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1 Introduction

Probabilistic automata, introduced already by Rabin [12], form a flourishing field.
Their applications range from speech recognition [13] over prediction of climate
parameters [10] to randomized distributed systems [9]. For surveys of theoretical
results see the books [11,4]. Recently, the concept of probabilistic automata has
been transferred to infinite words by Baier and Grösser [1]. This concept led to
further research [2,5,6,7,8,14].

Though probabilistic automata admit a natural quantitative behavior, namely
the acceptance probability of each word, the main research interest has been
towards qualitative properties (for instance the language of all words with positive
acceptance probability). We consider the behavior of a probabilistic automaton
as function mapping finite or infinite words to a probability value.

On the other hand, there are two classical characterizations of recognizable
languages: Büchi and Elgot established the characterization using monadic sec-
ond order logic, and Kleene used regular expressions as a model expressively
equivalent to recognizable languages. Both results were a paramount success
with applications in all fields of theoretical computer science. We establish both
results in the context of probabilistic ω-automata.

2 Definitions and Results

For the following, let Σ always denote an alphabet and w ∈ Σω a word. For a
set X, we denote the set of all probability distributions on X by ∆(X). Given a
p ∈ (0, 1), we use the Bernoulli measure Bp on {0, 1}ω which is uniquely defined
by Bp(u1 · · ·un{0, 1}ω) = p|{i|ui=1}|(1 − p)|{i|ui=0}| for u1, . . . , un ∈ {0, 1}. As
there is a natural bijection from {0, 1}ω to 2N, we regard Bp also as a measure
on 2N.

Definition 1 (Probabilistic Muller automata). A probabilistic Muller au-
tomaton is a tuple A = (Q, δ, µ,Acc) where – Q is a non-empty, finite set of
states – δ : Q × Σ → ∆(Q) the transition probability function – µ ∈ ∆(Q)
the initial probabilities – Acc ⊆ 2Q a Muller acceptance condition. For a word
w = w1w2 · · · ∈ Σω, the behavior of A is defined using the unique measure PwA on
Qω defined by PwA(q0 · · · qnQω) = µ(q0)

∏n
i=1 δ(qi−1, wi, qi).The behavior ‖A‖ of

A is then given by ‖A‖(w) = P
w
A(ρ ∈ Qω ; inf(ρ) ∈ Acc), where inf(ρ) designates

the set of states occurring infinitely often in ρ.
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Next, we define the syntax and semantics of probabilistic MSO logic and
probabilistic ω-regular expressions.

Definition 2 (Probabilistic MSO logic). The syntax of a probabilistic MSO
ϕ is given in BNF by

ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | EpX.ϕ,
ψ ::= Pa(x) | x ∈ X | x ≤ y | ψ ∧ ψ | ¬ψ | ∀x.ψ | ∀X.ψ,

where ψ denotes a Boolean PMSO formula, a ∈ Σ, and x, y (X) are first-order
(resp. second-order) variables.

The semantics [[ϕ]] are defined inductively: Given a word w ∈ Σω and an
assignment α : V → N ∪ 2N, for a Boolean formula ψ we define [[ψ]](w,α) = 1
if (w,α) satisfies ψ in the classical sense and [[ϕ]](w,α) = 0 otherwise. For
probabilistic MSO formulas ϕ the semantics are given by

[[ϕ1 ∧ ϕ2]](w,α) = [[ϕ1]](w,α) · [[ϕ2]](w,α), [[¬ϕ]](w,α) = 1− [[ϕ]](w,α),

[[EpX.ϕ]](w,α) =
∫

2N
[[ϕ]](w,α[X 7→M ]) Bp(dM).

Definition 3 (Probabilistic ω-regular expressions). The set pωRE of all
probabilistic ω-regular expressions is the smallest set satisfying
– Σω ∈ pωRE
– If ∅ 6= A ⊆ Σ and (Ea)a∈A ∈ pωRE, then

∑
a∈A aEa ∈ pωRE

– If p ∈ [0, 1] and E,F ∈ pωRE, then pE + (1− p)F ∈ pωRE and pE ∈ pωRE
– If EΣω ∈ pωRE and F ∈ pωRE, then EF ∈ pωRE
– If EΣω+F ∈ pωRE, then E∗F+Eω ∈ pωRE, Eω ∈ pωRE and E∗F ∈ pωRE
– The set pωRE is closed under distributivity of · over +, associativity, and

commutativity of + and multiplication by real numbers.
The semantics of probabilistic ω-regular expressions are inductively defined by
‖Σω‖(w) = 1Σω (w) and

‖a‖(w)=
{

1 if w=a

0 otherwise
‖EF‖(w)=

∑
uv=w

‖E‖(u) · ‖F‖(v)

‖p‖(w)=
{
p if w=ε

0 otherwise
‖E∗‖(w)=

∑
u1···un=w

‖E‖(u1) · · · ‖E‖(un)

‖E + F‖(w)=‖E‖(w)+‖F‖(w) ‖Eω‖(w)= lim
n→∞

∑
u1···unv=w

‖E‖(u1) · · · ‖E‖(un)

where a ∈ Σ and p ∈ [0, 1].

Note that the semantics of E + F , E∗, and Eω are well-defined because of
the syntax restrictions imposed on pωRE.

Theorem 4. Let f : Σω → [0, 1. The following statements are equivalent
1. f = ‖A‖ for a probabilistic Muller automaton A
2. f = [[ϕ]] for a probabilistic MSO sentence ϕ
3. f = ‖E‖ for a probabilistic ω-regular expression E
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All equivalences given in Theorem 1 are shown using effective constructions.
Hence decidability results for probabilistic ω-automata transfer to probabilistic
MSO logic and probabilistic ω-regular expressions. For example it is undecidable,
given an automaton A, a sentence ϕ, or an expression E, if there is a word
w ∈ Σω with ‖A‖(w) > 0, resp. [[ϕ]](w) > 0, resp. ‖E‖(w) > 0.

If an expression E is ω-deterministic, i.e. no sub-expression Fω in E contains
probability constants other than 0 or 1, then the above problem is decidable.
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