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Example (Pushdown automaton)

q0 q1

a, λ,A

b, λ,B

λ, λ, λ

a,A, λ

b,B, λ

L “ tww rev | w P ta, bu˚u

Example (Blind counter automaton)

q0 q1 q2
λ, 0, 0 λ, 0, 0

a, 1, 0 b, 0, 1 c ,´1,´1

L “ tanbncn | n ě 0u
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Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

λ, 0

λ,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for any prefix p of wu

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 3 / 21



Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

λ, 0

λ,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for any prefix p of wu

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 3 / 21



Automata models that extend finite automata by some storage
mechanism:

Pushdown automata

Blind counter automata

Partially blind counter automata

Turing machines

Each storage mechanism consists of:

States: set S of states

Operations: partial maps α1, . . . , αn : S Ñ S
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Model States Operations

Pushdown
automata

S “ Γ˚
pusha :w ÞÑ wa, a P Γ

popa :wa ÞÑ w , a P Γ

Blind
counter
automata

S “ Zn
inci :px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci :px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Partially
blind
counter
automata

S “ Nn
inci :px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci :px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Observation

Here, a sequence β1, . . . , βk of operations is valid if and only if

β1 ˝ ¨ ¨ ¨ ˝ βk “ id
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Definition

A monoid is

a set M together with

an associative binary operation ¨ : M ˆM Ñ M and

a neutral element 1 P M (a1 “ 1a “ a for any a P M).

Storage mechanisms as monoids

Let S be a set of states and α1, . . . , αn : S Ñ S partial maps.

The set of all compositions of α1, . . . , αn is a monoid M.

The identity map is the neutral element of M.

M is a decription of the storage mechanism.
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.
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Classical results can now be generalized:

Questions

Which storage mechanisms increase the expressive power?

For which can we avoid silent transitions?

For which do we have semilinearity of all languages?

For which is the language class Boolean closed?

Ð tomorrow

For which are all languages context-free?

For which can we decide, for example, emptiness?

Which language classes can be obtained this way?
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Monoids defined by graphs
By graphs, we mean undirected graphs with loops allowed.

Let Γ “ pV ,E q be a graph. Let

XΓ “ tav , āv | v P V u

RΓ “ tav āv “ 1 | v P V u

Y txy “ yx | x P tau, āuu, y P tav , āvu, tu, vu P Eu

MΓ “ X ˚Γ {RΓ

Intuition

B: bicyclic monoid, B “ ta, āu˚{taā “ 1u.

Z: group of integers

For each unlooped vertex, we have a copy of B
For each looped vertex, we have a copy of Z
MΓ consists of sequences of such elements

An edge between vertices means that elements can commute
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Examples

Z3

Blind multicounter

B ˚ B ˚ B

Pushdown

B3

Partially blind multicounter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters
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Silent Transitions

A transition that reads no input is called silent transition or λ-transition.

VA`pMq languages accepted by VA over M without silent transitions

Important problem

When can silent transitions be eliminated?

Without silent transitions, decide membership using exponential
number of storage computations.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?
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Pushdown automata (Greibach 1965)

Blind counter automata (Greibach 1978)

Partially blind counter automata (Greibach 1978 / Jantzen 1979)

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 11 / 21



Silent Transitions

A transition that reads no input is called silent transition or λ-transition.

VA`pMq languages accepted by VA over M without silent transitions

Important problem

When can silent transitions be eliminated?

Without silent transitions, decide membership using exponential
number of storage computations.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

Known so far

Pushdown automata (Greibach 1965)

Blind counter automata (Greibach 1978)

Partially blind counter automata (Greibach 1978 / Jantzen 1979)

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 11 / 21



Silent Transitions

A transition that reads no input is called silent transition or λ-transition.

VA`pMq languages accepted by VA over M without silent transitions

Important problem

When can silent transitions be eliminated?

Without silent transitions, decide membership using exponential
number of storage computations.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

Known so far

Pushdown automata (Greibach 1965)

Blind counter automata (Greibach 1978)

Partially blind counter automata (Greibach 1978 / Jantzen 1979)

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 11 / 21



Silent Transitions

A transition that reads no input is called silent transition or λ-transition.

VA`pMq languages accepted by VA over M without silent transitions

Important problem

When can silent transitions be eliminated?

Without silent transitions, decide membership using exponential
number of storage computations.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

Known so far

Pushdown automata (Greibach 1965)

Blind counter automata (Greibach 1978)

Partially blind counter automata (Greibach 1978 / Jantzen 1979)

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 11 / 21



Silent Transitions

A transition that reads no input is called silent transition or λ-transition.

VA`pMq languages accepted by VA over M without silent transitions

Important problem

When can silent transitions be eliminated?

Without silent transitions, decide membership using exponential
number of storage computations.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

Known so far

Pushdown automata (Greibach 1965)

Blind counter automata (Greibach 1978)

Partially blind counter automata (Greibach 1978 / Jantzen 1979)

Buckheister, Zetzsche (TU KL) Valence Automata Theorietag 2013 11 / 21



Examples, again

Z3

Blind multicounter

B ˚ B ˚ B

Pushdown

B3

Partially blind multicounter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters
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Theorem (Z., ICALP 2013)

Let Γ be a graph such that

any two looped vertices are adjacent,

no two unlooped vertices are adjacent.

Then VApMΓq “ VA`pMΓq if and only if Γ does not contain

as an induced subgraph.
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Positive case

Definition

Let C be the smallest class of monoids such that

1 P C
if M P C, then M ˆ Z P C
if M P C, then M ˚ B P C

Lemma

Let Γ be a graph such that

any two looped vertices are adjacent,

no two unlooped vertices are adjacent,

does not appear as an induced subgraph.

Then, MΓ P C.
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Positive case

Definition

Let C be the smallest class of monoids such that

1 P C
if M P C, then M ˆ Z P C
if M P C, then M ˚ B P C

Interpretation of C
C corresponds to the class of storage mechanisms obtained by

adding a blind counter (M ˆ Z) and

building stacks (M ˚ B).
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Theorem (Z., ICALP 2013)

Let Γ be a graph such that between any two distinct vertices, there is an
edge.

Then VApMΓq “ VA`pMΓq if and only if the number of unlooped
nodes is ď 1. In other words:

VApBr ˆ Zsq “ VA`pBr ˆ Zsq iff r ď 1.
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Observation

VApBˆ Zsq “ VA`pBˆ Zsq already follows from the first theorem.

Proving VA`pBr ˆ Zsq Ĺ VApBr ˆ Zsq for r ě 2

Use Greibach’s and Jantzen’s language

L1 “ twcn | w P t0, 1u˚, n ď binpwqu,

binpv0q “ 2 ¨ binpvq, binpv1q “ 2 ¨ binpvq ` 1, binpλq “ 0.

Known that L1 P VApB2q.

Show L1 R VA`pBr ˆ Zsq for r , s P N.

Count fooling sets, concept from state complexity.

Languages in VA`pBr ˆ Zsq have polynomially many fooling sets

L1 has exponential number of fooling sets
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Semilinearity I

For which monoids M are all languages in VApMq semilinear?

Parikh’s Theorem: Pushdown automata

Ibarra + Greibach: Blind counter automata

Theorem (Buckheister, Z., MFCS 2013)

All languages in VApMΓq are semilinear if and only if

1 Γ contains neither nor as an induced subgraph and

2 Γ, minus loops, is a transitive forest.

For 4 forbidden induced subgraphs, non-semilinear languages from
Petri net and trace theory

VApBq Ď CF

M ÞÑ M ˆ Z, pM,M 1q ÞÑ M ˚M 1 preserve semilinearity
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Semilinearity II
A group G is called a torsion group if for every g P G , there is a k P Nzt0u
with gk “ 1.

Theorem (Render 2009)

For every monoid M, at least one of the following holds:

VApMq “ REG

VApMq “ VApG q for a torsion group G

VApMq contains the blind one-counter languages

VApMq contains the partially blind one-counter languages

Theorem (Buckheister, Z., MFCS 2013)

For every torsion group G , all languages in VApG q are semilinear.

Non-effective construction!

(Cannot be made effective.)

Decompose computations into loops (and rest of bounded length).

Set of vectors counting loops is upward-closed w.r.t. some WQO.
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Semilinearity II

Theorem

For every monoid M, at least one of the following holds:

All languages in VApMq are semilinear.

VApMq contains the blind one-counter languages.

VApMq contains the partially blind one-counter languages.

Observation

VApMq always full semi-AFL (closed under rational transductions, union).

Consequence

Let S “ tan | n is a squareu. Let T be the smallest full semi-AFL
containing S . Then T does not arise as VApMq from a monoid M.

S is not semilinear

T does not contain tanbn | n ě 0u.
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Conclusion

Avoidability of silent transitions

Generalizations of Parikh’s Theorem

Language classes arising as VApMq

More classical results can be generalized:

Ongoing work

Computability of the downward closure (scattered subwords)?

Decidability of questions for Büchi variants.
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