv and KLLIL =
U{ulldv | w € L,v € L}. Now suppose € |[MSC% and letalphInf(t) = A. Then,
by Lemma 4.2(3)Inf(¢) is the disjoint union of the’-labeled posets, = 74, (Inf(t))
for A; a connected component ofl, E'). We defineNFInf () = LLl<;<,lexNF(¢;).
Then, by Lemma 4.2(2NFInf(¢) C X“. Finally, by Lemma 4.2(2), we obtain that
NFInf(t) C Lin, (Inf(t)).



Definition 4.3. Lett € |MSC%, A = alphlnf(¢) and let$ ¢ X. ThenNF(t) =
lexNF(Fin(t)) - {$} - NFInf(¢) is theset of normal forms of. For K C |[MSC%’, we
SetNF[K| = U,c x NF(2).

Since NFInf(¢) is a subset of2“, we getNF(¢) C (X U $)*°. Furthermore,
the restriction of any word ilNF(¢) to X is a linear extension of, i.e., NF(¢) C
Lin,, (t)LLI{$}. Using Prop. 3.1 and 3.2, one obtains th&t[| MSC%] is first-order
axiomatizable relative 63 U {$})°°.

Letu € X¥*>° andk € N. Then the set of all first-order sentenge®f quantifier
depth at most is thek-first-order theory of:. A set of first-order sentences of quantifier
depth at most is acompletek-first-order theonyif it is the k-first-order theory of some
wordu € X*°. Since, up to logical equivalence, there are only finitelynynfirst-order
sentences of quantifier depth at mésthere are only finitely many completefirst-
order theories. Furthermore, each complefirst-order theoryl” is characterized by
one first-order senteneg- of quantifier depttk, i.e., for any wordu € X°°, we have
u | v forall v € T iff u = 7 (cf. [13, Thm. 3.3.2]). For notational convenience, we
will identify the characterizing senteneg and the completé-first-order theoryl".

Let K C |[MSC% be aperiodic. Thehin,, [K] is first-order axiomatizable relative
to X>°. Letk > 2 be the least integer such tHaitn,, [K]LLI{$} andNF[|[MSC%] are
first-order axiomatizable relative &~ U {$})> by a sentence of quantifier depth at
mostk. LetT be a completé-first-order theory andl C . Then setkr 4 := {t €
K | 1exNF(Fin(t)) = T, alphInf(¢t) = A} and X 4 := NF[K7 4].

Lemma 4.4. In the first order language of~ U {$})-labeled linear orders with one
constante, there exists a sentence of quantifier depthk such that(v,c) E ¢ iff
veE Xy gand(c) =$forve (XU {$})>.

Apart from an extension of Mezei’'s theorem to languagesfafite words we now
have all the ingredients for the proof of Thm. 4.6. To forntelllne mentioned exten-
sion, we need the notion of an aperiodic extension: a finitaaithS’ is anaperiodic
extensionof a monoidS if there is a surjective homomorphism: S’ — S such
thatn~1(f) is an aperiodic semigroup for any idempotent elemgemt S. Note that
aperiodic extensions of finiter/-solvable / aperiodic monoids are finita/solvable /
aperiodic.

Theorem 4.5. Let ¥ = YUY, be an alphabet. Lef. C X be recognized by a
homomorphism int¢S, -) and suppose that; LLius N L # (§ impliesu; L1 us C L for
anyu, € X (i = 1,2). ThenL is a finite union of set& L1 1L, whereL; C X is
recognized by an aperiodic extension(6f -).

Putting all these results (and their obvious extensionisdariore expressive logics)
together, one obtains the following converse of Thm. 3.3:

Theorem 4.6. Let K C |MSC® be recognizable #i-solvable / aperiodic. Thek is
bounded and axiomatizable by a sentenckIS / FO+MOD(n) / FO, respectively.



5 Deterministic message passing automata

In this section, we will extend the the automata-theoretiaracterizations of recog-
nizable word languages. Message passing automata, th@atatonodel that we con-
sider, reflect the concurrent behavior of an MSC. It was ohiced by Henriksen et al.
[10] and is similar to asynchronous cellular automata fromtheory of Mazurkiewicz
traces. We will extend results from [10, 20] to infinite MSGénce the proofs rely on
the theory of Mazurkiewicz traces, we first investigate #lation between these traces
and MSCs.

5.1 The key observation

A dependence alphabet a pair(I, D) whereI is a finite set andD is a reflexive
and symmetric dependence relationtrace over(I', D) is a I'-labeled partial order
(V, <, \) such that

- (XN(x),N(y)) ¢ D whenever,y € V are incomparable, and
— (N(x), N (y)) € D whenevey is an upper neighbor af (denotedr —< ).

The set of all traces ovérl, D) is denoted byR (I, D), the setM((I", D) comprises the
finite traces.

The key observation that is announced by the title of thifi@eds that any recog-
nizable set of MSCs is the “relabeling” of a monadically awatizable set of traces over
a suitable dependence alphabet. Recall that any recodmizetbof MSCs is bounded.
The boundB influences the chosen dependence alphabet as defined inlltveirig
paragraph.

For a positive integeB € N, letI" = X' x {0, 1, ..., B — 1}. On this alphabet, we
define a dependence relatidhas follows:(p161 g1, n1) and(p262g2, n2) are dependent
iff

1. p1 =po,0r

2. {(p161q1,n1), (p202q2,m2)} = {(p'q,n), (¢?p,n)} for somep,q € P and0 <
n < B.

Fort = (V,<,\) € [MSC%, we define a new -labeling\’ by
N(w) = (A@), [lv N A" A(v)]  mod B),

i.e. the first component of the label is the old label and tlvesd counts modul® the
number of occurrences of the same action in the pastWe then definer(t) = (V, <
,\'). First, one shows thdttr(¢) | t € [MSCZ'} is a first-order axiomatizable set of
traces inR (I, D):

Lemma 5.1. The setr[[MSC%Z] is the set of all traces € R(I, D) satisfying

L. T{(plg,n),(q7p.n)} (5) IS @ prefix of((plg, n)(¢7p,n))~ for p,q € P and0 < n < B.
Il. T¢(o.n)1<n<B}(5) is @ prefix of((c,1)(c,2) ... (0, B — 1)(0,0))” foro € X.
M. If v,w € V withv —< w, thenproc(N (v)) = proc(N (w)) or X' (v) = (plg,n)
and ) (w) = (¢?p,n) for somep,q € P and0 < n < B.



Since all these properties are first-order expressible e ®ne can interpret the
MSCt in the tracetr(t), we obtain

Proposition 5.2. LetK' C |[MSC% by monadically axiomatizable relative tdISC% .
Thentr[K] C R(I', D) is monadically axiomatizable relative R(I", D).

This proposition can be used for an alternative proof ofpaftTheorem 4.6; it
works perfectly well for recognizable languages, can in sarases be used for
solvable languages (iB divides some power of), and is of no use whatsoever for
aperiodic languages (since the relabeling cannot be defirfedt-order logic).

So far, we transformed any monadically axiomatizable sdtoafinded MSCs into
a monadically axiomatizable set of traces. In order to maieeaf this transformation,
we need the following definitions and results from the thexfrMlazurkiewicz traces.

Lets = (V,<,\) be a trace ovefl’, D) and letA C I'. Thend,(¢) is the least
ideal of ¢ such that the complementary filter does not contain drgbeled vertex.
Lety € I'. ThenD(v) = {§ € I' | (v,9) € D}. Furthermorefy is the unique
trace (VU{x}, <, p) with tyy = t, p(x) = v, andx € max(ty). A mappingu :
M(I',D) — A is asynchronousf, for any Ay, Ay C I', anyy € I', and anyt €
M(I, D),

1. u(0a,uan,(t)) is completely determined (04, (¢)), 11(0a,(t)), and the sets,
andA,, and
2. (05 (t) is completely determined by(9p(-)(t)) and the lettery.

Theorem 5.3 ([25,4])Let(I", D) be a dependence alphabet ahd- M(I, D). Then
L is monadically axiomatizable if, and only if, there existsasynchronous mapping
into some finite set such that= p~tu(L).

This result was used to construct a deterministic asyncuscellular automaton
that accepts a given recognizable language of finite trd@iekert & Muscholl [6]
use the same concept of an asynchronous mapping to constdaéterministic asyn-
chronous cellular automaton with Muller acceptance caonlithat accepts a given
recognizable set of infinite traces. In order to state thesult, we need some more
notations:

Let(I', D) be a dependence alphabiet; (V, <, \') € R(I', D) atrace,and € I
Letu3°(t) C A be the set of al € A for which there are infinitely many nodess V'
with X' (v) = v andu(tl,,) = a.

Theorem 5.4 ([6,9]).Let (I, D) be a dependence alphabet and C R(I', D) be
monadically axiomatizable. Then there exists a finiteAea set7 C [] er 24 of
I'-tuples of subsets of, and an asynchronous mapping: M(I", D) — A such that
fort € R(I, D), we havet € L <= (u°(t))rer € 7.

5.2 The construction of deterministic message passing autmta

A message passing automaton with Muller-acceptance condgia structured =
((AP)PGPa Aa Siny 8) where



1. Ais afinite set of messages,
2. each componem,, is of the form(S,, —,) where
— S, is afinite set of local states,
- —pC Sy x X, x Ax S, whereX, = {c € ¥ | proc(o) = p} is a local
transition relation,
3. s € [],ep Sp is the global initial state, and

4. 8 C [1,p 2°» is a Muller acceptance condition.

Let (s,a,m,s") €—, be alocal transition of procegs Suppose: is a send event,
i.e.,a = plq for some procesg Then the transitio(s, a, m, s’) denotes that the process
p can perform the action = plq in states; it changes its local state t and sends a
messagen into the FIFO-channel from proceggo processg. By enlarging the set of
messages and local states (if necessary), we can assume that for any send action
(in particular,A = Upep Sp). Now suppose that = p?q is a receive action. Then the
transition(s, a, m, s") denotes that the proceggan change its local state frosto s’
when reading the messagefrom the channel that connegigndg.

A message passing automatométerministiaf

- (S7P!Q7mla 81)7 (Sap!Q7m21 82) €_>p Imply §1 = 52 andml =m2
- (S7q?p7mla 81)7 (Saq?p7m1782) €_>p Imply S1 = S2.

The message passing automatocampleteif

— there exists a transitiofs, p!g, m, s") for anys € S, andq € P \ {p}
— there exists a transitiofs, g?p, m, s) foranys € S,, m € A, andg € P\ {p}

Lett = (V, <, A) be anideal in an MSC and Igt be a message passing automaton.
Let furthermorer : V — Up673 S, be a mapping and € V. We define a second
mappingr— : V — UpeP Sy if there isu < v with proc(u) = proc(v), letu
be maximal with this property and let (v) denoter(u). If v is the minimal event
performed by the processoc(v), letr™(v) = s . ,y- Thenr™ (v) is the local state of
proces®roc(v) beforethe execution of; this process is in statgv) after performing
V.

Arunof Aontis amapping : V — Upep S, satisfying for any € V:

1. If A(v) = plg, then there is a transitiopr— (v), plg, m, r(v)) in —, for some mes-
sagem (which turns out to be(v) by our assumption).

2. Now letA(v) = p?q. Sincet is an ideal in an MSC, there is a unique matching node
u € V with u T v. We require thatr— (v), p?q, 7(u), r(v)) €—p.

Letr : V — Upep Sp be a run of a Muller message passing automaton en
(V,<,A) € IMSC™. Forp € P, letX,, C S, be the set of aly € .S, such that, for any
v € V with proc(v) = p, there existav € V with v < w, proc(w) = p, andr(w) = s
(and{s.} if no suchv exists). The run is successfuprovided(X),),cr € S. A set
K C |[MSC®™ is accepted byA relative toX C |[MSC*™ if, foranyt € X,¢ € Liff ¢
is accepted by.

Above, we associated to any monadically axiomatizableetudi$ MSC% a monad-
ically axiomatizable set of traces. By Theorem 5.4, we tfogeeget an asynchronous
mapping. Next, we construct a message passing automatarafr@asynchronous map-

ping.
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Proposition 5.5. Let x : M(I',D) — A be some asynchronous mapping into a fi-
nite setA. Then there exists a complete deterministic message jgeastomaton with
Muller acceptance conditiod with local state spacé and a functionf : S — A such
that for the runr of A ont = (V, <, \) € |[MSC%, we havef (r(v)) = p(tr(lv)).

Now one can show that relative tdISC% , message passing automata and monadic
second order have the same expressive power:

Proposition 5.6. A setK' C |MSCpg can be accepted by the message passing automa-
ton A relative to | MSCp iff it is monadically axiomatizable relative toMSCp.

The construction of a formula from an MPA follows the wellkmo pattern of [24,
25, 8]. The other implication follows easily from Prop. 5rideb.2 together with Theo-
rem5.4.

In order to extend the result taMSC>, one first observes tha®MSCg can be
accepted by a deterministic message passing automatdivedla | MSCpz,; since
it is monadically axiomatizable relative tdMSC. Note that an ideal in an MS€ €
IMSC® is NOT B-bounded iff it contains a principal ideal that is nBtbounded.
This allows to show thafMSC% can be accepted by a complete deterministic message
passing automaton with Muller acceptance condition. Thissed in the proof of our
main result:

Theorem 5.7. Let K C |MSC®. ThenK is recognizable iff it is bounded and there
exists a Muller message passing automaton that acdepts

Proof. The setK is monadically axiomatizable an&-bounded for some3. Hence
there exists a deterministic message passing autorvdtdhat acceptd< relative to
IMSC%. SoK = L(A;)N|MSC% is the intersection of two sets that can be accepted
by deterministic message passing automata. a0

One can prove the corresponding statement from [20] foefidiSCs accordingly.
Our construction requires:20((n*B)*1os(n*B)) |ocal states (where, is the number
of processes$P|, B is the bound on the MSCs in the langualje andm is the size
of the syntactic monoid ofin[K]). Recall that the construction from [20] needed

o(n2B)
22 mlogm |gcg| states.
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