Automata and Logic for Concurrent Systems

Benedikt Bollig

Laboratoire Spécification et Vérification

Workshop Automaten und Logik
Theorietag Automaten und Formale Sprachen
25.-27. September 2013, limenau

What is a concurrent system?

@ Collection of autonomous computing entities (processes)
connected by some communication medium

What is a concurrent system?

@ Collection of autonomous computing entities (processes)
connected by some communication medium

@ Processes access and update shared resources
(e.g., variables, channels, databases, ...)

Introduction

1/58

What is a concurrent system?

@ Collection of autonomous computing entities (processes)
connected by some communication medium

@ Processes access and update shared resources
(e.g., variables, channels, databases, ...)

@ Schematic view:

Communication medium

! ! !

Process 1 Process2 - - - Process n

Introduction

1/58

What is a concurrent system?

@ Collection of autonomous computing entities (processes)
connected by some communication medium

@ Processes access and update shared resources
(e.g., variables, channels, databases, ...)

@ Schematic view:

Communication medium

! ! !

Process 1 Process2 - - - Process n

@ Purpose:
> entities collaborate on a task:
terminating computation with input and output
> entities model a reactive system:
focus on behavior, properties of performed action sequence
(e.g., mutual exclusion)

Introduction 1/58

What is a concurrent system?

@ Collection of autonomous computing entities (processes)
connected by some communication medium

@ Processes access and update shared resources
(e.g., variables, channels, databases, ...)

@ Schematic view:

Communication medium

! ! !

Process 1 Process2 - - - Process n

@ Purpose:
> entities collaborate on a task:
terminating computation with input and output
> entities model a reactive system:
focus on behavior, properties of performed action sequence
(e.g., mutual exclusion)
@ In this talk: formal modeling of concurrent reactive systems
(in terms of automata) to make them accessible to formal methods

Introduction 1/58

2. Classification

Form of communication

S+ +—®

@
single process

Form of communication

S+ +—®

@
single process

shared memory

Form of communication

D@+

@
single process

shared memory

message passing/
broadcasting

Classification and Objectives

3 /58

System architecture

!
static & known

System architecture

—_———
!

static & known

—_——
?
static & unknown
(parameterized)

Classification and Objectives

4/58

System architecture

—_———
!

static & known

—_——
?
static & unknown
(parameterized)

dynamic

Classification and Objectives

4/58

Type of single process

O+ «®

@
finite-state

Type of single process

O+ «®

@
finite-state

S —D——®

@
recursive

Type of single process

O+ «®

@
finite-state

S —D——®

@
recursive

O+ @D+
w
£

timed

The various settings ...

+—0O——&—©®

@
single process

shared memory

message passing/
broadcasting

< —° < —
| ?

static & known static & unknown dynamic

(parameterized)

@ @ © 12
© ® @ 2
@ @ @ 34
6 % bu
® ® © s
@ @ ® 55

finite-state recursive timed

Classification and Objectives

6 /58

The various settings ...

+—0O——&—®

®
single process

shared memory

message passing/
broadcasting

< —° < —
| ?

static & known static & unknown dynamic

(parameterized)

@ @ © 12
© ® @ 2
@ @ @ 34
6 % bu
® ® © s
@ @ ® 55

finite-state recursive timed

Classification and Objectives

6 /58

The various settings ...

@ ®
shared memory message passing/
broadcasting
< —
?
static & unknown dynamic
(parameterized)
@ @ © 12
) ® @ 2
@ @ @ 34
¢
© © ® a1
® ® © s
@ @ ® 55
finite-state recursive timed

The various settings ...

@ ®
shared memory message passing/
broadcasting
-
?
static & unknown dynamic
(parameterized)
@ © 12
® ® 2
@ @ 34
(
© ® a1
® © s
@ ® 55
recursive timed

The various settings ...

© 6 » Words
shared memory message passing/
broadcasting
[
?
static & unknown dynamic
(parameterized)
@ © 12
® ® 2
@ @ 34
‘9 ® 41
® © s
@ ® 55
recursive timed

The various settings ...

@ ®
shared memory

message passing/
broadcasting

< —
?
static & unknown dynamic
(parameterized)
@ © 12
® @ 2
@ @ 34
(
© ® a1
® © s
@ ® 55
recursive timed

» Words

» Finite automata

» Kripke structures

The various settings ...

+—0O——&—®

@
single process

shared memory

message passing/
broadcasting

(I
!

static & known

+—0O—O+——0©®

@
finite-state

—
M
static & unknown dynamic
(parameterized)
® © 12
) G 2
® ® 34
4 &
® © s
® ® s5
recursive timed

Classification and Objectives

Behavior
» Words

System model

> Finite automata

> Kripke structures

Specification
> Linear-time temporal logic (LTL)
> Monadic second-order logic (MSO)

> Regular expressions

6 /58

The various settings ...

®
®
@
©
®

®
single process

message passing/
broadcasting

[

?
static & unknown dynamic
(parameterized)
@ © 12
) ® 2
@ @ 34
«
© ® a1
® © s
® ® 55

recursive timed

The various settings ...

®
®
@
©
®

®
single process

[
?

message passing/
broadcasting

static & unknown dynamic
(parameterized)
@ © 12
® ® 2
@ @ 34
(
© ® a1
® © s
@ ® 55
recursive timed

» Mazurkiewicz traces
[Mazurkiewicz '86]

The various settings ...

®
single process

[
?

message passing/
broadcasting

recursive

static & unknown dynamic
(parameterized)

@ © 12
® @ 2
@ @ 34
¢
© ® a1
® © s
® ® 55

timed

> Mazurkiewicz traces
[Mazurkiewicz '86]

> Asynchronous automata
[Zielonka '87]

» Asynchronous cellular automata

The various settings ...

+—0O——&—©®

@
single process

@ ®
shared memory

message passing/
broadcasting

(I
!

static & known

+—0O—O+——0©®

@
finite-state

—
M
static & unknown dynamic
(parameterized)
® © 12
) G 2
® ® 34
4 &
® © s
® ® s5
recursive timed

Classification and Objectives

Behavior

» Mazurkiewicz traces
[Mazurkiewicz '86]

System model

» Asynchronous automata
[Zielonka '87]

> Asynchronous cellular automata

Specification
> Temporal logic (such as LTL)
> Monadic second-order logic (MSO)

> Regular (rational) expressions

6 /58

The various settings ...

@
®
@
©
®

®
single process

@ ®
shared memory

[

?
static & unknown dynamic
(parameterized)
@ © 12
® ® 2
@ @ 34
(
© ® a1
® © s
@ ® 55
recursive timed

The various settings ...

®
®
@
©
®

®
single process

@ ®
shared memory

[
?

static & unknown dynamic
(parameterized)
@ © 12
® ® 2
@ @ 34
(
© ® a1
® © s
@ ® 55
recursive timed

» Message sequence charts

The various settings ...

> Message sequence charts

» Communicating automata
[Brand-Zafiropulo '83]

®
single process

@ ®
shared memory

> Lossy channel systems
[Finkel '87, Abdulla-Jonsson '96]

< —
?

static & unknown dynamic
(parameterized)

@ © 12
® @ 2
@ @ 34
¢
© ® a1
® © s
® ® 55

recursive timed

The various settings ...

+—0O——&—©®

@
single process

shared memory

message passing/
broadcasting

< —°
!
static & known

+—0O—O+——0©®

@
finite-state

<
M
static & unknown dynamic
(parameterized)
® © 12
) G 2
® ® 34
4 &
® © s
® ® s5
recursive timed

Classification and Objectives

Behavior

> Message sequence charts

System model

» Communicating automata
[Brand-Zafiropulo '83]

» Lossy channel systems
[Finkel '87, Abdulla-Jonsson '96]

Specification
» Temporal logic

> Monadic second-order logic (MSO)

> High-level expressions

6 /58

The various settings ...

®

®

®

©

®

® @ ®
single process shared memory
static & known static & unknown

(parameterized)

@
recursive

The various settings ...

@

®

®

©

®
single process shared memory

» Dynamic message sequence charts

—_——— ——

| ?
static & known static & unknown

(parameterized)

@
recursive

The various settings ...

+—0O——&—©®

®
single process

@ ®
shared memory

< —°
!
static & known

< —
?

static & unknown

(parameterized)

@
recursive

» Dynamic message sequence charts

» Dynamic communicating automata
[B., Cyriac, Hélouét, Kara, Schwentick '13]

The various settings ...

®

®

®

©

®

® @ ®
single process shared memory
< —° < —

! ?
static & known static & unknown

(parameterized)

@
recursive

» Dynamic message sequence charts

» Dynamic communicating automata
[B., Cyriac, Hélouét, Kara, Schwentick '13]

> High-level expressions with registers

The various settings ...

@
®
@
©

®
®
single process

@ ®
shared memory

< —
!

static & known dynamic

@
recursive

The various settings ...

@
®
@
©
®

®
single process

@ ®
shared memory

» Words ?

< —
!

static & known dynamic

@
recursive

The various settings ...

@
®
@
©
®

®
single process

@ ®
shared memory

< —°
!
static & known

@
recursive

dynamic

» Words ?

» Parametric ad-hoc networks
[Delzanno-Sangnier et al. '10-'13]

The various settings ...

@
®
@
©

®
®
single process

@ ®
shared memory

» Words ?

» Parametric ad-hoc networks
[Delzanno-Sangnier et al. '10-'13]

< —
!

static & known dynamic

> Reachability questions

@
recursive

The various settings ...

@
®
@
©

®
®
single process

[
?

static & unknown
(parameterized)

finite-state

message passing/
broadcasting

dynamic

The various settings ...

@
®
@
©

®
®
single process

[
?

static & unknown
(parameterized)

finite-state

message passing/
broadcasting

dynamic

> Nested traces

The various settings ...

®
single process

@
finite-state

message passing/
broadcasting

%
?

static & unknown dynamic

(parameterized)

> Nested traces

» Multi-stack systems
[La Torre et al. '07-"13], [Atig et al.]

» Nested-word automata
[Alur et al. '04]

The various settings ...

+—0O——&—©®

@
single process

@ ®
shared memory

message passing/
broadcasting

(I
!

static & known

+—0—O+——0©®

@
finite-state

< 2
?

static & unknown

(parameterized)

- F 0

©)
recursive

dynamic

O+—@—©—E®—0

timed

Classification and Objectives

Behavior

> Nested traces

System model

» Multi-stack systems
[La Torre et al. '07-'13], [Atig et al.]

> Nested-word automata
[Alur et al. '04]
Specification
> Temporal logic (such as LTL)
> Monadic second-order logic (MSO)

> Regular (rational) expressions

6 /58

Landscape and Objectives

Words

Mazurkiewicz traces
Message Sequence Charts
Nested words

MSO logic Asynchronous automata
Temporal logic Message-passing automata A
High-level expressions Multi-stack automata

Classification and Objectives 7 /58

Landscape and Objectives

Words
Mazurkiewicz traces

Message Sequence Charts
Nested words

L(¢) L(A)
MSO logic Asynchronous automata
Temporal logic Message-passing automata A
High-level expressions

Multi-stack automata

Classification and Objectives

7/58

Landscape and Objectives

Words
Mazurkiewicz traces

Message Sequence Charts
Nested words

L(y) L(A)
realizability
T4 L(p) = L(A) 7
MSO logic (4'0) () Asynchronous automata
Temporal logic Message-passing automata A
High-level expressions

Multi-stack automata

Classification and Objectives

7/58

Landscape and Objectives

Words
Mazurkiewicz traces

Message Sequence Charts
Nested words

L(¢) L(A)
realizability
T4 L(p) = L(A) 7
MSO logic (4'0) () Asynchronous automata
Temporal logic SO Message-passing automata A
High-level expressions v\L(@)Q L(.A) ? Multi-stack automata

model checking

Classification and Objectives

7/58

Landscape and Objectives

Words
Mazurkiewicz traces

Message Sequence Charts
Nested words

L(y) L(A)
realizability
T4 L(p) = L(A) 7
MSO logic (4'0) () Asynchronous automata
Temporal logic Message-passing automata A
High-level expressions v\L(go)Q L(.A) ? Multi-stack automata

model checking

Lip)#07?

satisfiability

Classification and Objectives

7/58

Landscape and Objectives

Words
Mazurkiewicz traces

Message Sequence Charts
Nested words

L(y) L(A)
realizability
TA: L(p) = L(A) 7 —=
MSO logic (4'0) () Asynchronous automata
Temporal logic Message-passing automata A
High-level expressions v\L(@)Q L(.A) ? Multi-stack automata

model checking
L) #07 L(A)# 07

satisfiability nonemptiness

Classification and Objectives

7/58

Landscape and Objectives: Linear-Time Setting

Words

Mazurkiewicz traces
Message Sequence Charts
Nested words

realizability

A L) = LA T

MSO logic ' Asynchronous automata
Temporal logic SO Message-passing automata A
High-level expressions L

Multi-stack automata

v\(go)g L(A)?
model checking
L) #07 L(A)# 07
satisfiability nonemptiness

Classification and Objectives 7 /58

In this talk:

Finite-State Sequential Systems
Finite-State Shared-Memory Systems

Recursive Shared-Memory Systems

e 6 o o

Message-Passing Systems

Classification and Objectives 8 /58

In this talk:

Finite-State Sequential Systems
Finite-State Shared-Memory Systems

Recursive Shared-Memory Systems

e 6 o o

Message-Passing Systems

with static and known system architecture

Classification and Objectives

8 /58

3. Finite-State Sequential Systems

static & unknown dynamic
(parameterized)

@ 12
2
34

D 4L
5

@ ss

recursive timed

D>

Finite-State Sequential Systems

L(y)

LTL G(a — Fb)
RExp ((b+c)*a(a+ c)*b)*
MSO | ¥x(a(x) = 3y(x <y A b(y))

Finite-State Sequential Systems

realizability
JA: L(p) = L(A)?

LTL G(a — Fb)
RExp ((b+ c)*a(a+ c)*b)*
MSO | Vx(a(x) = Jy(x < y A b(y))

Finite-State Sequential Systems 10 / 58

Finite-State Sequential Systems

realizability
JA: L(p) = L(A)?

LTL G(a — Fb)
RExp ((b+ c)*a(a+ c)*b)*
MSO | Vx(a(x) = Jy(x < y A b(y))

Theorem (Biichi-Elgot-Trakhtenbrot '60s)

Every MSO formula is equivalent to some (deterministic) finite automaton.

Finite-State Sequential Systems 10 / 58

Finite-State Sequential Systems

LTL G(a— Fb)
RExp ((b+c)*a(a+ c)*b)*
MSO | Vx(a(x) = Jy(x <y A b(y)) L(p) D L(A)?

model checking

Finite-State Sequential Systems 10 / 58

Finite-State Sequential Systems

LTL G(a— Fb)
RExp ((b+c)*a(a+ c)*b)*
MSO | Vx(a(x) = Jy(x <y A b(y)) L(p) D L(A)?

model checking

Theorem (Biichi-Elgot-Trakhtenbrot '60s; Sistla-Clarke '85)

Model checking against MSO is decidable, but nonelementary.
Model checking LTL is PSPACE-complete.

Finite-State Sequential Systems 10 / 58

4. Finite-State Shared-Memory Systems

message passing/
broadcasting

single process

static & unknown
(parameterized)

Finite-State Shared-Memory Systems

Mazurkiewicz traces

L(¥) L(A)

Gsynch ronous automa@

realizability
JA: L(p) = L(A)?

LTL
MSO logic
finite automata

L(¢) 2 L(A)?

model checking

Finite-State Shared-Memory Systems 12 / 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} Yy ={a1, b1, c} Yo ={ap, by, c}

Asynchronous Automata and Mazurkiewicz Traces

Proc = {1,2} Y1 ={a1, b1, c} Yo ={ap, by, c}
ay b1
e J@ @ B
(50 t0) = (o0, to) T
(s1.t1) 5 (52, 1) :
(s0,t1) 7 (0, t1) 4,8 8 ,8
by

az

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

C@D
OO
COD

(9}
(9}
(9}
(o}

CE@D
OO
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

C@D
OO
COD

(9}
(9}
(9}
(o}

CE@D
OO
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

C@D
OO
COD

(9}
(9}
(9}
(o}

CE@D
OO
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

@ 1

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
@O
COD

(9}
(9}
(9}
(o}

CE@D
OO
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
@O
COD

(9}
(9}
(9}
(o}

COD
@D
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
@O
COD

(9}
(9}
(9}
(o}

COD
@D
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
@O
COD

(9}
(9}
(9}
(o}

COD
@D
CoO

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
OO
C@D

(9}
(9}
(9}
(o}

COD
OO
C@D

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
OO
C@D

(9}
(9}
(9}
(o}

COD
OO
C@D

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems

13/ 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
OO
C@D

(9}
(9}
(9}
(o}

COD
OO
C@D

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems 13 / 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
OO
C@D

(9}
(9}
(9}
(o}

COD
OO
C@D

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems 13 / 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
OO
C@D

(9}
(9}
(9}
(o}

COD
OO
C@D

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems 13 / 58

Asynchronous Automata and Mazurkiewicz Traces
Proc = {1,2} 21 = {al, b1, C} 22 = {32, bz, C}

Asynchronous Automaton

O
flr

L
flor
o=
<

COD
OO
C@D

(9}
(9}
(9}
(o}

COD
OO
C@D

LY
N
O
N
o~
N

Mazurkiewicz Trace

Finite-State Shared-Memory Systems 13 / 58

Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace t=(E,—1,—2,\) A E—X LY. UY,

Linearizations w € Lin(t) CX* ~ trace(w) =t

@'@' '@'@
@ @ 6—&

Finite-State Shared-Memory Systems 14 / 58

Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace t=(E,—1,—2,\) A E—X LY. UY,

Linearizations w € Lin(t) CX* ~» trace(w) =1t
@ ' @ ' ' ® ' ®
®) ®—®
- @ ' @ ' ' ® ' (™)
@) ® ®

Finite-State Shared-Memory Systems 14 / 58

Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace t=(E,—1,—2,\) A E—X LY. UY,

Linearizations w € Lin(t) CX* ~ trace(w) =t

Finite-State Shared-Memory Systems 14 / 58

Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace t=(E,—1,—2,\) A E—X LY. UY,

Finite-State Shared-Memory Systems

14 / 58

Finite-State Shared-Memory Systems

traces

L(B)

a1
ap,a, ¢ a,a,¢c bibc

el < 4 ek

a P04 g g <
a

Finite-State Shared-Memory Systems 15 / 58

Finite-State Shared-Memory Systems

traces

realizability

: = ? &
e o bibac JA: L(A) = trace(L(B))? 42)—%)74{);
() A _yo 2 ())

SENES o

Finite-State Shared-Memory Systems 15 / 58

Finite-State Shared-Memory Systems

traces

ap,az, ¢ ap, a, c
() @ _yo @ §)

SENES o

2

Theorem (Sakarovitch '92)

Realizability for regular specifications is undecidable.

Finite-State Shared-Memory Systems 15 / 58

Finite-State Shared-Memory Systems

traces

z*

realizability

: = ? &
e o bibac JA: L(A) = trace(L(B))? 42)—%)74%}
() A _yo 2 ())

SENES o

2

Theorem (Zielonka '87)

Let L C ¥* be a ~-closed regular language. There is a (deterministic)
asynchronous automaton A such that L(.A) = trace(L).

Finite-State Shared-Memory Systems 15 / 58

Finite-State Shared-Memory Systems

traces

ap,az, ¢ ap, a, c
() @ _yo @ §)

O —0——0

a P04

Theorem (Muscholl '94, Peled-Wilke-Wolper '98)

It is decidable (PSPACE-complete) if the language of a finite automaton is
~-closed (PTIME for deterministic automata).

Finite-State Shared-Memory Systems 15 / 58

Monadic Second-Order Logic

> X —=pYy x and y are successive events on process p € Proc

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —p Yy X and y are successive events on process p € Proc

> a(x) event x is labeled with a € X

Finite-State Shared-Memory Systems 16 / 58

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X py x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &
> X=Y

Finite-State Shared-Memory Systems 16 / 58

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —py x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &

> X=Y

> xe X event x is contained in set of events X

Finite-State Shared-Memory Systems 16 / 58

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —=pY x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &

> X=Y

> xe X event x is contained in set of events X

> dx¢ there is event x such that ¢

Finite-State Shared-Memory Systems 16 / 58

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —py x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &

> X=Y

> xe X event x is contained in set of events X

> dx¢ there is event x such that ¢

» dXp there is set of event X such that ¢

Finite-State Shared-Memory Systems 16 / 58

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —py x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &

> X=Y

> xe X event x is contained in set of events X

> dx¢ there is event x such that ¢

» dXp there is set of event X such that ¢

Finite-State Shared-Memory Systems 16 / 58

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —py x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &

> X=Y

> xe X event x is contained in set of events X

> dx¢ there is event x such that ¢

» dXp there is set of event X such that ¢

= 3x3y(bi(x) A ba(x) Ax < y)

where < = (=1 U —2)*

Finite-State Shared-Memory Systems 16 / 58

Finite-State Shared-Memory Systems

traces

IxTy (b1 (x) A ba(x) Ax < y)

Theorem (Thomas '90)

MSO logic and asynchronous automata are expressively equivalent.

Finite-State Shared-Memory Systems 17 / 58

Finite-State Shared-Memory Systems

traces

realizability N b
T4 L(p) = L(A)? HH@
IxTy(b1(x) A ba(x) Ax < y) c c o« c

L(¢) 2 L(A)?

model checking

Theorem (Thomas '90)
MSO logic and asynchronous automata are expressively equivalent.

= MSO model checking is decidable.

Finite-State Shared-Memory Systems 17 / 58

Global Temporal Logic

LTrky =ttt | {(a)e | o1 Uvpa | ¢ | ©1V 2 acyx

Global Temporal Logic

LTrky =ttt | {(a)e | o1 Uvpa | ¢ | ©1V 2 aex
LTrLs; = U3

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

E oUvy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

= tt Uy (b1)(b2)tt

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

= tt Uy (b1)(b2)tt

E eUsy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

= tt Uy (b1)(b2)tt

E eUsy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

E (a)p

= tt Uy (b1)(b2)tt

E eUsy

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

Finite-State Shared-Memory Systems 18 / 58

Global Temporal Logic
Global Temporal Logic

LTrLy @ =ttt | {(a)p | e1Uvpa | 70| p1V 2 acex
LTrLy = Us
Semantics

Finite-State Shared-Memory Systems 18 / 58

Finite-State Shared-Memory Systems

traces

L(p) 2 L(A)?

model checking

Finite-State Shared-Memory Systems 19 / 58

Finite-State Shared-Memory Systems

traces

L(p) 2 L(A)?

model checking

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

@ LTrLy model checking is nonelementary.

Finite-State Shared-Memory Systems 19 / 58

Finite-State Shared-Memory Systems

traces

L(p) 2 L(A)?

model checking

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

@ LTrLy model checking is nonelementary.

@ LTrL3 model checking is undecidable.

Finite-State Shared-Memory Systems 19 / 58

Local Temporal Logic

e = a|EXe|EXpp | w1Uwa | p1Upwa | | w1V e
aceX,pe Proc

Local Temporal Logic

Local Temporal Logic

o = al|EXe|EXpp|w1Uwpa|w1Upwa| 0|1V e
aceX,pe Proc

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

e t,e = EXp if there is f € E such that e< f and t,f = ¢

Finite-State Shared-Memory Systems 20 / 58

Local Temporal Logic

Local Temporal Logic

o = al|EXe|EXpp|w1Uwpa|w1Upwa| 0|1V e
aceX,pe Proc

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

e t,e = EXp if there is f € E such that e< f and t,f = ¢

Finite-State Shared-Memory Systems

20 / 58

Local Temporal Logic

Local Temporal Logic

o = al|EXe|EXpp|w1Uwpa|w1Upwa| 0|1V e
aceX,pe Proc

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

e t,e = EXp if there is f € E such that e< f and t,f = ¢

o t,e EEXy,p ifthereis f € E such that e < f and e —, f
and t,f E ¢

Finite-State Shared-Memory Systems 20 / 58

Local Temporal Logic

Local Temporal Logic

o = al|EXe|EXpp|w1Uwpa|w1Upwa| 0|1V e
aceX,pe Proc

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

e t,e = EXp if there is f € E such that e< f and t,f = ¢

o t,e EEXy,p ifthereis f € E such that e < f and e —, f

and t,f E ¢
EX1¢ ©

Finite-State Shared-Memory Systems 20 / 58

Temporal Logic

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

o t,e =EX,p ifthereis f € E such that A(f) € X, and t,f = ¢
and f is the first p-event not below e wrt. <

Finite-State Shared-Memory Systems 21 /58

Temporal Logic

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

o t,e =EX,p ifthereis f € E such that A(f) € X, and t,f = ¢
and f is the first p-event not below e wrt. <

Finite-State Shared-Memory Systems 21 /58

Temporal Logic

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

o t,e =EX,p ifthereis f € E such that \(f) € X, and t,f = ¢
and f is the first p-event not below e wrt. <

o t,el=¢@U1y if thereis f € E such that t,f =
and t,e' = forall e € Ewithe<e <f

Finite-State Shared-Memory Systems 21 /58

Temporal Logic

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

o t,e =EX,p ifthereis f € E such that \(f) € X, and t,f = ¢
and f is the first p-event not below e wrt. <

o t,el=¢@U1y if thereis f € E such that t,f =
and t,e' = forall e € Ewithe<e <f

pUY
1

Finite-State Shared-Memory Systems 21 /58

Temporal Logic

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)

o t,e =EX,p ifthereis f € E such that \(f) € X, and t,f = ¢
and f is the first p-event not below e wrt. <

o t,el=¢@U1y if thereis f € E such that t,f =
and t,e' = forall e € Ewithe<e <f

Finite-State Shared-Memory Systems 21 /58

Temporal Logic

Observation (Gastin-Kuske '03)
All these modalities are MSO-definable!

Temporal Logic

Observation (Gastin-Kuske '03)
All these modalities are MSO-definable!

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)
o t,e = EXp if there is f € E such that e<f and t,f ¢

o t,e =EXy,p ifthereis f € E such that e —, f and t,f |= ¢
and f is the first p-event not below e wrt. <

o t,e=¢@U1y if thereis f € E such that t,f ¢
and t, e’ = forall e € Ewithe<ée <f

Finite-State Shared-Memory Systems 22 /58

Temporal Logic

Observation (Gastin-Kuske '03)
All these modalities are MSO-definable!

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)
o t,e = EXp if there is f € E such that e<f and t,f ¢

o t,e =EXy,p ifthereis f € E such that e —, f and t,f |= ¢
and f is the first p-event not below e wrt. <

o t,e=¢@U1y if thereis f € E such that t,f ¢
and t, e’ = forall e € Ewithe<ée <f

Example
o MSOX(x,Y) =3y(ye YAx<y)

Finite-State Shared-Memory Systems 22 /58

Temporal Logic

Observation (Gastin-Kuske '03)
All these modalities are MSO-definable!

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)
o t,e = EXp if there is f € E such that e<f and t,f ¢

o t,e =EXy,p ifthereis f € E such that e —, f and t,f |= ¢
and f is the first p-event not below e wrt. <

o t,e=¢@U1y if thereis f € E such that t,f ¢
and t, e’ = forall e € Ewithe<ée <f

Example
o MSOX(x,Y) =3y(ye YAx<y)
o MSOY(x,X,Y)=3y(y e Y AXx <y AVX(x <X <y —= x € X))

Finite-State Shared-Memory Systems 22 /58

Finite-State Shared-Memory Systems

traces

temporal logics
L(p) 2 L(A)?

MSO-definable g g g

model checking

Finite-State Shared-Memory Systems

23 / 58

Finite-State Shared-Memory Systems

traces

MSO-definable

temporal logics . o .
U 2?7 |l
model checking > * >

Theorem (Gastin-Kuske '03)
Model checking for any MSO-definable temporal logic is in PSPACE.

Finite-State Shared-Memory Systems 23 /58

Finite-State Shared-Memory Systems

traces

L(A)
ay by
MSO-definable g g . @C
temporal logics
U 2?7 |l
ap ap by

model checking

Theorem (Gastin-Kuske '03)
Model checking for any MSO-definable temporal logic is in PSPACE.
Proof.

Precompile MSO modalities into finite automata. Inductively build finite
automaton equivalent to the input formula. O

Finite-State Shared-Memory Systems 23 /58

5. Recursive Shared-Memory Systems

finite-state

Recursive Shared-Memory Systems

nested traces

L(¢) L(A)
realizability
LTL A L) = L(A)? asynchronous
MSO logic multi-pushdown
multi-pushdown automata automata

L(y) 2 L(A)?

model checking

Recursive Shared-Memory Systems 25 / 58

Asynchronous Multi-Pushdown Automata
Proc ={1,2} %¥i={a1,b1,c} Xo={a, bo,c} Tan={an, a2} T = {b1, b2}

Asynchronous Multi-Pushdown Automata
Proc ={1,2} %¥i={a1,b1,c} Xo={a, bo,c} Tan={an, a2} T = {b1, b2}

a1|Ay a1|Ar b1|Ay
4‘8 al|A1
c c G @

Stack 1 Stack 2 i i 32|A2

az| Az ap|Az ba| Az

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

al\Al 31|A1 bl‘Al
a4
of N B I o
c c c c
2=
Stack 1 Stack 2 @ alA; U @
a|Az ap| Az by| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata

Proc={1,2} Yi={a1,bi,c} Xo={a b2, c} Yo = {a1, a2}
Asynchronous MPA
a1 Ay a1| A1 by| Ay
alm
° U O
@ © @
A1 [] O
St alAs
ack 1 Stack 2
a|Az ap| Az ba| Az

Nested Trace

Recursive Shared-Memory Systems

Zret = {b17 b2}

26 / 58

Asynchronous Multi-Pushdown Automata

Proc={1,2} Yi={a1,bi,c} Xo={a b2, c} Yo = {a1, a2}
Asynchronous MPA
a1 Ay a1| A1 by| Ay
alm
° U O
@ © @
A1 [] O
St alAs
ack 1 Stack 2
a|Az ap| Az ba| Az

Nested Trace

@'

Recursive Shared-Memory Systems

Zret = {b17 b2}

26 / 58

Asynchronous Multi-Pushdown Automata

Proc = {1,2} Yy ={a1, b1, c} Yo = {ao, by, c} Y = {a1,a}
Asynchronous MPA
a1 Ay a1| Ay by| Ay
@ a1| Ay _@ @
@ Cc c
A1
A1 ° 4 O
Stack 1 Stack 2 az| Az
ap| Az ap| Az balAs

Nested Trace

@'@

Recursive Shared-Memory Systems

Zret = {b17 b2}

26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 [;)27 C} an” = {31, 32} Zret = {bl, bz}
Asynchronous MPA

a1 Ay a1| A1 by| Ay
ai |A1
G G @ c
A1
Stack 1 Stack 2 2 U
a|Az ap| Az ba| Az

Nested Trace

@'@
=@

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata

Proc={1,2} Yi={a1,bi,c} Xo={a b2, c} Yo = {a1, a2}
Asynchronous MPA
a1 Ay a1| A1 by| Ay
4’@ allAl @ @
@ © @
A1
Stack 1 Stack 2 22
a|Az ap| Az ba| Az

Nested Trace
@ 1 1 @ 1
el

Recursive Shared-Memory Systems

Zret = {b17 b2}

26 / 58

Asynchronous Multi-Pushdown Automata

Proc={1,2} Yi={a1,bi,c} Xo={a b2, c} Yo = {a1, a2}
Asynchronous MPA
a1 Ay a1| A1 by| Ay
@ © ©
Az Ay
Stack 1 Stack 2 a2| 2 U
ap| Az az| Az bo|Aa

Nested Trace

Recursive Shared-Memory Systems

Zret = {b17 b2}

26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 [;)27 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

a1 Ay a1| A1 by| Ay
ai |A1
G G @ c
A1 Az
Stack 1 Stack 2 2 U
ap| Az az| Az bo|Aa

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 [;)27 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

a1 Ay a1| A1 by| Ay
ai |A1
G G @ c
Az
Stack 1 Stack 2 2 U
a|Az ap| Az ba| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 [;)27 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

a1 Ay a1| A1 by| Ay
ai |A1
G G @ c
Az
Stack 1 Stack 2 2 U
a|Az ap| Az ba| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 [;)27 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

a1 Ay a1| A1 by| Ay
4’@ allAl @ @
G G @ c
Al ‘ ‘ A2 ‘ 4’@ ‘Q\ @
Stack 1 Stack 2 32|A2 U
a|Az ap| Az ba| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 [;)27 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

a1 Ay a1| A1 by| Ay
ai |A1
G G @ c
Stack 1 Stack 2 32|A2 U
ap| Az az| Az bo|Aa

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl, C} 22 = {82, bQ7 C} an” = {31, 32} Zret = {bl, bz}
Asynchronous MPA

al\Al 31|A1 bl‘Al
ai |A1
@ © @ @
8 8
Stack 1 Stack 2 @ alAs U @
a|Az ap| Az by| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

al\Al 31|A1 bl‘Al
ai |A1
@ © @ @
8 8
Stack 1 Stack 2 @ alAs U @
a|Az ap| Az by| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

al\Al 31|A1 bl‘Al
ai |A1
@ © @ @
8 8
Stack 1 Stack 2 @ alAs U @
a|Az ap| Az by| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

al\Al 31|A1 bl‘Al
ai |A1
@ © @ @
8 8
Stack 1 Stack 2 @ alAs U @
a|Az ap| Az by| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

al\Al 31|A1 bl‘Al
ai |A1
@ © @ @
8 8
Stack 1 Stack 2 @ alAs U @
a|Az ap| Az by| Az

Nested Trace

Recursive Shared-Memory Systems 26 / 58

Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
Asynchronous MPA

a1| Ay a1|A by|Ay
al|A1
@ © @ @
e
Stack 1 Stack 2 @ 32|A2 U @
ar|As a|Az by | Az
Nested Trace t = (E,—1,—2, 1, Mo, A)

Recursive Shared-Memory Systems 26 / 58

Recursive Shared-Memory Systems

nested traces

L(p) L(A)
realizability a1l Ay a1l by|Ay
LTL JA: L(p) = L(A)? i
MSO logic g & € N
multi-pushdown automata L(g) D L(A)? il
model checking 14 2l s
L(A)#07?

nonemptiness

Recursive Shared-Memory Systems 27 / 58

Recursive Shared-Memory Systems

nested traces

L(p) L(A)

realizability Ay arlAr bl

LTL JA: L(p) = L(A)? i
MSO logic c ¢ c
multi-pushdown automata L(p) D L(A)? —
model checking i #2lA2 belde
Theorem L(A)#£07

Emptiness for (asynchronous) MPA is undecidable.
nonemptiness

Recursive Shared-Memory Systems 27 / 58

Recursive Shared-Memory Systems

nested traces

bounded traces

L(y) L(A)

realizability Ay arlAr bl

LTL JA: L(p) = L(A)? i
MSO logic c ¢ c
multi-pushdown automata L(p) D L(A)? —
model checking i #2lA2 belde
Theorem L(A)#£07

Emptiness for (asynchronous) MPA is undecidable.
nonemptiness

Recursive Shared-Memory Systems 27 / 58

Recursive Shared-Memory Systems

nested traces

bounded traces

L(y) L(A)

realizability Ay arlAr bl

LTL JA: L(p) = L(A)? i
MSO logic c ¢ c
multi-pushdown automata L(p) D L(A)? —
model checking i #2lA2 balAz
Theorem L(A)#£07
Bounded nonemptiness, satisfiability, model
checking, and realizability are decidable. nonemptiness

Recursive Shared-Memory Systems 27 / 58

Nested Traces and Their Linearizations

Nested Trace t = (E,—1, 2,1, M2,)

Recursive Shared-Memory Systems 28 / 58

Nested Traces and Their Linearizations

Nested Trace t = (E,—1, 2,1, M2,)

Linearizations w € Lin(t) ~» trace(w) =1

Recursive Shared-Memory Systems 28 / 58

Nested Traces and Their Linearizations

Nested Trace t = (E,—1, 2,1, M2,)

Linearizations w € Lin(t) ~» trace(w) =1

Recursive Shared-Memory Systems 28 / 58

Bounded Nested Words
Definition
@ In a context, only one process modifies its stack.

Bounded Nested Words

Definition

@ In a context, only one process modifies its stack.

@ In a phase, only one process pops from its stack.

Recursive Shared-Memory Systems

29 / 58

Bounded Nested Words
Definition
@ In a context, only one process modifies its stack.

@ In a phase, only one process pops from its stack.

A nested word is

@ k-scope bounded if each call-return lies within k contexts.

Recursive Shared-Memory Systems 29 / 58

Bounded Nested Words
Definition
@ In a context, only one process modifies its stack.

@ In a phase, only one process pops from its stack.

A nested word is

@ k-scope bounded if each call-return lies within k contexts.

@ ordered if a pop is performed only on the first nonempty stack.

Recursive Shared-Memory Systems 29 / 58

Bounded Nested Words
Definition

@ In a context, only one process modifies its stack.

@ In a phase, only one process pops from its stack.

A nested word is

@ k-scope bounded if each call-return lies within k contexts.

@ ordered if a pop is performed only on the first nonempty stack.

Bounded Nested Words

contexts | 1 [2] 3 [4 [5 I 6 |
phases | 1 [2 |

6-context bounded / 2-phase bounded / 5-scope bounded / ordered

Recursive Shared-Memory Systems 29 / 58

Bounded Nested Traces

Definition

A nested trace if k-context bounded / k-phase bounded /
k-scope bounded / ordered if at least one linearization is so.

Recursive Shared-Memory Systems 30 /58

Bounded Nested Traces
Definition

A nested trace if k-context bounded / k-phase bounded /
k-scope bounded / ordered if at least one linearization is so.

Bounded Nested Traces

2-phase bounded

not 2-phase bounded

Recursive Shared-Memory Systems 30 /58

Recursive Shared-Memory Systems

nested traces

L(p) L(A)
realizability a1l Ay a1l by|Ay
LTL JA: L(p) = L(A)? i
MSO logic g & € N
multi-pushdown automata L(g) D L(A)? il
model checking 14 2l s
L(A)#07?

nonemptiness

Recursive Shared-Memory Systems 31 /58

Recursive Shared-Memory Systems

nested traces

context bounded
phase bounded
scope bounded

ordered
L(p) L(A)

realizability a1l Ay a1l by|Ay

LTL JA: L(p) = L(A)? i
MSO logic g & € N

multi-pushdown automata L(g) D L(A)? il
model checking 14 2l s
L(A)#£07

nonemptiness

Recursive Shared-Memory Systems 31 /58

Recursive Shared-Memory Systems

nested traces

(context bounded
Theorem

Bounded nonemptiness for sequential MPA is
context NP-complete [Qadeer-Rehof '05] L(A)
scope PSPACE-complete [La Torre-Napoli '11]
phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

a1|A a1| Ay by|Ar

LTL A L\W} — L\f\) ! al‘Al
MSO logic c ¢ c
multi-pushdown automata
P L(g) 2 L(A)? —
a|As a|Az by| A

model checking

L(A)#£07
nonemptiness

Recursive Shared-Memory Systems 31 /58

Recursive Shared-Memory Systems

nested traces

(context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl 08] il . 2l bul
(LTL wgﬁ L\&F/} — L\f\) H 31‘ 1
Proof for phases: binary-tree encoding g ¢ & =
2|A
a|As a|Az by| A
F—O—@—F—(O—@—C—B—(O0—0—B—B L(A) £07?

V

Recursive Shared-Memory Systems 31 /58

nonemptiness

Recursive Shared-Memory Systems

nested traces

f context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(_A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl '08] il B 2l bul

Proof for phases: binary-tree encoding g ¢ & =
1 2|A

a|As a|As b|As

@

L(A) #07?

1 2] nonemptiness

Recursive Shared-Memory Systems 31 /58

Recursive Shared-Memory Systems

nested traces

f context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(_A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl '08] a1lAy B 2l bul
(LTL wgﬁ L\&F/} — L\fl) H 31‘ 1
Proof for phases: binary-tree encoding G 3 ¢
a|Ay
a|As a|As b|As
L(A)#£07
1 2] nonemptiness

Recursive Shared-Memory Systems

31/ 58

Recursive Shared-Memory Systems

nested traces

f context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(_A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl '08] a1lAy B 2l bul
(LTL wgﬁ L\&F/} — L\fl) H 31‘ 1
Proof for phases: binary-tree encoding G 3 ¢
a|Ay
a|As a|As b|As
L(A)#£07
1 2] nonemptiness

Recursive Shared-Memory Systems

31/ 58

Recursive Shared-Memory Systems

nested traces

nested words

a1|Ay a1|Ay by|Ay

ai|Ar ai|Ar bi|Ar, X ai|Ay
a| Ay alAy by|Ar
c |X ‘A c c
ai az|A2 c c C: c
888 T S
a|Ay PO ay)Ay a|Az

Recursive Shared-Memory Systems 32 /58

Recursive Shared-Memory Systems

nested traces

nested words

realizability a1l AL a1lAL bi|Ay
a1|Ay alAr bilALX T34 [(A) = trace(L(B))? alA
a|A 2|A2 bl|A “ (L&)
c alX o alAs c c c @ G c
WO =8 HH@
alA 2O aylA iz
alAa a0| Ay ba| A

Recursive Shared-Memory Systems 32 /58

Recursive Shared-Memory Systems

nested traces

nested words

realizability a1l AL a1lAL bi|Ay
a1lA alAr bilALX T34 [(A) = trace(L(B))? alA
a|A 2|A2 bo|A “ (HE)
c alX o alAs c € c G c c
8288
Ay 0T a|A 2
alAa a0| Ay bo| Az

Theorem (B.-Grindei-Habermehl '09)

Let L be a ~-closed language recognized by some sequential MPA. There
is an asynchronous MPA A such that L(A) = trace(L).

Recursive Shared-Memory Systems 32 /58

Recursive Shared-Memory Systems

nested traces

nested words

realizability a1l AL a1lAL bi|Ay
a1lA alAr bilALX T34 [(A) = trace(L(B))? alA
Ay 2|A2 bo|A “ (HE)
c alX o alAs c c c @ G c
4’% =8 HH@
alA 2O aylA iz
alAa a0| Ay ba| A

Theorem
It is undecidable if the language of a sequential MPA is ~-closed.

Recursive Shared-Memory Systems 32 /58

Representations
Let 0 € {k-context, k-scope, k-phase, ordered | k € N}.
Definition

A set L of O-nested words is a f-representation if, for all -nested words
w,w’ with w ~g w’, we have w € L iff w’ € L.

Recursive Shared-Memory Systems 33 /58

Representations
Let 0 € {k-context, k-scope, k-phase, ordered | k € N}.
Definition

A set L of O-nested words is a f-representation if, for all -nested words
w,w’ with w ~g w’, we have w € L iff w’ € L.

2-phase representation

Recursive Shared-Memory Systems 33 /58

Representations
Let 0 € {k-context, k-scope, k-phase, ordered | k € N}.
Definition

A set L of O-nested words is a f-representation if, for all -nested words
w,w’ with w ~g w’, we have w € L iff w’ € L.

2-phase representation

2-phase representation

a|Ar a1| Ay
a|A az‘Ag ba|A, by| Ay
Cc

c
a1|A; a|A ¢

e
a|Ag a1|A

Recursive Shared-Memory Systems

33 /58

Recursive Shared-Memory Systems

(f-nested traces T,\W

i" f-nested words J
Ly(B) HA)

a1| Ay a1|Ar b1|Ay
a1|A ai|Ar bi|Ar, X a1|A
az|Az alAr bo|Ay
c X A c c
a Ay c c c c
8 =8-8 @ @ @
oAy PO ar|A a|A
ap|Az | Az by|Az

Recursive Shared-Memory Systems 34 /58

Recursive Shared-Memory Systems

(f-nested traces T,}

i" f-nested words J
Ly(B) HA)

reallzablllty a1|Ar a1|Ar b1|Ar

a1|A
a|A
c

a|A

ai|Ar bi|A1, X . — ? a1|AL
oA bolfs JA: L(A) = trace(Lg(B))? H
c

a|A

ap|Az | Az by|Az

Recursive Shared-Memory Systems

34 / 58

Recursive Shared-Memory Systems

(f-nested traces T,\W

i" f-nested words J
Ly(B) HA)

reallzablllty a1|Ar a1|Ar b1|Ar

a1l AL aAr bi|AL X . — 7 a1|AL
22l oA bolfs JA: L(A) = trace(Lg(B))?

c c
alX _yo_ @lA

alAy TOT a|A

a|A
ap|Az | Az by|Az

Theorem (B.-Grindei-Habermehl '09)

Let B be some sequential MPA such that Lyg(B) is a 6-representation.
There is an asynchronous MPA A such that L(A) = trace(Lg(B)).

Recursive Shared-Memory Systems

34 / 58

Recursive Shared-Memory Systems

(f-nested traces T,\W

i" f-nested words J
Ly(B) HA)

reallzablllty a1|Ar a1|Ar b1|Ar

a1|A
a|A
c

a|A

ai|Ar bi|A1, X . — ? a1|AL
oA bolfs JA: L(A) = trace(Lg(B))? H
c

a|A

Theorem

ap|Az | Az by|Az

For a sequential MPA B it is decidable if Ly(B) is a 6-representation
(in elementary time).

Recursive Shared-Memory Systems

34 / 58

Monadic Second-Order Logic

> X —pYy X and y are successive events on process p € Proc
> XMpy x and y form a call-return pair of process p € Proc
> a(x) event x is labeled with a € &

Monadic Second-Order Logic
Monadic Second-Order Logic (MSO)

> X —p Y x and y are successive events on process p € Proc
> X \p Yy x and y form a call-return pair of process p € Proc
> a(x) event x is labeled with a € &

Example

E dxdydz(x iy A ax(z) AN x<z<y)

where < = (—1 U —)*

Recursive Shared-Memory Systems 35 /58

Monadic Second-Order Logic
Monadic Second-Order Logic (MSO)

> X —p Y x and y are successive events on process p € Proc
> X \p Yy x and y form a call-return pair of process p € Proc
> a(x) event x is labeled with a € &

Example

E dxdydz(x iy A ax(z) AN x<z<y)

where < = (—1 U —)*

Recursive Shared-Memory Systems 35 /58

Recursive Shared-Memory Systems

nested traces

f-nested traces

Lo(¥) Lo(A)
realizability Ay aulAr bl
3A: L(p) = Lo(A)? MH@
MSO c c C: C
IxAyIz(x iy A a(z) A xa<z<y)
2|A
ao|Ax a| Az by|A

Recursive Shared-Memory Systems

36 / 58

Recursive Shared-Memory Systems

nested traces

f-nested traces

Lo() Lo(A)
realizability Ay a1l bl
A Ly(p) = Lo(A)? M @
MSO

c c C: C
IxFyIz(x iy A a(z) A xa<z<p)

a|Ax
ao|Ax a| Az by|A

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt.
f-nested traces.

Recursive Shared-Memory Systems

36 / 58

Recursive Shared-Memory Systems

nested traces

f-nested traces

Lo(¥) Lo(A)
realizability Ay a1l bl
A Lo(p) = Lo(A)7 M @
MSO { =i)
IxAyIz(x iy A a(z) A xa<z<)
Lo(¢) 2 Lo(A)? -
a|Ax a| Az bo| Ay

model checking

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt.
f-nested traces.

= MSO model checking is decidable.

Recursive Shared-Memory Systems

36 / 58

Local Temporal Logic

Observation
There are lots of (local) temporal logics for nested words/traces!

Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!
= Look at MSO-definable ones.

Recursive Shared-Memory Systems 37 /58

Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!
= Look at MSO-definable ones.

Abstract Until o U3 4

MSOUZ(X, Xl, XQ) =

I (X €Xe A Y XA
Vz(ze YVz=x)— (z=xV3Iy(y € Y/\go,,(y,z))))

where pp(y,2) =y npzV (=32 y np Z ATy (Y mnpz Ay —p 2)).

Recursive Shared-Memory Systems 37 /58

Model Checking (6 = "k-phase bounded”)

nested traces

0-nested traces

Ly(A)

a

a1

MSO-definable
temporal logics

Lo(p) 2 Lp(A)?

model checking

2|

2|

a

2|

o s

Recursive Shared-Memory Systems

38 / 58

Model Checking (6 = "k-phase bounded”)

nested traces
0-nested traces

Lo(p) 2 Lp(A)?

model checking

MSO-definable
temporal logics

2|
2| 2| by

Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME
when k is fixed.

Recursive Shared-Memory Systems 38 /58

Model Checking (6 = "k-phase bounded”)

nested traces

f-nested traces

Lo(p) 2 Lp(A)?

model checking

MSO-definable
temporal logics

2|
2| 2| by

Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME
when k is fixed.

Theorem (B.-Kuske-Mennicke '13)

Model checking for any MSO-definable temporal logic is elementary
when k is part of the input.

Recursive Shared-Memory Systems 38 /58

6. Message-Passing Systems

® ®

single process shared memory

?
static & unknown dynamic
(parameterized)

S O O

recursive timed

Message-Passing Systems

message sequence charts

(MSCs)
L(yp) L(A)
realizability
PDL JA: L(p) = L(A)? _.
MSO logic communicating

automata

finite automata L(p) D L(A)?

model checking

Message-Passing Systems 40 / 58

Communicating Automata and MSCs
Proc = {1,2}

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112, 172} Yo ={211, 271}

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112, 172} Yo ={211, 271}

11,2

l' 11,2 l' — "

17,2

21,1
27,1

27,1

Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

®

10,2 11,2
.1? 5 O
b

21,1
O 57 O~ns-@)

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

10,2 11,2
.1? 5 O
b

21,1
O 57 O~ns-@)

27,1

Message Sequence Chart (MSC)

a

)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

10,2 11,2
.1? 5 ©
b

21,1
O 57 O~ns-@)

27,1

Message Sequence Chart (MSC)

a a

g

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O

27,1

Message Sequence Chart (MSC)

a a

g
@

b

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

10,2 11,2
.1? 5 O
b

21,1
O 57 O

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O~ns-@)

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
O -@— —0
b

21,1
O R O

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

11,2
11,2 a
O @~

17,2

21,1
O R O~ns-@)

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

11,2
11,2 a
O @~

17,2

21,1
O R O

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O~ns-@)

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
©) R O———0

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
O -@— —0
b

21,1
©) R O———0

27,1

Message Sequence Chart (MSC)

Message-Passing Systems 41 / 58

Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
O -@— —0
b

21,1
©) R O———0

27,1

Message Sequence Chart (MSC) M= (E,—1, =2,)

Message-Passing Systems 41 / 58

Message-Passing Systems
MSCs

L(y) L(A)

realizability

PDL 3A4: L(p) = L(A)?

MSO logic
finite automata

L(p) 2 L(A)?

model checking

L(A) #07?

nonemptiness

Message-Passing Systems 42 / 58

Message-Passing Systems

MSCs
L(y) L(A)
realizability
. 11,2
PDL 3A: L(p) = L(A)?

MSO logic
finite automata L(p) D L(A)?

model checking

Theorem L(A)#07

Emptiness for CA is undecidable.
nonemptiness

Message-Passing Systems 42 / 58

Message-Passing Systems
MSCs

bounded MSCs

L() L(A)
realizability
BDL JA: L(p) = L(A)?

MSO logic
finite automata L(p) D L(A)?

model checking

Theorem L(A)#07

Emptiness for CA is undecidable.
nonemptiness

Message-Passing Systems 42 / 58

Message-Passing Systems
MSCs

bounded MSCs

L() L(A)
realizability
BDL JA: L(p) = L(A)?

MSO logic
finite automata L(p) D L(A)?

model checking

Theorem L(A) # 07
Bounded nonemptiness, satisfiability, model
checking, and realizability are decidable. nonemptiness

Message-Passing Systems

42 / 58

Channel-Bounded MSCs

Channel-Bounded MSCs
MSC M

Message-Passing Systems 43 / 58

Channel-Bounded MSCs
MSC M

Message-Passing Systems 43 / 58

Channel-Bounded MSCs
MSC M

Definition
Let B € N. An MSC is
@ dB-bounded if some linearization is B-bounded linearization.

@ VB-bounded if every linearization is B-bounded.

Message-Passing Systems 43 / 58

Representations

Definition
A set L C * (of well-formed words) is a

Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either

all B-bounded linearizations of M, or
none of its linearizations.

Message-Passing Systems 44 / 58

Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either

all B-bounded linearizations of M, or
none of its linearizations.

@ V-representation if, for all MSCs M, L contains either

all linearizations of M, or
none of its linearizations.

Message-Passing Systems

44 / 58

Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either
all B-bounded linearizations of M, or
none of its linearizations.

@ V-representation if, for all MSCs M, L contains either

all linearizations of M, or
none of its linearizations.

Example

ES
(@@) is an Jd1-representation, but no V-representation.

Message-Passing Systems 44 / 58

Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either
all B-bounded linearizations of M, or
none of its linearizations.

@ V-representation if, for all MSCs M, L contains either

all linearizations of M, or
none of its linearizations.

Example

ES
(@@) is an Jd1-representation, but no V-representation.

(@@)* is not an dB-representation, for any B.

Message-Passing Systems 44 / 58

Message-Passing Systems

(VB-bounded MSCs "W

B-bounded words
L(A)
L(B)
11,2

" 11,2 " — "

[(©060)]

27,1

Message-Passing Systems

(VB-bounded MSCs T'W

B-bounded words J
L(5) { — L(A)

realizability

JA: L(A) = msc(L(B))?

(@@e®)

Message-Passing Systems 45 / 58

Message-Passing Systems

(VB-bounded MSCs T'\W

:V B-bounded words J

realizability

JA: L(A) = msc(L(B))?

(@@e®)

Theorem (Henriksen et al. '00; Kuske '03)

Let B be some finite automaton such that L(B

) is a V-representation.
There is a (deterministic) CA A such that L(A) =

msc(L(B)).

Message-Passing Systems 45 / 58

Message-Passing Systems

(VB-bounded MSCs T'\W

B-bounded words J
L(5) { — L(A)

realizability

JA: L(A) = msc(L(B))?

(@@e®)

Theorem (Henriksen et al. '00)

For a finite automaton B it is decidable if L(B) is a V-representation.

Message-Passing Systems 45 / 58

Message-Passing Systems

(JB-bounded MSCs T‘W

j' B-bounded words J

realizability

3A: L(A) = msc(L(B))? 1,2 1,2

(@@)

21,1

27,1

Theorem (Genest-Kuske-Muscholl '06)

Let B be some finite automaton such that L(B) is

s a dB-representation.
There is a CA A such that L(A) = msc(L(B)).

Message-Passing Systems 46 / 58

Message-Passing Systems

(JB-bounded MSCs T‘W

B-bounded words J
L(5) { — L(A)

realizability

11,2

JA: L(A) = msc(L(B))?
17,2

(@)

21,1

27,1

Theorem
For a finite automaton B it is decidable if L(B) is an 3B-representation.

Message-Passing Systems 46 / 58

Monadic Second-Order Logic

> X —py x and y are successive events on process p € Proc
XSy x and y form a message
> a(x) event x is labeled with a € ¥

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —=pYy x and y are successive events on process p € Proc
XSy x and y form a message
» a(x) event x is labeled with a € &

Example

= Elx,y,x/,y’(xm—sfy/\x/m—sg>y’/\x—>{y’/\x/ —3y)

Message-Passing Systems 47 / 58

Message-Passing Systems

MSCs

L(p) L(A)

realizability

A L(p) = L(A)? Y 0220 —0 @-o

17,2

MSO logic

21,1

27,1

Theorem (B.-Leucker '04)

EMSO logic (3X; ... Xpp with ¢ first-order) and communicating automata
are expressively equivalent. MSO logic is strictly more expressive.

Message-Passing Systems 48 / 58

Message-Passing Systems

JB-bounded MSCs

realizability

L(y)

A Lp) = LA)T ¥ 02 .o
MSO logic

Theorem (Genest-Kuske-Muscholl '04)

Let L be a set of 3B-bounded MSCs. The following are equivalent:

@ There is an MSO sentence ¢ such that L = L(y).
@ There is a CA A such that L = L(A).

Message-Passing Systems

49 / 58

Message-Passing Systems

JB-bounded MSCs

L(v) 2 L(A)?

model checking

Theorem (Genest-Kuske-Muscholl '04)

Given a CA A and an MSO sentence ¢, it is decidable if
all 3B-bounded MSCs from L(.A) satisfy (.

Message-Passing Systems

50 / 58

Message-Passing Systems

JB-bounded MSCs

-0—2 .0 —0
[PDL o O— —0

L(y)

3(112(proc*)172) L(p) D L(A)?
©) D :

model checking

Theorem (B., Kuske, Meinecke 2007; Mennicke 2012)

Given a CA A and a PDL formula ¢, it is decidable in PSPACE if
all 3B-bounded MSCs from L(.A) satisfy (.

Message-Passing Systems

50 / 58

Message-Passing Systems

MSCs
L(A
L(¢) (A)
realizability
] 11,2
PDL A L(p) = L(A)?
MSO logic N
finite automata L() D L(A)? o - i ;1 o
model checking
L(A)#£07?

nonemptiness

Message-Passing Systems

51 / 58

Message-Passing Systems

lossy MSCs
MSCs
L)
realizability
. 11,2
PDL 3A: L(p) = L(A)?
MSO logic -

finite automata L() D L(A)?

model checking

L(A) £ 07?

nonemptiness

Message-Passing Systems

51 / 58

Message-Passing Systems

lossy MSCs

[MSCs
L()

realizability

PDL 3A: L(p) = L(A)?
MSO logic
finite automata

L(y) 2 L(A)?

model checking

Theorem (Finkel '87, Abdulla-Jonsson '96) L(A) #07

Emptiness for lossy CA is decidable.
nonemptiness

Message-Passing Systems 51 /58

7. Conclusion and Perspectives

Conclusion: Finite-State Shared-Memory Systems

®
single process message passing;

broadcasting

Realizability v

Model Checking v

< =
?

static & unknown dynamic

(parameterized)

© 12
@ 2
@ 34
® 41

recursive timed

Conclusion: Recursive Shared-Memory Systems

@
®
®
©
®

®
single process

finite-state

[E——
?

static & unknown
(parameterized)

message passing/
broadcasting

dynamic

timed

Realizability v

Model Checking V

Conclusion: Message-Passing Systems

®
®
@
©
®

®
single process

® ®
shared memory

?
static & unknown
(parameterized)

dynamic

recursive

® 12
® 2
© a4
® a1
© s
® 55

timed

Realizability v

Model Checking V

Perspectives: Dynamic Message-Passing Systems

®
®
@
©
®

®
single process

shared memory

—
1

static & known

Realizability VX
Model Checking VX

?
static & unknown
(parameterized)

Perspectives: Parameterized Systems

®
®
@
©
®

®
single process

shared memory

Realizability X

Model Checking VX

Reachability v

dynamic

recursive

Thank Youl

