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Abstract. A Boolean closed full trio is a class of languages that is closed
under Boolean operations (union, intersection, and complement) and ra-
tional transductions. It is well-known that the regular languages con-
stitute such a Boolean closed full trio. We present a result stating that
every such language class that contains any non-regular language already
contains the whole arithmetical hierarchy.
Our construction also shows that there is a fixed rational Kripke frame
such that assigning an arbitrary non-regular language to some variable
allows the interpretation of any language from the arithmetical hierarchy
in the corresponding Kripke structure.

Given alphabets X and Y , a rational transduction is a rational subset of the
monoid X∗ × Y ∗. For a language L ⊆ Y ∗ and a rational transduction R, we
write RL = {x ∈ X∗ | ∃y ∈ L : (x, y) ∈ R}.

A class C of languages is called a full trio if it is closed under (arbitrary)
homomorphisms, inverse homomorphisms, and regular intersections. It is well-
known [2] that a class C is a full trio if and only if it is closed under rational
transductions, i.e., for every L ∈ C and every rational transduction R, we have
RL ∈ C. We call a language class Boolean closed if it is closed under all Boolean
operations (union, intersection, and complementation).

For any language class C, we write RE(C) for the class of languages accepted
by some Turing machine with an oracle L ∈ C. Furthermore, let REC denote the
class of recursive languages. Then the arithmetical hierarchy (see, for example,
[3]) is defined as

Σ0 = REC, Σn+1 = RE(Σn) for n ≥ 0.

Languages in
⋃

n≥0Σn are called arithmetical. It is well-known that the class of
regular languages constitutes a Boolean closed full trio. These closure properties
of the regular languages allow for a rich array of applications. Aside from the
insights gained from the individual closure properties, this particular collection
is exploited, for example, in the theory of automatic structures, since it implies
that in such structures, every first-order definable relation can be represented by
a regular language. Since emptiness is decidable for regular languages, one can
therefore decide the first-order theory of these structures.
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Hence, the question arises whether there are languages classes beyond the
regular languages that enjoy these closure properties. Our first main result states
that every such language class already contains the whole arithmetical hierarchy
and thus loses virtually all decidability properties.

Theorem 1. Let C be a Boolean closed full trio. If C contains any non-regular
language, then C contains the arithmetical hierarchy.

Actually, it turns out that a fixed set of rational transductions suffice to
construct all arithmetical languages from any non-regular language:

Theorem 2. There exist a fixed alphabet X and a list R1, . . . , Rn ⊆ X∗×X∗ of
rational transductions such that for every non-regular language L ⊆ X∗, every
arithmetical language can be constructed from L using Boolean operations and
applications of the rational transductions R1, . . . , Rn.

It should be noted that Theorem 1 and 2 do not mean that there is no
way of developing a theory of automatic structures beyond regular languages.
It might well be that some smaller collection of closure properties suffices to
obtain all first-order definable relations and still admits a decision procedure for
the emptiness problem.

A large number of grammar and automata models is easily seen to produce
only recursively enumerable languages. Hence, Theorem 1 also implies that the
corresponding language classes are never Boolean closed full trios.

Theorem 2 can be also restated in terms of multimodal logic. A Kripke struc-
ture (or edge- and node-labeled graph) is a tuple

K = (V, (Ea)a∈A, (Up)p∈P ),

where V is a set of nodes (also called worlds), A and P are finite sets of actions
and propositions, respectively, for every a ∈ A, Ea ⊆ V ×V , and for every p ∈ P ,
Up ⊆ V . The tuple F = (V, (Ea)a∈A) is then also called a Kripke frame. We say
that K (and F) is word-based if V = X∗ for some finite alphabet X. Formulas of
multimodal logic are defined by the following grammar, where p ∈ P and a ∈ A:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �aϕ | ♦aϕ.

The semantics [[ϕ]]K ⊆ V of formula ϕ in K is inductively defined as follows:

[[p]]K = Up,

[[¬ϕ]]K = V \ [[ϕ]]K,

[[ϕ ∧ ψ]]K = [[ϕ]]K ∩ [[ψ]]K,

[[ϕ ∨ ψ]]K = [[ϕ]]K ∪ [[ψ]]K,

[[�aϕ]]K = {v ∈ V | ∀u ∈ V : (v, u) ∈ Ea → u ∈ [[ϕ]]K},
[[♦aϕ]]K = {v ∈ V | ∃u ∈ V : (v, u) ∈ Ea ∧ u ∈ [[ϕ]]K}.

A word-based Kripke frame F = (X∗, (Ea)a∈A) is called rational if every Ea is a
rational transduction. A word-based Kripke structureK = (X∗, (Ea)a∈A, (Up)p∈P )
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is called rational if every relation Ea is a rational transduction and every Up is
a regular language. The closure properties of regular languages imply that for
every rational Kripke structure K and every multimodal formula ϕ, the set [[ϕ]]K
is a regular language that can be effectively constructed from ϕ and (automata
describing the structure) K. Using this fact, Bekker and Goranko [1] proved that
the model-checking problem for rational Kripke structures and multimodal logic
is decidable. Our reformulation of Theorem 2 in terms of multimodal logic is:

Theorem 3. There exist a fixed alphabet X and a fixed rational Kripke frame
F = (X∗, R1, . . . , Rn) such that for every non-regular language L ⊆ X∗ and
every arithmetical language A ⊆ X∗ there exists a multimodal formula ϕ such
that A = [[ϕ]]K, where K = (X∗, R1, . . . , Rn, L).
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