
State-Splitting for Regular Tree Grammars

Toni Dietze

Institute of Theoretical Computer Science, Technische Universität Dresden

Abstract. We formalize the state-splitting algorithm of [2].

1 Introduction

The expectation-maximization algorithm (EM algorithm) [1] is a well-known
procedure, which can be used, e.g., to estimate probabilities for the rules of
a regular tree grammar (RTG) G on the basis of a corpus c of derived trees.
The algorithm starts with an arbitrary probability assignment p0 and iterates
an expectation and a maximization step; in each iteration the likelihood of the
corpus c under the current probabilistic RTG (PRTG) increases or stays the
same. We denote the resulting PRTG by EM((G, p0), c).

In [2], multiple calls to EM were interleaved with modifications of the un-
derlying RTG (cf. split, merge in Fig. 1). This may improve the likelihood,
because the state behavior of the current RTG may be adapted to characteristics
of the trees in c. In [2], this approach was presented in an informal style, and no
properties were proved. In our current work, we have formalized this approach
and call it state-splitting algorithm.

2 Preliminaries

Let Σ be an alphabet. We denote the set of all trees over Σ by TΣ . A regular
tree grammar (RTG) is a tuple (Q,Σ, qs, R) where Q and Σ are alphabets of
states and terminal symbols, respectively, with Q ∩ Σ = ∅, qs ∈ Q is the initial
state, and R is a finite set of rules of the form q0 → σ(q1, . . . , qn) where σ ∈ Σ,
n ≥ 0, and qi ∈ Q. We denote the left-hand side of a rule r ∈ R by lhs(r).
A probabilistic RTG (PRTG) is a pair (G, p) where G = (Q,Σ, qs, R) is an
RTG and p : R → [0, 1] is a probability assignment which is proper, i.e., the
probabilities of rules with the same left-hand side sum up to 1. A corpus is a
mapping c : TΣ → R≥0 such that {a ∈ A | c(A) > 0} is finite. The likelihood of
c under (G, p) is defined as L(c | (G, p)) =

∏
t∈TΣ

p(t)c(t).

3 The State-Splitting Algorithm

The state-splitting algorithm (see Fig. 1) uses the functions split and merge.

41



42 Toni Dietze

Input: alphabet Σ, corpus c over TΣ ,
PRTG G0 over Σ with initial state qs and
L(c | G0) > 0, µ ∈ [0, 1].
Output: sequence of PRTG.
1: for i← 1, 2, . . . do
2: G′ ← EM(split(Gi−1), c)
3: Gi ← EM(merge(G′), c)
4: function split(G)
5: π ← G-splitter splitting every state

q in G into q1 and q2 except qs
6: return a proper π-split of G

7: function merge(G′)
8: π ← identity mapping
9: for all states q s.t. q1, q2 in G′ do
10: π̂ ← identity mapping
11: π̂(q1)← q and π̂(q2)← q
12: λ← a good π̂-distributor
13: if L(c|mergeλπ̂(G′))

L(c|G′) ≥ µ then
14: π(q1)← q and π(q2)← q

15: λ← a good π-distributor
16: return mergeλπ(G

′)

Fig. 1. The state-splitting algorithm.

q

σ

qs

splitπ

mergeπ

q1 q2

σ σ σ σ

qsπ

π

Fig. 2. Visualization of split/merge.

Splitting Let G = (Q,Σ, qs, R) be an RTG
and let q ∈ Q\{qs}. We can split q into new
states, e.g., q1 and q2. Then we also have
to split rules which use this state, e.g., we
would split the rule qs → σ(q, q) into qs →
σ(q1, q1), qs → σ(q1, q2), qs → σ(q2, q1),
and qs → σ(q2, q2) (cf. Fig. 2), i.e., we cre-
ate a rule for every possible combination of
the split states.

Formally, let Q′ be an alphabet such that qs ∈ Q′, and let π : Q′ → Q be a
surjective mapping such that π−1(qs) = {qs}. We call π a G-splitter (w.r.t. Q′).
We use π to map a split state to its (unsplit) source. Hence, we can use π−1 to
split a state. We will denote the splitting based on π by splitπ and we will use
this notion for the splitting of states, rules, sets of those, and RTG. Thus the
π-split of G is the RTG splitπ(G) = (splitπ(Q), Σ, qs, splitπ(R)).

Now let us turn to PRTG. Let (G, p) and (G′, p′) be PRTG over the same
terminal alphabet. We say (G′, p′) is a proper π-split of (G, p), if G′ = splitπ(G),
and p(r) =

∑
r′∈splitπ(r) : lhs(r′)=q′ p

′(r′) for every rule r in G and for every
q′ ∈ splitπ(lhs(r)). One can show that the probability of a tree in (G, p) is the
same as in (G′, p′), if (G′, p′) is a proper π-split of (G, p).

Merging The merge operation undoes splits. Formally, let G′ = (Q′, Σ, qs, R
′)

be an RTG, Q an alphabet such that qs ∈ Q, and π a surjective mapping such
that π−1(qs) = {qs}. We call π a G′-merger (w.r.t. Q). We will denote the
merging based on π by mergeπ and we will use this notion for the merging
of states, rules, sets of those, and RTG. Thus the merging results in the RTG
mergeπ(G

′) = (mergeπ(Q
′), Σ, qs,mergeπ(R

′)).
Note that splitting and merging fit together nicely: Let G be an RTG, π be a

G-splitter, and G′ = splitπ(G); then π is also a G′-merger and mergeπ(G
′) = G.

The other direction is a bit more subtle: Let G′ = (Q′, Σ, qs, R
′) be an RTG and

π a G′-merger; then Q′ = splitπ(mergeπ(Q
′)), but R′ ⊆ splitπ(mergeπ(R

′)).



State-Splitting for Regular Tree Grammars 43

Now let us turn to PRTG again. Let (G′, p′) be a PRTG and π a G′-merger
with G′ = (Q′, Σ, qs, R

′) and mergeπ(G
′) = (Q,Σ, qs, R). Roughly speaking, we

need to merge p′ now. Let λ : Q′ → [0, 1] be a mapping such that for every
q ∈ Q we have

∑
q′∈splitπ(q)

λ(q′) = 1. We call λ a π-distributor. We define the
probability assignment mergeλπ(p

′) to be the mapping p : R → [0, 1] such that
p(r) =

∑
r′∈R′ : mergeπ(r

′)=r λ(lhs(r
′))·p′(r′) for every r ∈ R. One can show that p

is proper, which is guaranteed by the properties of λ. Yet, the λ provides enough
flexibility for later tasks. We define mergeλπ(G

′, p′) = (mergeπ(G
′),mergeλπ(p

′)).
In the merge function in Fig. 1, the algorithm decides which states to merge.

For this purpose, it compares the likelihoods of the unmerged grammar and a
grammar where only two states are merged. If this merge does not harm the
likelihood too much, these two states will also be merged in the result. The
parameter µ lets us configure the maximally accepted loss in the likelihood to
find a trade-off between the loss of likelihood and the complexity of the grammar.

4 Further Research

We have to choose a “good” π-distributor λ for every merge. Our idea is, to do
an EM iteration for the merged grammar, and since we do not have an initial
probability assignment, we use the probability assignment of the split grammar
to compute the counts needed for an EM iteration.

While merging, it is not clear how the likelihood changes in general. In [2],
the ratio between the likelihoods (cf. Fig. 1, Line 13) was only approximated.
Maybe the exact likelihood for the merged grammar can be calculated efficiently,
if the likelihood of the unmerged grammar has already been calculated.

Also, in split we have to choose a proper π-split of G; it remains to investi-
gate how this choice affects the outcome of the algorithm exactly. Additionally,
good values for the parameter µ need to be found, which may be done empiri-
cally. Another idea is to get along without merging at all, if we split states only
selectively, e.g., only the most frequent states in derivations of the trees in the
corpus.

References

1. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

2. S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics, ACL-44, pages 433–440, Stroudsburg, PA, USA, 2006.
Association for Computational Linguistics.


	State-Splitting for Regular Tree Grammars

