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Abstract. This paper resumes the study of regular sets of Message Sequence
Charts initiated by Henriksen, Mukund, Narayan Kumar & Thiagarajan [10].
Differently from their results, we consider infinite MSCs. It is shown that for
bounded sets of infinite MSCs, the notions of recognizability, axiomatizability in
monadic second order logic, and acceptance by a deterministic Message Passing
Automaton with Muller acceptance condition coincide. We furthermore charac-
terize the expressive power of first order logic and of its extension by modulo-
counting quantifiers over bounded infinite MSCs.
Complete proofs can be found in the Technical Report [15].

1 Introduction

Message sequence charts (MSCs) form a popular visual formalism used in the soft-
ware development. In its simplest incarnation, an MSC depicts the desired exchange
of messages and corresponds to a single partial-order execution of the system. Sev-
eral methods to specify sets of MSCs have been considered, among them MSC-graphs
or High-level MSCs (HMSCs) that generate sets of MSCs by concatenating “building
blocks”, (Büchi-)automata that accept the linear extensions of MSCs, and logics. In
general, these formalisms have different expressive power.

In [1], Alur & Yannakakis show that the collection of MSCs generated by a “boun-
ded” (“locally synchronized” in the terminology of [10]) MSC-graph can be represented
as a string language recognizable by a finite deterministic automaton. Based on this
observation, Henriksen et al. [10] study sets of MSCs whose linear extensions form a
regular string language. I will call these sets of MSCs “recognizable”. The notion of
recognizability has proven to be robust and fruitful in different settings like strings,
trees, Mazurkiewicz traces and other classes of partial orders (both finite and infinite).
The robustness is reflected by the fact that, in all these settings, recognizable sets can
be presented by finite-state devices, by congruences of finite index, or by sentences of
monadic second order logic. The main results in [10] show similar equivalences for sets
of B-bounded finite MSCs (an MSC isB-bounded if in any execution, any buffer will
contain at mostB messages at any given time). In particular, they prove the equivalence
of the following three concepts for setsK of B-bounded finite MSCs:
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1. The set of linear extensions ofK can be accepted by a finite deterministic automa-
ton.

2. There is a sentenceϕ of the monadic second order logic such thatK is the set of
B-bounded finite MSCs that satisfyϕ.

3. Some finite nondeterministic message passing automaton acceptsK.

This result was sharpened in [20] where it is shown that deterministic message passing
automata suffice.

The main focus of this paper is the extension of these resultsto sets of infinite
MSCs. These infinite MSCs occur naturally as executions of systems that are not meant
to stop, e.g., distributed operating systems or telecommunication networks. In the first
part, we will extend the equivalence between the first and thesecond statement. We will
also consider two fragments of monadic second order logic, namely first-order logicFO
and its extension by modulo-counting quantifiersFO+MOD(n) [22]. We describe the
expressive power of these logics in the spirit of Büchi’s theorem: for a set ofB-bounded
possibly infinite MSCsK, the following statements are equivalent (Theorems 3.3 and
4.6)

1. The set of linear extensions ofK is recognizable (n-solvable, aperiodic, resp.).
2. The setK is axiomatizable by a sentence of monadic second order logic(of the

logic FO+MOD(n), first-order logic, resp.) relative to all possibly infiniteMSCs.

The proof of the implication 1→2 relies on a first-order interpretation of aB-
bounded MSC in any of its linearisations as well as on the factthat the set of all lineari-
sations ofB-bounded MSCs is aperiodic. This allows us to use results from [3, 17] and
[22] that characterize the expressive power of the logics inquestion for infinite words.
The proof 2→1 for finiteMSCs from [10] uses a first-order interpretation of the lexico-
graphically least linear extension oft in the finite MSCt. This proof method does not
extend to the current setting since in general no linear extension of order typeω can
be defined in an infinite MSC. To overcome this problem, we use ideas from [23] by
choping an infinite MSC into its finite and its infinite part. Itturns out that the infinite
part is the disjoint union of infinite posets to which the “classical” method from [10] is
applicable.

The second part of the paper gives a characterization of recognizable sets of infinite
MSCs in terms of message passing automata. To this aim, we extend the model from
[10] by a Muller-acceptance condition. It is shown that for aset ofB-bounded possibly
infinite MSCsK, the following statements are equivalent (Theorem 5.7).

1. The set of linear extensions ofK is recognizable.
3. Some finite deterministic message passing automaton withMuller-acceptance con-

dition acceptsK.

The proof of the implication 3→1 is an obvious variant of similar proofs for finite
automata for words (cf. [24]), asynchronous automata for traces [25], or asynchronous
cellular automata for pomsets without autoconcurrency [8]. Mukund et al. proved the
implication 1→3 for finite MSCs. In order to do so, they had to reprove severalresults
from the theory of Mazurkiewicz traces in the more complex realm of MSCs. Differ-
ently, my proof for infinite MSCs refers to deep results in thetheory of Mazurkiewicz
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traces directly, in particular to the theory of asynchronous mappings [4, 6]. These re-
sults are applicable since any recognizable set of MSCs can be represented as a set of
traces up to an easy relabeling. This constitutes a newly discovered relation between
Mazurkiewicz traces and MSCs that differs fundamentally from those used e.g. in [21]
for the investigation of race condition and confluence properties and in [10] for some
undecidability results. This new observation has in my opinion several nice aspects: (1)
it simplifies the proof, (2) it also results in smaller message passing automata for finite
MSCs, and (3) it highlights the similarity of MSCs and Mazurkiewicz traces and the
unifying role that Mazurkiewicz traces can play in the theory of distributed systems.
This last point is also stressed by the fact that similar proof techniques have been used,
e.g., in [2, 7, 14, 8, 16, 19].

2 Notation

Let P be a finite set of processes (or agents) which communicate with each other
through messages via reliable FIFO-channels. LetΣ be the set of communication ac-
tionsp!q andp?q for p, q ∈ P distinct. The actionp!q is to be read as “p sends toq”
andp?q is to be read as “p receives fromq”. Hencepθq is performed by the process
p, denotedproc(pθq) = p. Following [10], we shall not be concerned with the internal
actions of the agents which is no essential restriction since the results of this paper can
be extended to deal with internal actions. We will also not consider the actual messages
that are sent and received.

A Σ-labeled poset is a structuret = (V,≤, λ) where(V,≤) is a partially ordered
set,λ : V → Σ is a mapping,λ−1(σ) ⊆ V is linearly ordered for anyσ ∈ Σ, and
anyv ∈ V dominates a finite set. A subsetX ⊆ V is anorder idealif it is downwards
closed, i.e., ifx ∈ X , v ∈ V andv ≤ x imply v ∈ X . ForA ⊆ Σ, letπA(t) denote the
restriction oft to λ[A], i.e., to theA-labeled nodes. Forv ∈ V , we writeproc(v) as a
shorthand for(proc ◦ λ)(v). Furthermore, we define↓v = {u ∈ V | u ≤ v}. In order
to define message sequence charts, for aΣ-labeled posett, we define the relations⊑P

and⊑ as follows:

– v ⊑P w iff proc(v) = proc(w) andv ≤ w.
– v ⊑ w iff λ(v) = p!q, λ(w) = q?p, and|↓v ∩ λ−1(p!q)| = |↓w ∩ λ−1(q?p)| for

somep, q ∈ P distinct.

Definition 2.1. A message sequence chart or MSCfor short is aΣ-labeled posett =
(V,≤, λ) satisfying

– ≤= (⊑P ∪ ⊑)⋆,
– proc−1(p) ⊆ V is linearly ordered for anyp ∈ P , and
– |λ−1(p!q)| = |λ−1(q?p)| for anyp, q ∈ P distinct.

The MSCt isB-boundedfor someB ∈ N if, for anyv ∈ V , we have|↓v∩λ−1(p!q)|−
|↓v ∩ λ−1(q?p)| ≤ B. By MSC∞, we denote the set of all message sequence charts
whileMSC denotes the set of finite MSCs. Furthermore,MSCB andMSC∞

B denote the
sets ofB-bounded (finite) MSCs. Finally,↓MSC denotes the set of order ideals in finite
MSCs, and↓MSC∞

B etc are defined similarly.
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Letw = w0w1w2... be a finite or infinite word overΣ. We writew↾i = w0w1...wi

for the prefix ofw of lengthi + 1 where0 ≤ i < |w|. The wordw is proper if, for
any0 ≤ i < |w| and anyp, q ∈ P distinct, we have|w↾i|p!q ≥ |w↾i|q?p (where|w|a
denotes the number of occurrences of the lettera in the wordw). From a proper word
w, we can define theΣ-labeled posetMSC(w) as follows:

– V = dom(w) = {i ∈ N | 0 ≤ i < |w|},
– λ(i) = λw(i) = wi, and
– ≤= R⋆ where(i, j) ∈ R iff i < j and eitherproc(wi) = proc(wj) or wi = p!q,
wj = q?p and|w↾i|p!q = |w↾j |q?p.

It is easily seen thatMSC(w) is an element of↓MSC∞, i.e., an ideal in an MSC. The
proper wordw isB-bounded if, for any0 ≤ i < |w|, we have|w↾i|p!q − |w↾i|q?p ≤ B.
Note that an MSCt is B-bounded iff any proper wordw with MSC(w) = t is B-
bounded. On the other hand, there are properB-bounded wordsw for whichMSC(w)
is notB-bounded (e.g.,w = (p!q q?p)ω). We call a proper wordw completeprovided
|w|p!q = |w|q?p for p, q ∈ P or, equivalently, ifMSC(w) is an MSC.

For an ideal in a MSCt, let Linω(t) denote the set of all proper wordsw with
MSC(w) = t. ForK ⊆ ↓MSC∞, let Linω[K] denote the union of all setsLinω(t) for
t ∈ K. Using this set of words, we define below recognizable sets ofMSCs.

Recall that a setL of finite words overΣ is recognizable (by a finite deterministic
automaton) iff there exists a finite monoidS and a homomorphismη : Σ⋆ → S such
thatL = η−1η(L). The setL is aperiodic ifS can be assumed to be aperiodic (i.e.,
groupfree). Finally, we callL n-solvable (for somen ∈ N) if we can assume that any
group inS is solvable and has order dividing some power ofn. Similarly, one can define
recognizable,n-solvable, and aperiodic sets of words inΣ∞: L ⊆ Σ∞ is recognizable
iff there exists a finite monoidS and a homomorphismη : Σ⋆ → S such that, for any
ui, vi ∈ Σ⋆ with η(ui) = η(vi) andu0u1u2 · · · ∈ L, we getv0v1v2 · · · ∈ L. The set
L is said to ben-solvable or aperiodic if the monoidS can be assumed to satisfy the
corresponding conditions.

Definition 2.2. A setK ⊆ ↓MSC∞ is recognizable,n-solvable, or aperiodicif Linω[K]
is recognizable,n-solvable, or aperiodic, respectively.

In [10], it was shown that any recognizable set of finite MSCs is B-bounded for
someB ∈ N. The proof for ideals in possibly infinite MSCs goes through verbatimly
(note that anyn-solvable or aperiodic set is recognizable):

Proposition 2.3 (cf. [12, Prop. 3.2]).LetK ⊆ ↓MSC∞ be recognizable. ThenK is
bounded, i.e., there exists a positive integerB such thatL ⊆ ↓MSC∞

B .

The sets of recognizable,n-solvable, and aperiodic word languages have been char-
acterized in terms of fragments of monadic second order logic [3, 17, 22]. In the first
part of this paper, these results will be extended to subsetsof ↓MSC∞.

Formulas of the monadic second order languageMSO overΣ involve first order
variablesx, y, z... for nodes and set variablesX,Y, Z... for sets of nodes. They are built
up from the atomic formulasλ(x) = σ for σ ∈ Σ, x ≤ y, andx ∈ X by means of the
boolean connectives¬,∧ and the quantifier∃ (both for first order and for set variables).
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A first order formula is a formula without set variables. Formulas without free variables
are called sentences. The satisfaction relationt |= ϕ betweenΣ-labeled posetst and
formulasϕ is defined canonically. LetX be a set ofΣ-labeled posets. A setK ⊆ X is
axiomatizable relative toX iff there is a sentenceϕ such thatK = {t ∈ X | t |= ϕ}.

Formulas of the logicFO+MOD(n) are built up from the atomic formulasλ(x) =
a andx ≤ y be the connectives∧ and¬ and the first-order quantifiers∃ and∃m for
0 ≤ m < n. A Σ-labeled posett = (V,≤, λ) satisfies∃mϕ(x) if the number of nodes
v ∈ V such thatt |= ϕ(v) is finite and congruentm mod n. Thus, syntactically,
FO+MOD(n) is not a fragment ofMSO, but since MSCs have width at most|P|, any
FO+MOD(n)-definable set of MSCs can alternatively be defined inMSO.

3 From logics to monoids

Proposition 3.1. The sets ofB-bounded and proper (complete, resp.) words inΣ⋆ and
Σω are aperiodic.

Proof. The set ofB-bounded, proper and finite wordsL can be accepted by a finite
deterministic automaton with(B + 1)|P|2 + 1 states. IfuvB+1w ∈ L, then|v|p!q =
|v|q?p for p, q ∈ P distinct. HenceuvBw anduvB+2w belong toL, i.e.,L is aperiodic.
From this result, the remaining assertions follow easily. ⊓⊔

Hence the set ofB-bounded, proper, and finite words is first-order axiomatizable
relative toΣ⋆ [18]. Using a similar idea, one can define the relationR from the defi-
nition of MSC(w) in theB-bounded and proper wordw ∈ Σ∞. This then allows to
interpretMSC(w) in theB-bounded and proper wordw by a first-order formula, i.e.,
we obtain the following result:

Proposition 3.2. LetB ∈ N. There exists a first-order formulaϕ(x, y) such that for
anyB-bounded and proper wordw ∈ Σ∞, we have

(dom(w), ϕw , λw) ∼= MSC(w)

whereϕw = {(i, j) | 0 ≤ i, j < |w|, w |= ϕ(i, j)}.

Let ψ be some sentence ofFO, FO+MOD(n), or MSO. Replace in this sentence
any subformula of the formx ≤ y by ϕ(x, y) from the lemma above. SinceFO is a
fragment of all the other logics, the resulting sentence belongs toFO, FO+MOD(n), or
MSO, respectively. By Prop. 3.2 and 3.1, the set of proper wordsw with MSC(w) |= ψ

is axiomatizable in the respective logic. Hence we can applythe algebraic characteriza-
tions of these sets from [3, 17, 22] and obtain

Theorem 3.3. Let K ⊆ ↓MSC∞ be bounded and axiomatizable by a sentence of
MSO / FO+MOD(n) / FO. ThenK is recognizable /n-solvable / aperiodic, respec-
tively.
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4 From monoids to logics

Henriksenet al. [10] showed that any recognizable setK of finite MSCs is axiomatiz-
able in monadic second order logic relative toMSCB for someB. Their proof strategy
follows the idea from [9] to interpret the lexicographically least linear extension of
an MSCt in t. This interpretation is possible for infinite MSCs, too, as the following
lemma shows.

Let � be a fixed linear order onΣ. Let furthermoreX be a subset of an MSCt.
Then� defines the lexicographic order on the linear extensions oft↾X . Since these
linear extensions are well orders, the lexicographic orderis a well order, too. Hence
there is a lexicographically least linear extension oft↾X that we denote bylexNF(t↾X).

Lemma 4.1. There exists a first-order formulaϕ with two free variables such that for
anyt = (V,≤, λ) ∈ ↓MSC∞ andX ⊆ V , we have(X,ϕt↾X , λ↾X) ∼= lexNF(t↾X).

The proof is an immediate adaptation of the corresponding proof for Mazurkiewicz
traces, cf. [5].

The proof from [10] for finite MSCs then refers to Büchi’s theorem for finite words.
We cannot continue that way since the lexicographically least linear extension of,e.g.,
MSC((p!q q?p)ω) with p!q � q?p, is noω-word (it equals(p!q)ω(q?p)ω). Even worse,
the MSCMSC((p!q q?p p′!q′ q′?p′)ω has no definable linear extension of order typeω

at all. Hence we cannot generalize the proof from [10] to infinite MSCs. To overcome
this problem, we will chop an MSC into pieces, consider thesepieces independently,
and combine the results obtained for them.

Now let t = (V,≤, λ) ∈ ↓MSC∞. Thenalph(t) = λ[V ] andalphInf(t) = {σ ∈
Σ | λ−1(σ) is infinite}. Let Y be the largest filter int with λ[Y ] ⊆ alphInf(t) and let
X = V \ Y . Then thefinitary part of t is defined byFin(t) = t↾X and theinfinitary
part of t by Inf(t) = t↾Y . ThenFin(t) is an ideal in a finite MSC while in general
Inf(t) is only aΣ-labeled poset.

Let E ⊆ Σ2 contain all pairsσ, τ ∈ Σ with proc(σ) = proc(τ) or {σ, τ} =
{p!q, q?p} for somep, q ∈ P . Then(Σ,E) is an undirected graph.

Lemma 4.2. Let t = (V,≤, λ) ∈ ↓MSC∞
B , andA = alphInf(t). Let(Ai)1≤i≤n be the

connected components of the graph(A,E). Then we have for1 ≤ i ≤ n:

1. theΣ-labeled posetti = πAi
(Inf(t)) is directed (i.e., it does not contain two dis-

joint filters),
2. any linear extension ofti is of order typeω, and
3. Inf(t) =

⋃̇
1≤i≤nti.

Note that the MSCMSC(((p!q)(q?p))ω) is directed, but it has a linear extension of
typeω + ω, namely(p!q)ω(q?p)ω. Thus, to prove the second statement of the lemma
above, one indeed needs theB-boundedness oft.

By u⊔⊔v we denote the set of all shuffles of the wordsu and v andK⊔⊔L =⋃
{u⊔⊔v | u ∈ L, v ∈ L}. Now supposet ∈ ↓MSC∞

B and letalphInf(t) = A. Then,
by Lemma 4.2(3),Inf(t) is the disjoint union of theΣ-labeled posetsti = πAi

(Inf(t))
for Ai a connected component of(A,E). We defineNFInf(t) = ⊔⊔1≤i≤nlexNF(ti).
Then, by Lemma 4.2(2),NFInf(t) ⊆ Σω. Finally, by Lemma 4.2(2), we obtain that
NFInf(t) ⊆ Linω(Inf(t)).
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Definition 4.3. Let t ∈ ↓MSC∞
B , A = alphInf(t) and let$ 6∈ Σ. ThenNF(t) =

lexNF(Fin(t)) · {$} · NFInf(t) is theset of normal forms oft. ForK ⊆ ↓MSC∞
B , we

setNF[K] =
⋃

t∈K NF(t).

SinceNFInf(t) is a subset ofΣω, we getNF(t) ⊆ (Σ ∪ $)∞. Furthermore,
the restriction of any word inNF(t) to Σ is a linear extension oft, i.e., NF(t) ⊆
Linω(t)⊔⊔{$}. Using Prop. 3.1 and 3.2, one obtains thatNF[↓MSC∞

B ] is first-order
axiomatizable relative to(Σ ∪ {$})∞.

Let u ∈ Σ∞ andk ∈ N. Then the set of all first-order sentencesϕ of quantifier
depth at mostk is thek-first-order theory ofu. A set of first-order sentences of quantifier
depth at mostk is acompletek-first-order theoryif it is the k-first-order theory of some
wordu ∈ Σ∞. Since, up to logical equivalence, there are only finitely many first-order
sentences of quantifier depth at mostk, there are only finitely many completek-first-
order theories. Furthermore, each completek-first-order theoryT is characterized by
one first-order sentenceγT of quantifier depthk, i.e., for any wordu ∈ Σ∞, we have
u |= γ for all γ ∈ T iff u |= γT (cf. [13, Thm. 3.3.2]). For notational convenience, we
will identify the characterizing sentenceγT and the completek-first-order theoryT .

LetK ⊆ ↓MSC∞
B be aperiodic. ThenLinω [K] is first-order axiomatizable relative

toΣ∞. Let k ≥ 2 be the least integer such thatLinω[K]⊔⊔{$} andNF[↓MSC∞
B ] are

first-order axiomatizable relative to(Σ ∪ {$})∞ by a sentence of quantifier depth at
mostk. Let T be a completek-first-order theory andA ⊆ Σ. Then setKT,A := {t ∈
K | lexNF(Fin(t)) |= T, alphInf(t) = A} andXT,A := NF[KT,A].

Lemma 4.4. In the first order language of(Σ ∪ {$})-labeled linear orders with one
constantc, there exists a sentenceϕ of quantifier depthk such that(v, c) |= ϕ iff
v ∈ XT,A andλ(c) = $ for v ∈ (Σ ∪ {$})∞.

Apart from an extension of Mezei’s theorem to languages of infinite words we now
have all the ingredients for the proof of Thm. 4.6. To formulate the mentioned exten-
sion, we need the notion of an aperiodic extension: a finite monoidS′ is anaperiodic
extensionof a monoidS if there is a surjective homomorphismη : S′ → S such
that η−1(f) is an aperiodic semigroup for any idempotent elementf ∈ S. Note that
aperiodic extensions of finite /n-solvable / aperiodic monoids are finite /n-solvable /
aperiodic.

Theorem 4.5. Let Σ = Σ1∪̇Σ2 be an alphabet. LetL ⊆ Σ∞ be recognized by a
homomorphism into(S, ·) and suppose thatu1⊔⊔u2 ∩ L 6= ∅ impliesu1⊔⊔u2 ⊆ L for
anyui ∈ Σ∞

i (i = 1, 2). ThenL is a finite union of setsL1⊔⊔L2 whereLi ⊆ Σ∞
i is

recognized by an aperiodic extension of(S, ·).

Putting all these results (and their obvious extensions to the more expressive logics)
together, one obtains the following converse of Thm. 3.3:

Theorem 4.6. LetK ⊆ ↓MSC∞ be recognizable /n-solvable / aperiodic. ThenK is
bounded and axiomatizable by a sentence ofMSO / FO+MOD(n) / FO, respectively.
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5 Deterministic message passing automata

In this section, we will extend the the automata-theoretic characterizations of recog-
nizable word languages. Message passing automata, the automata model that we con-
sider, reflect the concurrent behavior of an MSC. It was introduced by Henriksen et al.
[10] and is similar to asynchronous cellular automata from the theory of Mazurkiewicz
traces. We will extend results from [10, 20] to infinite MSCs.Since the proofs rely on
the theory of Mazurkiewicz traces, we first investigate the relation between these traces
and MSCs.

5.1 The key observation

A dependence alphabetis a pair(Γ,D) whereΓ is a finite set andD is a reflexive
and symmetric dependence relation. Atrace over(Γ,D) is aΓ -labeled partial order
(V,≤, λ′) such that

– (λ′(x), λ′(y)) 6∈ D wheneverx, y ∈ V are incomparable, and
– (λ′(x), λ′(y)) ∈ D whenevery is an upper neighbor ofx (denotedx −−< y).

The set of all traces over(Γ,D) is denoted byR(Γ,D), the setM(Γ,D) comprises the
finite traces.

The key observation that is announced by the title of this section is that any recog-
nizable set of MSCs is the “relabeling” of a monadically axiomatizable set of traces over
a suitable dependence alphabet. Recall that any recognizable set of MSCs is bounded.
The boundB influences the chosen dependence alphabet as defined in the following
paragraph.

For a positive integerB ∈ N, letΓ = Σ × {0, 1, . . . , B − 1}. On this alphabet, we
define a dependence relationD as follows:(p1θ1q1, n1) and(p2θ2q2, n2) are dependent
iff

1. p1 = p2, or
2. {(p1θ1q1, n1), (p2θ2q2, n2)} = {(p!q, n), (q?p, n)} for somep, q ∈ P and0 ≤
n < B.

For t = (V,≤, λ) ∈ ↓MSC∞
B , we define a newΓ -labelingλ′ by

λ′(v) = (λ(v), |↓v ∩ λ−1λ(v)| mod B),

i.e. the first component of the label is the old label and the second counts moduloB the
number of occurrences of the same action in the past ofv. We then definetr(t) = (V,≤
, λ′). First, one shows that{tr(t) | t ∈ ↓MSC∞

B } is a first-order axiomatizable set of
traces inR(Γ,D):

Lemma 5.1. The settr[↓MSC∞
B ] is the set of all tracess ∈ R(Γ,D) satisfying

I. π{(p!q,n),(q?p,n)}(s) is a prefix of((p!q, n)(q?p, n))ω for p, q ∈ P and0 ≤ n < B.
II. π{(σ,n)|1≤n<B}(s) is a prefix of((σ, 1)(σ, 2) . . . (σ,B − 1)(σ, 0))ω for σ ∈ Σ.

III. If v, w ∈ V with v −−< w, thenproc(λ′(v)) = proc(λ′(w)) or λ′(v) = (p!q, n)
andλ′(w) = (q?p, n) for somep, q ∈ P and0 ≤ n < B.
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Since all these properties are first-order expressible and since one can interpret the
MSC t in the tracetr(t), we obtain

Proposition 5.2. LetK ⊆ ↓MSC∞
B by monadically axiomatizable relative to↓MSC∞

B .
Thentr[K] ⊆ R(Γ,D) is monadically axiomatizable relative toR(Γ,D).

This proposition can be used for an alternative proof of parts of Theorem 4.6; it
works perfectly well for recognizable languages, can in some cases be used forn-
solvable languages (ifB divides some power ofn), and is of no use whatsoever for
aperiodic languages (since the relabeling cannot be definedin first-order logic).

So far, we transformed any monadically axiomatizable set ofbounded MSCs into
a monadically axiomatizable set of traces. In order to make use of this transformation,
we need the following definitions and results from the theoryof Mazurkiewicz traces.

Let s = (V,≤, λ′) be a trace over(Γ,D) and letA ⊆ Γ . Then∂A(t) is the least
ideal of t such that the complementary filter does not contain anyA-labeled vertex.
Let γ ∈ Γ . ThenD(γ) = {δ ∈ Γ | (γ, δ) ∈ D}. Furthermore,tγ is the unique
trace(V ∪̇{⋆},≤′, ρ) with tγ↾V = t, ρ(⋆) = γ, and⋆ ∈ max(tγ). A mappingµ :
M(Γ,D) → A is asynchronousif, for any ∆1, ∆2 ⊆ Γ , any γ ∈ Γ , and anyt ∈
M(Γ,D),

1. µ(∂∆1∪∆2(t)) is completely determined byµ(∂∆1(t)), µ(∂∆2(t)), and the sets∆1

and∆2, and
2. µ(∂γ(tγ) is completely determined byµ(∂D(γ)(t)) and the letterγ.

Theorem 5.3 ([25, 4]).Let (Γ,D) be a dependence alphabet andL ⊆ M(Γ,D). Then
L is monadically axiomatizable if, and only if, there exists an asynchronous mappingµ
into some finite set such thatL = µ−1µ(L).

This result was used to construct a deterministic asynchronous cellular automaton
that accepts a given recognizable language of finite traces.Diekert & Muscholl [6]
use the same concept of an asynchronous mapping to constructa deterministic asyn-
chronous cellular automaton with Muller acceptance condition that accepts a given
recognizable set of infinite traces. In order to state their result, we need some more
notations:

Let (Γ,D) be a dependence alphabet,t = (V,≤, λ′) ∈ R(Γ,D) a trace, andγ ∈ Γ .
Letµ∞

γ (t) ⊆ A be the set of alla ∈ A for which there are infinitely many nodesv ∈ V

with λ′(v) = γ andµ(t↾↓v) = a.

Theorem 5.4 ([6, 9]).Let (Γ,D) be a dependence alphabet andL ⊆ R(Γ,D) be
monadically axiomatizable. Then there exists a finite setA, a setT ⊆

∏
γ∈Γ 2A of

Γ -tuples of subsets ofA, and an asynchronous mappingµ : M(Γ,D) → A such that
for t ∈ R(Γ,D), we have:t ∈ L ⇐⇒ (µ∞

γ (t))γ∈Γ ∈ T .

5.2 The construction of deterministic message passing automata

A message passing automaton with Muller-acceptance condition is a structureA =
((Ap)p∈P , ∆, sin,S) where
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1. ∆ is a finite set of messages,
2. each componentAp is of the form(Sp,→p) where

– Sp is a finite set of local states,
– →p⊆ Sp × Σp × ∆ × Sp whereΣp = {σ ∈ Σ | proc(σ) = p} is a local

transition relation,
3. sin ∈

∏
p∈P Sp is the global initial state, and

4. S ⊆
∏

p∈P 2Sp is a Muller acceptance condition.

Let (s, a,m, s′) ∈→p be a local transition of processp. Supposea is a send event,
i.e.,a = p!q for some processq. Then the transition(s, a,m, s′) denotes that the process
p can perform the actiona = p!q in states; it changes its local state tos′ and sends a
messagem into the FIFO-channel from processp to processq. By enlarging the set of
messages and local states (if necessary), we can assume thatm = s′ for any send action
(in particular,∆ =

⋃
p∈P Sp). Now suppose thata = p?q is a receive action. Then the

transition(s, a,m, s′) denotes that the processp can change its local state froms to s′

when reading the messagem from the channel that connectsp andq.
A message passing automaton isdeterministicif

– (s, p!q,m1, s1), (s, p!q,m2, s2) ∈→p imply s1 = s2 andm1 = m2

– (s, q?p,m1, s1), (s, q?p,m1, s2) ∈→p imply s1 = s2.

The message passing automaton iscomplete, if

– there exists a transition(s, p!q,m, s′) for anys ∈ Sp andq ∈ P \ {p}
– there exists a transition(s, q?p,m, s′) for anys ∈ Sp,m ∈ ∆, andq ∈ P \ {p}

Let t = (V,≤, λ) be an ideal in an MSC and letA be a message passing automaton.
Let furthermorer : V →

⋃
p∈P Sp be a mapping andv ∈ V . We define a second

mappingr− : V →
⋃

p∈P Sp: if there is u < v with proc(u) = proc(v), let u
be maximal with this property and letr−(v) denoter(u). If v is the minimal event
performed by the processproc(v), letr−(v) = sin

proc(v). Thenr−(v) is the local state of
processproc(v) beforethe execution ofv; this process is in stater(v) afterperforming
v.

A run of A on t is a mappingr : V →
⋃

p∈P Sp satisfying for anyv ∈ V :

1. If λ(v) = p!q, then there is a transition(r−(v), p!q,m, r(v)) in →p for some mes-
sagem (which turns out to ber(v) by our assumption).

2. Now letλ(v) = p?q. Sincet is an ideal in an MSC, there is a unique matching node
u ∈ V with u ⊑ v. We require that(r−(v), p?q, r(u), r(v)) ∈→p.

Let r : V →
⋃

p∈P Sp be a run of a Muller message passing automaton ont =
(V,≤, λ) ∈ ↓MSC∞. Forp ∈ P , letXp ⊆ Sp be the set of alls ∈ Sp such that, for any
v ∈ V with proc(v) = p, there existsw ∈ V with v ≤ w, proc(w) = p, andr(w) = s

(and{sin
p } if no suchv exists). The runr is successfulprovided(Xp)p∈P ∈ S. A set

K ⊆ ↓MSC∞ is accepted byA relative toX ⊆ ↓MSC∞ if, for any t ∈ X, t ∈ L iff t
is accepted byA.

Above, we associated to any monadically axiomatizable subset of↓MSC∞
B a monad-

ically axiomatizable set of traces. By Theorem 5.4, we therefore get an asynchronous
mapping. Next, we construct a message passing automaton from an asynchronous map-
ping.

10



Proposition 5.5. Let µ : M(Γ,D) → A be some asynchronous mapping into a fi-
nite setA. Then there exists a complete deterministic message passing automaton with
Muller acceptance conditionA with local state spaceS and a functionf : S → A such
that for the runr of A on t = (V,≤, λ) ∈ ↓MSC∞

B , we havef(r(v)) = µ(tr(↓v)).

Now one can show that relative to↓MSC∞
B , message passing automata and monadic

second order have the same expressive power:

Proposition 5.6. A setK ⊆ ↓MSCB can be accepted by the message passing automa-
tonA relative to↓MSCB iff it is monadically axiomatizable relative to↓MSCB.

The construction of a formula from an MPA follows the wellknown pattern of [24,
25, 8]. The other implication follows easily from Prop. 5.5 and 5.2 together with Theo-
rem 5.4.

In order to extend the result to↓MSC∞, one first observes that↓MSCB can be
accepted by a deterministic message passing automaton relative to ↓MSCB+1 since
it is monadically axiomatizable relative to↓MSC. Note that an ideal in an MSCt ∈
↓MSC∞ is NOT B-bounded iff it contains a principal ideal that is notB-bounded.
This allows to show that↓MSC∞

B can be accepted by a complete deterministic message
passing automaton with Muller acceptance condition. This is used in the proof of our
main result:

Theorem 5.7. LetK ⊆ ↓MSC∞. ThenK is recognizable iff it is bounded and there
exists a Muller message passing automaton that acceptsK.

Proof. The setK is monadically axiomatizable andB-bounded for someB. Hence
there exists a deterministic message passing automatonA1 that acceptsK relative to
↓MSC∞

B . SoK = L(A1)∩↓MSC∞
B is the intersection of two sets that can be accepted

by deterministic message passing automata. ⊓⊔

One can prove the corresponding statement from [20] for finite MSCs accordingly.
Our construction requiresm2O((n2B)2 log(n2B)) local states (wheren is the number
of processes|P|, B is the bound on the MSCs in the languageK, andm is the size
of the syntactic monoid ofLin[K]). Recall that the construction from [20] needed

22O(n2B)m log m local states.
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