Introduction

To understand the behavior of contemporary computing devices, the concept of
parallelism or concurrency is inevitable. There are several obvious reasons for an
increasing use of these techniques: In an attempt to make programs faster one
may distribute them over several executing machines. By duplicating memory
or computation tasks, the reliability of systems can be increased. On a certain
level of abstraction, a specification is inherently concurrent since the subsystems
are thought to run independently from each other. Another aspect is that com-
munication networks consist by definition of independent subsystems that are
only loosely coupled. These observations call for a deeper understanding of the
mechanisms involved.

For sequential systems, a mathematical foundation has proved fruitful. Al-
ready the consideration of formal systems in the first half of this century laid the
ground for a distinction between (theoretically) computable and definitely not
mechanizable tasks. Complexity theory sharpens this distinction further by the
investigation of the frontier between tractable and nontractable computational
tasks. Finite automata, although they are a very restricted model of a sequential
computing device, have a rich theory as well as a wide-spread application. Their
theory is closely related to algebraic theories. Furthermore, surprising connec-
tions between different logics and automata were found. These connections make
it possible to automatize certain verification tasks in the development of software
and hardware systems.

Aiming at similar benefits, attempts to develop a mathematical formalization
of parallelism have a longstanding tradition in computer science. In the 60s, Petri
introduced nets, now called Petri nets, as a model of concurrent systems. These
Petri nets inspired many theoretical investigations and now have an extensive the-
ory. But the semantics of these nets is technically quite complicated and a math-
ematical treatment in its full generality turns out to be cumbersome. Another
line of research in this area is based on the idea of a process algebra introduced
by Milner and Hoare in the 70s. This approach focuses more on programming
languages. Cellular automata can be traced back to ideas of v. Neumann but be-
came widely known only in the 70s (in particular by Conway’s “Game of Life”).
Now they enjoy a well understood theory as well as several extensions.

vi INTRODUCTION

Mazurkiewicz introduced traces, another model of concurrent behaviors, into
computer science. They can be defined in two equivalent ways, either as depen-
dence graphs or as equivalence classes of words. In both cases, one starts out
from a finite set of elementary or atomic actions, called alphabet, and a binary
dependence relation on the set of actions. Two such actions are dependent if
they e.g. use a common resource. Hence, in a parallel computation of the sys-
tem, independent actions can be performed in parallel, while dependent actions
can be performed sequentially, only. A computation of such a system is modeled
as a directed graph. The vertices of this graph correspond to events. Two such
vertices are connected by an edge iff their labels are dependent. Since the compu-
tation is meant to run in time, the graph is assumed to be acyclic. Furthermore,
we consider only finite computations and therefore finite graphs. A dependence
graph is nothing but such a finite directed acyclic graph with edges between de-
pendent vertices. Thus, a dependence graph describes the causal dependence in
a computation.

In the alternative definition, one considers sequential observations of some
parallel computation. The order in which independent actions are performed is
regarded as irrelevant. In particular, if two observations differ only in the order
of independent actions, they are identified. This defines an equivalence relation
on words (over the alphabet of actions) and a trace is an equivalence class with
respect to this equivalence.

It turns out that the linear extensions of a dependence graph form an equiva-
lence class, i.e. a trace, and that any trace can be obtained from some dependence
graph. In this sense, the two approaches are equivalent and “it is only a matter of
taste which objects are chosen for representing concurrent processes: equivalence
classes of strings or labelled graphs” [Maz95, page 14]. It seems that this dual
nature of traces has contributed to a large extent to their success. This is not the
right place to recall the vast amount of results on traces that have been obtained
in the last two decades. For in-depth surveys on the results on traces, the reader
is referred to [DR95] that concentrates on the theoretical aspects in computer
science as well as in mathematics, in particular in combinatorics.

Nonetheless, it turned out that certain limitations of traces made it necessary
to extend the model into different directions. The probably most modest exten-
sion was that to infinite or real traces. These were introduced to model not only
finite but also infinite computations. They can be defined in several equivalent
ways: as directed and downward closed sets of finite traces [Maz87], via an equiv-
alence relation on infinite words [Sta89, Kwi90] or as infinite dependence graphs
where any event dominates only a finite number of vertices. Diekert introduced
a- and d-complex traces as metric completion of the set of finite traces with re-
spect to two different metrics [Die91, Die93] and showed in particular that they
can alternatively be defined as infinite dependence graphs with some alphabetic
information. Most of the considerations on complex traces are based on this sec-
ond characterization. Another similar extension of traces (approximating traces)
is presented in the same spirit [DG98].

vil

The generalizations mentioned so far have been introduced to model infinite
behaviors of a parallel system. Differently, the aim of semi-commutations is to
model some behaviors like the producer-consumer-example that do not fit into the
setting of a symmetric independence relation. The idea is that the consumption of
an item can be delayed after further productions, but conversely, the production
cannot be postponed after the consumption. Here, we refer the reader to the
survey [CLR95] and the literature cited therein.

Another limitation of Mazurkiewicz traces is the global and fixed indepen-
dence relation. There are certainly systems where the answer to the question
whether two particular actions can be performed concurrently depends on the
situation, e.g. on the available resources that are produced by preceding events
(cf. [KP92]). An automaton with concurrency relations [Dro90, Dro92] is a (fi-
nite) automaton whose states are equipped with independence relations, i.e. in
this model the dependence of actions can change while the system evolves. Simi-
larly to traces, one obtains an equivalence relation on the set of finite computation
sequences by identifying those sequences that differ only in the order of indepen-
dent actions. But now this independence refers to the state were the first of the
two actions is performed. Thus, originally the behavior of an automaton with
concurrency relations was defined via equivalence classes of sequential behaviors.
In [BDK95, BDK97], representing these computations by dependence graphs,
we presented a partial order semantics for these computations under some mild
assumptions on the automaton with concurrency relations.

Another approach to incorporate changing independence relations into the
model of traces is represented by context and generalized traces [BR94]. Here,
two actions might be independent in one context and dependent in another where
the context is (in the simplest form) given by the preceding action. Again, first
an equivalence of words was constructed and context traces were defined as equiv-
alence classes of words. An attempt to represent context traces by dependence
graphs succeeded only partially [BR9I5].

Common to all generalizations listed so far is that the independence of actions
is a binary relation. This limits their applicability since it is not possible to model
a situation were two items of some resource are claimed by three actions. In such
a situation, any two of the claiming actions might be performed concurrently and
the third one afterwards. In addition, traces and their successors do not allow
autoconcurrency. Local traces [HKT92, Ho0o94] are an attempt to solve these
problems. Here, sets or even multisets of actions are declared independent and
this depends on the history of the system. A representation of such systems by
local event structures was obtained in the same papers. In [KMO00], we give a
representation of computations in this model by dependence graphs.

Note that in all the extensions mentioned so far, computations were first mod-
eled as equivalence classes of sequential executions. Later (for some models much
later) it was shown that these equivalence classes can be nicely represented by
structures like dependence graphs. Differently, P-traces are by definition labeled

viii INTRODUCTION

partially ordered sets. Afterwards it is shown that they can also be obtained as
equivalence classes of certain equivalence relations [Arn91].

Besides this duality, the different extensions of Mazurkiewicz traces have
been considered under several aspects. Mazurkiewicz used traces to model the
behavior of one-safe Petri nets. Categorical adjunctions were constructed be-
tween larger classes of Petri nets and trace structures [NRT90], step transi-
tion systems (i.e. local traces) [Muk92] and concurrent automata [DS93]. The
order theoretic properties of the set of all trace-like objects was investigated
for real traces [GR93, BCS93, Kus99], for several versions of complex traces
[GP92, Te093, DGI8], and for the computations of an automaton with concur-
rency relations [Sta89, Dro90, Dro92, Kus94a, Kus94b, Sch98|. Metric and topo-
logical questions were dealt with for real traces [Kwi90, KK00], for complex and
approximating traces [Die91, Die93, DG98], and for computations of automata
with concurrency relations [KS98]. The recognizable sets of trace-like structures
were studied thoroughly. The relation to rational sets was investigated for semi-
commutations, for real and for complex traces (cf. the corresponding surveys in
[DR95]), and for computations of concurrent automata [Dro94, Dro95, Dro96|.
The relation to logically axiomatizable sets can be found for finite and for real
traces in [Tho90b, EM93, Ebi%4], for computations of concurrent automata in
[DK96, DK98] and for local traces in [KMOO].

In the first part of the current work, we will define an extension of dependence
graphs to so called ¥-dags where ¥ is a finite set of actions. They generalize not
only dependence graphs as defined above, but also CCl-sets [Arn91], dependence
graphs of computations of concurrent automata [BDK95, BDK97], and (width-
bounded) sp-pomsets [LW98b, LW98a, LW00]. Essentially, a 3-dag is a X-labeled
directed acyclic graph. The edges of this graph represent the causal dependency
between the events that are modeled by the vertices. There are only two restric-
tions that we impose: First, we allow no autoconcurrency. Second, for any label
a, an event can depend on and influence at most one a-labeled event directly.

As a computational model for these ¥-dags, we investigate asynchronous cel-
lular automata. They were defined originally for dependence graphs as a truly
parallel accepting device [Zie87].! Since then, they have been intensively stud-
ied, cf. [Zie95, DM95] for overviews. In [DG96], they were generalized in such a
way that an asynchronous cellular automaton can accept labeled posets (pom-
sets) without autoconcurrency (cf. also [Kus98, DGKO00]). Here, we extend them
to the setting of X-dags. In the literature, infinite state systems are intensively
studied [Mol96, BE97]. We extend asynchronous cellular automata furthermore
by allowing them to have infinitely many states. To preserve some finiteness,
the set of states is endowed with a well-quasi ordering. Thus, loosely speaking,
asynchronous cellular machines or 3-ACMs are asynchronous cellular automata

!The name might be misleading since these automata are not a generalization of v. Neu-
mann’s cellular automata mentioned above.

X

that run on Y-dags, have possibly infinitely many states, and are equipped with
a well-quasi ordering on these states.

The behavior of a ¥-ACM is the accepted language, i.e. a set of ¥-dags.
Hence a ¥-ACM describes a property of ¥-dags. Since the intersection as well
as the union of two acceptable sets can be accepted by a ¥-ACM, properties
describable by ¥-ACMs can become quite complex. Then it is of interest whether
the combined property is contradictory, or, equivalently, whether at least one -
dag satisfies it. Thus, one would like to know whether a ¥-ACM accepts at least
one Y-dag. Using a result by Finkel & Schnoebelen [FS98a, FS98b] on well-
structured transition systems, we show that it is possible to gain this knowledge
even automatically, i.e. we show that there exists an algorithm that on input of
a X-ACM decides whether the X-ACM accepts at least one ¥-dag. For this to
hold, we restrict the asynchronous cellular machines in two ways: The notion
of “monotonicity” involves a connection between the well-quasi ordering and the
transitions of the machine. The notion “effectiveness” requires that the machine
is given in a certain finite way.

Another natural question is whether two properties are equivalent, i.e. whether
two 3¥-ACMs accept the same language. Since there is a 3-ACM that accepts
all X-dags, a special case of this equivalence problem is to ask whether a given
Y-ACM accepts all ¥-dags. The latter question, called universality, essentially
asks whether the described property is always true. The corresponding ques-
tion for sequential automata has a positive answer which is a consequence of the
decidability of the emptiness: If one wants to know whether a sequential automa-
ton accepts all words, one constructs the complementary automaton and checks
whether its languages is empty. Thus, the crucial point for sequential automata
is that they can effectively be complemented. But the set of acceptable ¥-dag-
languages is not closed under complementation. Therefore, we cannot proceed as
for sequential automata. On the contrary, we show that the universality is unde-
cidable even for ¥-ACMs with only finitely many states. These finite ¥-ACMs
are called asynchronous cellular automata or 3-ACA. The undecidability of the
universality implies that the equivalence of two ¥-ACAs, the complementability
of a X-ACA as well as the existence of an equivalent deterministic X-ACA are
undecidable, too. These undecidability results (restricted to pomsets) together
with a sketch of proof were announced in [Kus98]. The proof we give here is
based on ideas developed together with Paul Gastin.

The following chapter deals with the question which properties can be ex-
pressed by a ¥-ACA. For finite sequential automata, several answers are known
to the question which properties can be checked by a finite sequential automaton:
Kleene showed that these are precisely the rational properties. By the Myhill-
Nerode Theorem, a property can be checked by a finite sequential automaton if its
syntactic monoid is finite. Furthermore, Biichi and Elgot [Biic60, Elg61] showed
that a property of words can be checked by a finite sequential automaton if it can
be expressed in the monadic second order logic. This relation between a model

X INTRODUCTION

of a computational device (finite sequential automata) and monadic second order
logic is a paradigmatic result. It has been extended in several directions, e.g.
to infinite words [Biic60], to trees [Rab69] (cf. also [Tho90a]), to finite [Tho90b]
and to real [EM93, Ebi94] traces, and to computations of concurrent automata
[DK96, DK98|. The celebrated theorem of Zielonka [Zie87, Zie95| together with
the results from [Tho90b] states that for dependence graphs of traces, the ex-
pressive power of asynchronous cellular automata and monadic second order logic
coincide. Aiming at a similar result for ¥-dags, in Chapter 5 we show that this
is not possible in general. More precisely, we show that any recognizable set of
Y-dags can be axiomatized by a sentence of the monadic second order logic, but
that the converse is false even for first-order logic. To overcome this, we restrict
to a subclass of all ¥-dags, called (3, k)-dags. This restriction makes it possible
to relabel a (X, k)-dag by an asynchronous cellular automaton in such a way that
one obtains a dependence graph over a certain dependence alphabet. This is the
crucial step in our proof that any monadically axiomatizable set of (3, k)-dags
can be accepted by a (nondeterministic) asynchronous cellular automaton. But
we show that it is necessary to allow nondeterminism in the automata since the
expressive power of deterministic X-ACAs will be proved to be strictly weaker.
Again, the restriction to pomsets of the results presented in this chapter can be
found in [Kus98]. Here, we generalize the presentation in [DGKO0].

The final chapter of the first part is devoted to the relation between our
asynchronous cellular automata and other models of concurrent behavior. The
covering relation of a pomset without autoconcurrency is a ¥-dag. This allows us
to speak of the set of pomsets that is accepted by a £-ACA: A pomset (V, <,)
is accepted iff its Hasse-diagram (V, —<, A) admits a successful run. For pom-
sets, other automata models have been proposed in the literature. In particular,
Arnold considered P-asynchronous automata [Arn91] and Lodaya & Weil dealt
with branching automata [LW98a, LW98b, LW00]. We finish our consideration
of Y-dags and X-ACAs by a comparison of the expressive power of these au-
tomata with the expressive power of our 3X-ACAs. We show that branching
automata when restricted to width-bounded languages have the same expressive
power as monadic second order logic. This enables us to prove that 3-ACAs and
branching automata have the same expressive power. Finally, we show that any
P-asynchronous automaton can be simulated by a ¥-ACA.

The X-dags considered in the first part of the current work are clearly labeled
graphs. Above, I already cited A. Mazurkiewicz stating “it is only a matter of
taste which objects are chosen for representing concurrent processes: equivalence
classes of strings or labelled graphs.” [Maz95, page 14]. To satisfy those that pre-
fer the algebraic approach (or at least appreciate it as the author), this is followed
in the second part where left divisibility monoids are considered. These left divisi-
bility monoids were introduced in joint work with Manfred Droste [DK99, DKO00].
As pointed out earlier, trace monoids are defined via a finite presentation (us-

xi

ing a set of letters ¥ together with a dependence relation on X). Later, alge-
braic properties where discovered that characterize trace monoids (up to isomor-
phism) [Dub86]. Differently, left divisibility monoids are defined in the language
of monoids, i.e. via their algebraic properties. In particular, it is required that
the prefix relation be a partial order and that for any monoid element, the set of
prefixes forms a distributive lattice. Thus, divisibility monoids involve monoid
theoretic as well as order theoretic concepts.

In Chapter 8, we show that divisibility monoids can be finitely presented.
Not only will we show that this is possible in general, but we will give a concrete
representation for any divisibility monoid. Finally, we give a decidable class of
finite presentations that give rise to all divisibility monoids.

Kleene’s theorem on recognizable languages of finite words has been gener-
alized in several directions, e.g. to formal power series [Sch61], to infinite words
[Biic60], and to infinite trees [Rab69]. More recently, rational monoids were in-
vestigated [Sak87], in which the recognizable languages coincide with the rational
ones. Building on results from [CP85, CM88, Mét86], a complete characterization
of the recognizable languages in a trace monoid by c-rational sets was obtained
in [Och85]. A further generalization of Kleene’s and Ochmarniski’s results to con-
currency monoids was given in [Dro95]. In Chapter 9, we derive such a result for
divisibility monoids. The proofs by Ochmanski [Och85] and by Droste [Dro95]
rely on the internal structure of the elements of the monoids. Here, we do not
use the internal representation of the monoid elements, but algebraic properties
of the monoid itself. Thus, the considerations in Chapter 9 that appeared in
[DK99] can be seen as an algebraic proof of Ochmariski’s Theorem.

The following chapter is devoted to the question when a divisibility monoid
satisfies Kleene’s Theorem, i.e. when the rational and the recognizable sets co-
incide. For trace monoids, this is only the case if the trace monoid is free. Our
result states that a divisibility monoid satisfies Kleene’s Theorem iff it is a ratio-
nal monoid [Sak87]. A defining property of divisibility monoids is that the sets of
prefixes form a distributive lattice for any element of the monoid. We prove that
this set, of distributive lattices is width-bounded iff the monoid satisfies Kleene’s
Theorem. We obtain these characterizations applying the theory of rational func-
tions (cf. [Ber79]) and a Foata normal form of monoid elements similar to that
for traces.

Biichi showed that the monadic second order theory of the linearly ordered set
(w, <) is decidable. To achieve this goal, he used finite automata. In the course of
these considerations he showed that a language in a free finitely generated monoid
is recognizable iff it is monadically axiomatizable. In computer science, this
latter result and its extension to infinite words are often referred to as “Biichi’s
Theorem” while in logic this term denotes the decidability of the monadic theory
of w. In the final chapter, I understand it in this second meaning. There, we show
that certain monadic theories associated to a divisibility monoid are decidable.
Let £ denote the set of distributive lattices associated to a given divisibility

xii INTRODUCTION

monoid. We show that the monadic theory of this class is decidable iff the
monoid satisfies Kleene’'s Theorem. In general, this theory is undecidable, but the
monadic theory of the join-irreducible elements of these lattices is still decidable.
For trace monoids, this latter result just states that the monadic theory of all
dependence graphs is decidable, a corollary from [EM93, Ebi94].

At the very end, we prove an order theoretic result that is inspired by the two
decidabilities just mentioned: Together with a result from Chapter 10, we know
that the monadic theory of £ is decidable if and only if £ is width-bounded. In a
certain sense, we show that this does not depend on the special character of £ as
the set of lattices associated with a divisibility monoid. Indeed, we show that any
set, of finite distributive lattices £ has a decidable monadic theory if and only if
the monadic theory of the join-irreducible elements of these lattices is decidable
and £ is width-bounded.

The present work shows that there are deep connections that arise from the
theory of traces to different branches of mathematics. We finish the work with a
list of problems that show up in the course of our considerations.

