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What is a concurrent system?

@ Collection of autonomous computing entities (processes)
connected by some communication medium

@ Processes access and update shared resources
(e.g., variables, channels, databases, ...)

@ Schematic view:

Communication medium

! ! !

Process 1 Process2 - - - Process n

@ Purpose:
> entities collaborate on a task:
terminating computation with input and output
> entities model a reactive system:
focus on behavior, properties of performed action sequence
(e.g., mutual exclusion)
@ In this talk: formal modeling of concurrent reactive systems
(in terms of automata) to make them accessible to formal methods
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Theorem (Biichi-Elgot-Trakhtenbrot '60s)
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Finite-State Sequential Systems

LTL G(a— Fb)
RExp ((b+c)*a(a+ c)*b)*
MSO | Vx(a(x) = Jy(x <y A b(y)) L(p) D L(A)?

model checking

Theorem (Biichi-Elgot-Trakhtenbrot '60s; Sistla-Clarke '85)

Model checking against MSO is decidable, but nonelementary.
Model checking LTL is PSPACE-complete.
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Theorem (Sakarovitch '92)

Realizability for regular specifications is undecidable.
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Theorem (Zielonka '87)

Let L C ¥* be a ~-closed regular language. There is a (deterministic)
asynchronous automaton A such that L(.A) = trace(L).
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Theorem (Muscholl '94, Peled-Wilke-Wolper '98)

It is decidable (PSPACE-complete) if the language of a finite automaton is
~-closed (PTIME for deterministic automata).
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Monadic Second-Order Logic (MSO)

> X —py x and y are successive events on process p € Proc
> a(x) event x is labeled with a € &

> X=Y

> xe X event x is contained in set of events X

> dx¢ there is event x such that ¢

» dXp there is set of event X such that ¢

= 3x3y(bi(x) A ba(x) Ax < y)

where < = (=1 U —2)*
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traces

realizability N b
T4 L(p) = L(A)? HH@
IxTy(b1(x) A ba(x) Ax < y) c c o« c

L(¢) 2 L(A)?

model checking

Theorem (Thomas '90)
MSO logic and asynchronous automata are expressively equivalent.

= MSO model checking is decidable.
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traces

L(p) 2 L(A)?

model checking

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

@ LTrLy model checking is nonelementary.

@ LTrL3 model checking is undecidable.
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Semantics  (wrt. trace t = (E, (—p)peproc; A) and e € E)

o t,e =EX,p ifthereis f € E such that A(f) € X, and t,f = ¢
and f is the first p-event not below e wrt. <
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All these modalities are MSO-definable!

Semantics (wrt. trace t = (E, (—p)peproc; A) and e € E)
o t,e = EXp if there is f € E such that e<f and t,f ¢

o t,e =EXy,p ifthereis f € E such that e —, f and t,f |= ¢
and f is the first p-event not below e wrt. <

o t,e=¢@U1y  if thereis f € E such that t,f ¢
and t, e’ = forall e € Ewithe<ée <f

Example
o MSOX(x,Y) =3y(ye YAx<y)
o MSOY(x,X,Y)=3y(y e Y AXx <y AVX(x <X <y —= x € X))
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Theorem (Gastin-Kuske '03)
Model checking for any MSO-definable temporal logic is in PSPACE.
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traces

L(A)
ay by
MSO-definable g g . @C
temporal logics
U 2?7 |l
ap ap by

model checking

Theorem (Gastin-Kuske '03)
Model checking for any MSO-definable temporal logic is in PSPACE.
Proof.

Precompile MSO modalities into finite automata. Inductively build finite
automaton equivalent to the input formula. O
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nested traces
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realizability
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Asynchronous Multi-Pushdown Automata
Proc = {1,2} Zl = {al, bl., C} 22 = {327 bQ7 C} an” = {21, 32} Zret = {bl, bz}
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nested traces

bounded traces

L(y) L(A)

realizability Ay arlAr bl

LTL JA: L(p) = L(A)? i
MSO logic c ¢ c
multi-pushdown automata L(p) D L(A)? —
model checking i #2lA2 balAz
Theorem L(A)#£07
Bounded nonemptiness, satisfiability, model
checking, and realizability are decidable. nonemptiness
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Bounded Nested Words
Definition

@ In a context, only one process modifies its stack.

@ In a phase, only one process pops from its stack.

A nested word is

@ k-scope bounded if each call-return lies within k contexts.

@ ordered if a pop is performed only on the first nonempty stack.

Bounded Nested Words

contexts | 1 [ 2 ] 3 [ 4 [ 5 I 6 |
phases | 1 [ 2 |

6-context bounded / 2-phase bounded / 5-scope bounded / ordered
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Bounded Nested Traces

Definition

A nested trace if k-context bounded / k-phase bounded /
k-scope bounded / ordered if at least one linearization is so.
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Bounded Nested Traces
Definition

A nested trace if k-context bounded / k-phase bounded /
k-scope bounded / ordered if at least one linearization is so.

Bounded Nested Traces

2-phase bounded

not 2-phase bounded
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Recursive Shared-Memory Systems

nested traces

L(p) L(A)
realizability a1l Ay a1l by|Ay
LTL JA: L(p) = L(A)? i
MSO logic g & € N
multi-pushdown automata L(g) D L(A)? il
model checking 14 2l s
L(A)#07?

nonemptiness
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Recursive Shared-Memory Systems

nested traces

context bounded
phase bounded
scope bounded

ordered
L(p) L(A)

realizability a1l Ay a1l by|Ay

LTL JA: L(p) = L(A)? i
MSO logic g & € N

multi-pushdown automata L(g) D L(A)? il
model checking 14 2l s
L(A)#£07

nonemptiness

Recursive Shared-Memory Systems 31 /58



Recursive Shared-Memory Systems

nested traces

( context bounded
Theorem

Bounded nonemptiness for sequential MPA is
context NP-complete [Qadeer-Rehof '05] L(A)
scope PSPACE-complete [La Torre-Napoli '11]
phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

a1|A a1| Ay by|Ar

LTL A L\W} — L\f\) ! al‘Al
MSO logic c ¢ c
multi-pushdown automata
P L(g) 2 L(A)? —
a|As a|Az by| A

model checking

L(A)#£07
nonemptiness
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Recursive Shared-Memory Systems

nested traces

( context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl 08] il . 2l bul
( LTL wgﬁ L\&F/} — L\f\) H 31‘ 1
Proof for phases: binary-tree encoding g ¢ & =
2|A
a|As a|Az by| A
F—O—@—F—(O—@—C—B—(O0—0—B—B L(A) £07?

V
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Recursive Shared-Memory Systems

nested traces

f context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(_A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl '08] il B 2l bul

Proof for phases: binary-tree encoding g ¢ & =
1 2|A

a|As a|As b|As

@

L(A) #07?

1 2 ] nonemptiness
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Recursive Shared-Memory Systems

nested traces

f context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(_A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl '08] a1lAy B 2l bul
( LTL wgﬁ L\&F/} — L\fl) H 31‘ 1
Proof for phases: binary-tree encoding G 3 ¢
a|Ay
a|As a|As b|As
L(A)#£07
1 2 ] nonemptiness
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Recursive Shared-Memory Systems

nested traces

f context bounded
Theorem
Bounded nonemptiness for sequential MPA is

context NP-complete [Qadeer-Rehof '05] L(_A)
scope PSPACE-complete [La Torre-Napoli '11]

phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]

ordered 2EXPTIME-complete [Atig-B.-Habermehl '08] a1lAy B 2l bul
( LTL wgﬁ L\&F/} — L\fl) H 31‘ 1
Proof for phases: binary-tree encoding G 3 ¢
a|Ay
a|As a|As b|As
L(A)#£07
1 2 ] nonemptiness
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Recursive Shared-Memory Systems

nested traces

nested words

a1|Ay a1|Ay by|Ay

ai|Ar ai|Ar bi|Ar, X ai|Ay
a| Ay alAy  by|Ar
c |X ‘A c c
ai az|A2 c c C: c
888 T S
a|Ay PO ay)Ay a|Az
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Recursive Shared-Memory Systems

nested traces

nested words

realizability a1l AL a1lAL bi|Ay
a1|Ay alAr bilALX T34 [(A) = trace(L(B))? alA
a|A 2|A2  bl|A “ (L&)
c alX o alAs c c c @ G c
WO =8 HH@
alA 2O aylA iz
alAa a0| Ay ba| A
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Recursive Shared-Memory Systems

nested traces

nested words

realizability a1l AL a1lAL bi|Ay
a1lA alAr bilALX T34 [(A) = trace(L(B))? alA
a|A 2|A2 bo|A “ (HE)
c alX o alAs c € c G c c
8288
Ay 0T a|A 2
alAa a0| Ay bo| Az

Theorem (B.-Grindei-Habermehl '09)

Let L be a ~-closed language recognized by some sequential MPA. There
is an asynchronous MPA A such that L(A) = trace(L).
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Recursive Shared-Memory Systems

nested traces

nested words

realizability a1l AL a1lAL bi|Ay
a1lA alAr bilALX T34 [(A) = trace(L(B))? alA
Ay 2|A2 bo|A “ (HE)
c alX o alAs c c c @ G c
4’% =8 HH@
alA 2O aylA iz
alAa a0| Ay ba| A

Theorem
It is undecidable if the language of a sequential MPA is ~-closed.
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Representations
Let 0 € {k-context, k-scope, k-phase, ordered | k € N}.
Definition

A set L of O-nested words is a f-representation if, for all -nested words
w,w’ with w ~g w’, we have w € L iff w’ € L.
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Representations
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Representations
Let 0 € {k-context, k-scope, k-phase, ordered | k € N}.
Definition

A set L of O-nested words is a f-representation if, for all -nested words
w,w’ with w ~g w’, we have w € L iff w’ € L.

2-phase representation

2-phase representation

a|Ar a1| Ay
a|A az‘Ag ba|A, by| Ay
Cc

c
a1|A; a|A ¢

e
a|Ag a1|A

Recursive Shared-Memory Systems

33 /58



Recursive Shared-Memory Systems

( f-nested traces T,\W

i" f-nested words J
Ly(B) HA)

a1| Ay a1|Ar b1|Ay
a1|A ai|Ar bi|Ar, X a1|A
az|Az alAr bo|Ay
c X A c c
a Ay c c c c
8 =8-8 @ @ @
oAy PO ar|A a|A
ap|Az | Az by|Az
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Recursive Shared-Memory Systems

( f-nested traces T,}

i" f-nested words J
Ly(B) HA)

reallzablllty a1|Ar a1|Ar b1|Ar

a1|A
a|A
c

a|A

ai|Ar bi|A1, X . — ? a1|AL
oA bolfs JA: L(A) = trace(Lg(B))? H
c

a|A

ap|Az | Az by|Az
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Recursive Shared-Memory Systems

( f-nested traces T,\W

i" f-nested words J
Ly(B) HA)

reallzablllty a1|Ar a1|Ar b1|Ar

a1l AL aAr bi|AL X . — 7 a1|AL
22l oA bolfs JA: L(A) = trace(Lg(B))?

c c
alX _yo_ @lA

alAy TOT a|A

a|A
ap|Az | Az by|Az

Theorem (B.-Grindei-Habermehl '09)

Let B be some sequential MPA such that Lyg(B) is a 6-representation.
There is an asynchronous MPA A such that L(A) = trace(Lg(B)).
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Recursive Shared-Memory Systems

( f-nested traces T,\W

i" f-nested words J
Ly(B) HA)

reallzablllty a1|Ar a1|Ar b1|Ar

a1|A
a|A
c

a|A

ai|Ar bi|A1, X . — ? a1|AL
oA bolfs JA: L(A) = trace(Lg(B))? H
c

a|A

Theorem

ap|Az | Az by|Az

For a sequential MPA B it is decidable if Ly(B) is a 6-representation
(in elementary time).

Recursive Shared-Memory Systems

34 / 58



Monadic Second-Order Logic

> X —pYy X and y are successive events on process p € Proc
> XMpy x and y form a call-return pair of process p € Proc
> a(x) event x is labeled with a € &



Monadic Second-Order Logic
Monadic Second-Order Logic (MSO)

> X —p Y x and y are successive events on process p € Proc
> X \p Yy x and y form a call-return pair of process p € Proc
> a(x) event x is labeled with a € &

Example

E dxdydz(x iy A ax(z) AN x<z<y)

where < = (—1 U —)*
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Monadic Second-Order Logic
Monadic Second-Order Logic (MSO)

> X —p Y x and y are successive events on process p € Proc
> X \p Yy x and y form a call-return pair of process p € Proc
> a(x) event x is labeled with a € &

Example

E dxdydz(x iy A ax(z) AN x<z<y)

where < = (—1 U —)*
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Recursive Shared-Memory Systems

nested traces

f-nested traces

Lo(¥) Lo(A)
realizability Ay aulAr bl
3A: L(p) = Lo(A)? MH@
MSO c c C: C
IxAyIz(x iy A a(z) A xa<z<y)
2|A
ao|Ax a| Az by|A
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Recursive Shared-Memory Systems

nested traces

f-nested traces

Lo() Lo(A)
realizability Ay a1l bl
A Ly(p) = Lo(A)? M @
MSO

c c C: C
IxFyIz(x iy A a(z) A xa<z<p)

a|Ax
ao|Ax a| Az by|A

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt.
f-nested traces.

Recursive Shared-Memory Systems
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Recursive Shared-Memory Systems

nested traces

f-nested traces

Lo(¥) Lo(A)
realizability Ay a1l bl
A Lo(p) = Lo(A)7 M @
MSO { =i )
IxAyIz(x iy A a(z) A xa<z< )
Lo(¢) 2 Lo(A)? -
a|Ax a| Az bo| Ay

model checking

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt.
f-nested traces.

= MSO model checking is decidable.

Recursive Shared-Memory Systems
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Local Temporal Logic

Observation
There are lots of (local) temporal logics for nested words/traces!



Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!
= Look at MSO-definable ones.
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Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!
= Look at MSO-definable ones.

Abstract Until o U3 4

MSOUZ(X, Xl, XQ) =

I (X €Xe A Y XA
Vz(ze YVz=x)— (z=xV3Iy(y € Y/\go,,(y,z))))

where pp(y,2) =y npzV (=32 y np Z ATy (Y mnpz Ay —p 2)).
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Model Checking (6 = "k-phase bounded”)

nested traces

0-nested traces

Ly(A)

a

a1

MSO-definable
temporal logics

Lo(p) 2 Lp(A)?

model checking

2|

2|

a

2|

o s
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Model Checking (6 = "k-phase bounded”)

nested traces
0-nested traces

Lo(p) 2 Lp(A)?

model checking

MSO-definable
temporal logics

2|
2| 2| by

Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME
when k is fixed.
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Model Checking (6 = "k-phase bounded”)

nested traces

f-nested traces

Lo(p) 2 Lp(A)?

model checking

MSO-definable
temporal logics

2|
2| 2| by

Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME
when k is fixed.

Theorem (B.-Kuske-Mennicke '13)

Model checking for any MSO-definable temporal logic is elementary
when k is part of the input.
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6. Message-Passing Systems

® ®

single process shared memory

?
static & unknown dynamic
(parameterized)

S O O

recursive timed




Message-Passing Systems

message sequence charts

(MSCs)
L(yp) L(A)
realizability
PDL JA: L(p) = L(A)? _.
MSO logic communicating

automata

finite automata L(p) D L(A)?

model checking
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17,2

21,1
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Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

®

10,2 11,2
.1? 5 O
b

21,1
O 57 O~ns-@)

27,1

Message Sequence Chart (MSC)
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Communicating Automata and MSCs
Proc = {1,2} ¥, ={112, 172} Y, = {211, 271}

Communicating Automaton

10,2 11,2
.1? 5 ©
b

21,1
O 57 O~ns-@)

27,1

Message Sequence Chart (MSC)

a a

g
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Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
00— —®
b

21,1
O R O
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Message Sequence Chart (MSC)

a a

g
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Communicating Automata and MSCs
Proc = {1,2} ¥ = {112,172} Y, = {211, 271}
Communicating Automaton

11,2

11,2
O -@— —0
b

21,1
©) R O———0

27,1

Message Sequence Chart (MSC) M= (E,—1, =2, )
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Message-Passing Systems
MSCs

L(y) L(A)

realizability

PDL 3A4: L(p) = L(A)?

MSO logic
finite automata

L(p) 2 L(A)?

model checking

L(A) #07?

nonemptiness
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Message-Passing Systems

MSCs
L(y) L(A)
realizability
. 11,2
PDL 3A: L(p) = L(A)?

MSO logic
finite automata L(p) D L(A)?

model checking

Theorem L(A)#07

Emptiness for CA is undecidable.
nonemptiness
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Message-Passing Systems
MSCs

bounded MSCs

L() L(A)
realizability
BDL JA: L(p) = L(A)?

MSO logic
finite automata L(p) D L(A)?

model checking

Theorem L(A)#07

Emptiness for CA is undecidable.
nonemptiness
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Message-Passing Systems
MSCs

bounded MSCs

L() L(A)
realizability
BDL JA: L(p) = L(A)?

MSO logic
finite automata L(p) D L(A)?

model checking

Theorem L(A) # 07
Bounded nonemptiness, satisfiability, model
checking, and realizability are decidable. nonemptiness

Message-Passing Systems

42 / 58
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Channel-Bounded MSCs
MSC M
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Channel-Bounded MSCs
MSC M
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Channel-Bounded MSCs
MSC M

Definition
Let B € N. An MSC is
@ dB-bounded if some linearization is B-bounded linearization.

@ VB-bounded if every linearization is B-bounded.
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Representations

Definition
A set L C * (of well-formed words) is a



Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either

all B-bounded linearizations of M, or
none of its linearizations.
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Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either
all B-bounded linearizations of M, or
none of its linearizations.

@ V-representation if, for all MSCs M, L contains either

all linearizations of M, or
none of its linearizations.

Example

ES
(@@) is an Jd1-representation, but no V-representation.
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Representations

Definition
A set L C ¥* (of well-formed words) is a

@ dB-representation if, for all MSCs M, L contains either
all B-bounded linearizations of M, or
none of its linearizations.

@ V-representation if, for all MSCs M, L contains either

all linearizations of M, or
none of its linearizations.

Example

ES
(@@) is an Jd1-representation, but no V-representation.

(@@ )* is not an dB-representation, for any B.

Message-Passing Systems 44 / 58



Message-Passing Systems

( VB-bounded MSCs "W

B-bounded words
L(A)
L(B)
11,2

" 11,2 " — "

[ (©060) ]

27,1




Message-Passing Systems

( VB-bounded MSCs T'W

B-bounded words J
L(5) { — L(A)

realizability

JA: L(A) = msc(L(B))?

(@@e®)
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Message-Passing Systems

( VB-bounded MSCs T'\W

:V B-bounded words J

realizability

JA: L(A) = msc(L(B))?

(@@e®)

Theorem (Henriksen et al. '00; Kuske '03)

Let B be some finite automaton such that L(B

) is a V-representation.
There is a (deterministic) CA A such that L(A) =

msc(L(B)).
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Message-Passing Systems

( VB-bounded MSCs T'\W

B-bounded words J
L(5) { — L(A)

realizability

JA: L(A) = msc(L(B))?

(@@e®)

Theorem (Henriksen et al. '00)

For a finite automaton B it is decidable if L(B) is a V-representation.
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Message-Passing Systems

( JB-bounded MSCs T‘W

j' B-bounded words J

realizability

3A: L(A) = msc(L(B))? 1,2 1,2

(@@)

21,1

27,1

Theorem (Genest-Kuske-Muscholl '06)

Let B be some finite automaton such that L(B) is

s a dB-representation.
There is a CA A such that L(A) = msc(L(B)).
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Message-Passing Systems

( JB-bounded MSCs T‘W

B-bounded words J
L(5) { — L(A)

realizability

11,2

JA: L(A) = msc(L(B))?
17,2

(@)

21,1

27,1

Theorem
For a finite automaton B it is decidable if L(B) is an 3B-representation.
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Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

> X —=pYy x and y are successive events on process p € Proc
XSy x and y form a message
» a(x) event x is labeled with a € &

Example

= Elx,y,x/,y’(xm—sfy/\x/m—sg>y’/\x—>{y’/\x/ —3y)
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Message-Passing Systems

MSCs

L(p) L(A)

realizability

A L(p) = L(A)? Y 0220 —0 @-o

17,2

MSO logic

21,1

27,1

Theorem (B.-Leucker '04)

EMSO logic (3X; ... Xpp with ¢ first-order) and communicating automata
are expressively equivalent. MSO logic is strictly more expressive.

Message-Passing Systems 48 / 58



Message-Passing Systems

JB-bounded MSCs

realizability

L(y)

A Lp) = LA)T ¥ 02 .o
MSO logic

Theorem (Genest-Kuske-Muscholl '04)

Let L be a set of 3B-bounded MSCs. The following are equivalent:

@ There is an MSO sentence ¢ such that L = L(y).
@ There is a CA A such that L = L(A).
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JB-bounded MSCs

L(v) 2 L(A)?

model checking

Theorem (Genest-Kuske-Muscholl '04)

Given a CA A and an MSO sentence ¢, it is decidable if
all 3B-bounded MSCs from L(.A) satisfy (.
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JB-bounded MSCs

-0—2 .0 —0
[ PDL o O— —0

L(y)

3(112(proc*)172) L(p) D L(A)?
©) D :

model checking

Theorem (B., Kuske, Meinecke 2007; Mennicke 2012)

Given a CA A and a PDL formula ¢, it is decidable in PSPACE if
all 3B-bounded MSCs from L(.A) satisfy (.
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MSCs
L(A
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realizability
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PDL A L(p) = L(A)?
MSO logic N
finite automata L() D L(A)? o - i ;1 o
model checking
L(A)#£07?
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lossy MSCs
MSCs
L)
realizability
. 11,2
PDL 3A: L(p) = L(A)?
MSO logic -

finite automata L() D L(A)?

model checking

L(A) £ 07?

nonemptiness
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Message-Passing Systems

lossy MSCs

[ MSCs
L()

realizability

PDL 3A: L(p) = L(A)?
MSO logic
finite automata

L(y) 2 L(A)?

model checking

Theorem (Finkel '87, Abdulla-Jonsson '96) L(A) #07

Emptiness for lossy CA is decidable.
nonemptiness

Message-Passing Systems 51 /58



7. Conclusion and Perspectives



Conclusion: Finite-State Shared-Memory Systems
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Conclusion: Recursive Shared-Memory Systems
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Conclusion: Message-Passing Systems
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Perspectives: Dynamic Message-Passing Systems
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Perspectives: Parameterized Systems

®
®
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®
single process

shared memory

Realizability X

Model Checking VX

Reachability v

dynamic

recursive




Thank Youl



