
Automata and Logic for Concurrent Systems

Benedikt Bollig

Laboratoire Spécification et Vérification, École Normale Supérieure de Cachan &
Centre National de la Recherche Scientifique, France

Automata are a popular model of computer systems, making them accessible to
formal methods and, in particular, synthesis and model checking. While classical
finite-state automata are suitable to model sequential boolean programs, models
of concurrent systems, involving several interacting processes, extend finite-state
machines in several respects. Roughly, we may classify a system (or a system
model) according to the following characteristics:

Form of Communication. Inter-process communication may be achieved,
e.g., via shared variables or message passing. While boolean shared-variable
programs usually give rise to finite-state systems so that classical methods are
applicable for their analysis, message passing via a priori unbounded channels
leads to undecidability of basic verification questions. However, putting some
restrictions on the system (e.g., imposing a channel bound or restricting the sys-
tem architecture) will allow us to infer positive results for both system synthesis
and model checking.

System Architecture. The system architecture, connecting processes and ar-
ranging them in a certain way (e.g., as a pipeline or as a tree), may be static and
known, or static but unknown, or it may change dynamically during a system
execution. In the particular case where the topology is static but unknown, we
deal with a parameterized setting. So, one will be interested in questions such
as “Is the system correct no matter what the system architecture or the number
of processes is?” or “Can one transform a specification into a system that is
equivalent to the specification over all system architectures?”. There has been
a wide range of techniques for the verification of parameterized and dynamic
systems. In the dynamic case, there are also close connections with the theory of
words over infinite alphabets, where the alphabet may represent an unbounded
supply of process identifiers.

Finite-State vs. Recursive Processes. Processes themselves can have fi-
nite state space (i.e., be modeled as finite-state automata) or recursive (i.e., be
modeled as pushdown automata). Like processes communicating via message
passing through unbounded channels, shared-variable recursive processes have
an undecidable control-state reachability problem. However, under- and overap-
proximating the behavior of a system will still allow us to check certain system
requirements.

In this talk, we survey automata models for some combinations of the above-
mentioned features. We also present suitable specification formalisms (such as

7



8 Benedikt Bollig

monadic second-order logic, temporal logic, and high-level expressions). In par-
ticular, we will compare the expressive power of automata and logic, give trans-
lations of specifications into automata, and show, for some cases, how to solve
the model-checking problem: “Does a given automaton satisfy its specification?”.


