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1 Introduction

One of the main topics of descriptional complexity is the question of how the
size of the description of a formal language varies when being described by dif-
ferent formalisms. A fundamental result is the exponential trade-off between the
number of states of nondeterministic (NFA) and deterministic finite automata
(DFA) (see, for example, [12]). Additional exponential and double-exponential
trade-offs are known, for example, between unambiguous and deterministic finite
automata, between alternating and deterministic finite automata, between deter-
ministic pushdown automata and DFA, and between the complement of a regular
expression and conventional regular expressions. Beside these recursive trade-
offs, bounded by recursive functions, it is known that there also non-recursive
trade-offs, which are not bounded by any recursive function. Such trade-offs have
at first been shown to exists between context-free grammars generating regular
languages and finite automata [12]. For a survey on recursive and non-recursive
trade-offs we refer to [3, 5].

Unary languages, that is, languages defined over a singleton alphabet, are of
particular interest, since in this case often better or more precise results than
in the case of arbitrary alphabets can be obtained. For example, the trade-

off of 2n between an n-state NFA and DFA, is reduced to eΘ(
√
n·ln(n)) in the

unary case [1]. The descriptional complexity of unary regular languages has
been studied in many ways. On the one hand, many automata models such
as one-way finite automata, two-way finite automata, pushdown automata, or
context-free grammars for unary languages are investigated and compared to
each other with respect to simulation results and the size of the simulation (see,
for example, [2, 11, 13, 15]). On the other hand, many results concerning the
state complexity of operations on unary languages have been obtained (see, for
example, [4, 7, 10, 14]).

Here, we consider deterministic one-way multi-head finite automata accept-
ing unary languages. Since it is known that every unary language accepted by
a one-way multi-head finite automaton is semilinear and thus regular [6, 16],
it is of interest to investigate the descriptional complexity of such devices in
comparison with the models mentioned above. In detail, we establish upper and
lower bounds for the conversion of k-head DFA to one-head DFA and one-head
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NFA. Moreover, we investigate the size costs for simulating one-head NFA by
k-head DFA and the computational complexity of decidability questions for k-
head DFA. Unary deterministic one-way multi-head finite automata have already
been studied in [9]. The main results obtained there are infinite proper hierar-
chies with respect to the number of states as well as to the number of heads. It
should be noted that the trade-offs between general k-head DFA and one-head
DFA are non-recursive for all k ≥ 2 [8].

2 Results

As is often the case in connection with unary languages, the function

F (n) = max{ lcm(c1, c2 . . . , cl) | c1, c2, . . . , cl ≥ 1 and c1 + c2 + · · ·+ cl = n },

which gives the maximal order of the cyclic subgroups of the symmetric group
of n symbols, plays a crucial role, where lcm denotes the least common multiple.

Theorem 1. For any integers k, n ≥ 2 so that n is prime, there is a unary
n-state DFA(k) M , such that n · F (n)k−1 states are necessary for any DFA to
accept the language L(M).

Theorem 2. Let k, n ≥ 1 and M be a unary n-state DFA(k). Then there is a
constant t depending only on k so that O(n · F (t · n)k−1) states are sufficient
for a DFA to accept the language L(M). The DFA can effectively be constructed
from M .

Theorem 3. Let k, n ≥ 2 be constants and M be a unary n-state DFA(k).
Then O(n2k) states are sufficient for an NFA to accept the language L(M). The
NFA can effectively be constructed from M .

Theorem 4. For any integers k, n ≥ 2, there is a unary n-state DFA(k) M ,
such that Ω(nk) states are necessary for any NFA to accept the language L(M).

Theorem 5. Let k ≥ 1, n ≥ 2 be constants, t = b−3+
√
8n+1

2 c, and M be a
unary n-state NFA. Then

n′ ≤


n2 − 2 + F (n), if k = 1;

n2 − 2 +
(
n− t2+t

2

)d t
ke
, if 1 < k < t/2;

2n2, if k ≥ t/2.

states are sufficient for a DFA(k) to accept the language L(M). The DFA(k) can
effectively be constructed from M .

Theorem 6. Let k ≥ 1 be a constant. For any integer m ≥ 1 there is an integer

n > m and a unary n-state NFA M , such that c2 ·
k

√
e

√
2n√

c1 ln(
√

2n) states are
necessary for any DFA(k) to accept the language L(M), where c1, c2 > 0 are two
constants.
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Lemma 7. Let k ≥ 1 and M be an n-state DFA(k). Then there exists an n-state
DFA(k) M ′ accepting the complement of L(M). The DFA(k) M ′ can effectively
be constructed from M .

Theorem 8. Let k ≥ 1 be an integer. Then the problems to decide empti-
ness, universality, finiteness, inclusion, and equivalence for unary DFA(k) are
LOGSPACE-complete.
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