Chapter 1

Basic definitions

1.1 Order theoretic definitions

1.1.1 Well quasi orders

Let A be aset. A quasi order on A is a binary relation <C A x A that is transitive
and reflexive. The tuple (A, <) is called quasi ordered set. So let (A, <) be a
quasi ordered set, a € A and X C A. Then we define ta := {b € A | a < b} and
1TX = Jyex T2z. Aset BC Ais a basis of X if 1B = 1X. Note that any set X
has a basis, namely itself or 1X. In the literature, one often defines a basis for
sets X with X = 71X, only, but in our context, it is more convenient to extend
the classical definition slightly.

We call a sequence (a;);en in a quasi ordered set (A, <) good if there are i < j
with a; < a;. If no such indices exist, the sequence is bad. A well quasi order is
a quasi order < on a set A where any sequence in A is good. A wgqo is a quasi
ordered set (A, <) where < is a well quasi order. Occasionally, we use wqo as an
abbreviation of well quasi order, too.

In a wqo, any set contains a finite basis: Let (A, <) be a wqo and a; € A
for ¢ € N. Let M consist of all indices 7 € N such that z; A x; for any j > i.
Since (A, <) is a wqo, this set is finite. Choose ig € N with M < 5. Then,
inductively, we find i, > i, with a;, < a;,.,, i.e. the sequence (a;);cn contains
an infinite non-decreasing subsequence. Now let X C A. An element z € X
is minimal in X if for any y € X with y < 2 we get x < y. By min(X), we
denote the set of minimal elements of X. Let ~==< N >. Since < is transitive
and reflexive, ~ is an equivalence relation. Note that tx = 1y for z,y € A
whenever = ~ y. Let (2;);cq be an enumeration of min(X) for some ordinal .
Furthermore, let g = 0. Inductively, let n € N and assume that i,, € « is chosen.
If there exists ¢ > i, such that x; ¢ z;; for 0 < j < n, let 4,41 be the minimal
such 7. If this construction does not terminate, we get a sequence (z;, )nen With
x;, o x; for n < m. Since (A4, <) is a wqo, there is n < m with x;, < z; . Since
x; € min(X), this implies x; = < z;_, contradicting the choice of i,,. Thus, there
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is £ € N such that we find for x € min(X) an index 0 < j < k with z ~ 2;,. Now
let y € X. Then there exists € min(X) with z < y for otherwise we found an
infinite sequence (v;)ien With y; > vit1, i-e. in particular with y; £ y; for i < j.
Thus, the set {x;y, i, ..., x;, } is a finite basis of X, i.e. we showed that any set
X C A contains a finite basis.

Next, we want to define from a wqo (A, <) a quasi order on the set of finite
words over A. So let v = a1a2...a, and w = byby...b,, be words over A. We
define v <* w iff there exists a sequence 0 < i; < iy < --- < i, < m such that
aj 2 by for 1 < j < n, ie. if v is dominated by some subword of w letter by
letter. Clearly, <* is transitive and reflexive, i.e. it is a quasi order on the set of
words A* over A.

Higman’s Theorem [Hig52] (A*, <*) is a wqo.

Proof.! By contradiction suppose <* is no wqo. Then there exists a bad se-
quence in A*. Let vy be a word of minimal length such that there exists a bad

sequence (w;);eny With wg = vg. Inductively, assume we found vy, vy,...,v, € A*
such that there exists a bad sequence starting with these words. Then let
Unt1 € A* be a word of minimal length such that wvg,vq,...,v,,vse1 can be

extended to a bad sequence. Note that in particular v; £* v, for 0 < i < n.
This construction results in a bad sequence (v;);en such that, for any i € N and
word w € A* shorter than v;, the tuple vy, v1,...,v;_1, w cannot be extended to
a bad sequence. Since the empty word is dominated by any word, in addition
none of these words is empty. For ¢ € N, let a; € A be the first letter of v; and
let w; be the remaining word, i.e. a;w; = v;. Since (A, <) is a wqo, the sequence
(ai)ien contains an infinite non-decreasing subsequence (a;;)jen. Now consider
the sequence
Vo, U1y - - -3 Vjg—1, Wiy, Wiy, Wiy - - -

in A*. For 1 <14 < j < 4, we have v; A* v; since the words v, form a bad
sequence. For 1 <14 <y and j € N, we get v; A% w;; for otherwise v; =* a;,w;; =
v;, contradicting that the words v, form a bad sequence. Now let i < j and
assume wy; =* wy;. Since a; =X a;;, this implies v;, = a;w;; =* ajw;; = vy,
again a contradiction. Hence the sequence above is bad. But this contradicts the
fact that v;, is properly longer than w;, and that by our choice of v;,, the tuple
Vg, V1, - - -, Vig—1, Wj, cannot be extended to a bad sequence. Thus, indeed, <* is
a wqo on the set of finite words over A. Il

! This proof of Higman’s theorem follows a proof given in [Die96] where the idea of a minimal
bad subsequence is attributed to Nash-Williams [NW63].
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1.1.2 Partial orders

Let A be a set. A quasi order < on A is a (partial) order if it is antisymmetric.
Then (A, <) is a partially ordered set or poset for short. Two elements a,b € A
are incomparable (denoted a || b) if neither a < b nor b < a. By <, we denote
the union of < and >. Hence a £ biff a || b or a = b. An element ¢ € A covers
a € Aiff a < cand if a < b < ¢ implies b = ¢. We write a —< ¢ whenever a is
covered by c.

The set A is an antichain if any two distinct elements of A are incomparable.
If, on the contrary, any two of its elements are comparable (i.e. not incomparable),
then A is linearly ordered or a chain. An (anti-)chain X in (A, <) is a subset
X C A such that (X, < NX x X) is an (anti-)chain. The set X C A is convex if
for any x <y < z with 2,z € X the element y belongs to X, too. A subset X of
Ais a filter if x € X and x < y imply y € X. Dually, a set X C A is an ideal if
x € X and z > y imply y € X. Since traditionally ideals were called heriditary
sets, the set of ideals of (A, <) is denoted by H(A, <).

Recall that Ta = {b € A | a < b}. We call this set the principal filter generated
by a. Dually, la = {b € A | a > b} is the principal ideal generated by a. By Ja, we
denote the union of Ta and |a, i.e. the set of elements of A that are comparable
with a. The intersection of ta and |b is denoted by [a, b]. It is the interval with
endpoints a and b. Note that this interval is nonempty iff a < b. For X C A, let
1X 1= U,ex To and dually |X := |,y {= denote the generated filter and ideal,
respectively. An ideal [ is finitely generated if there exists a finite set X such
that I = | X. The set of finitely generated ideals will be denoted by H(A4, <).

For X C A and a € A, we write X < a whenever z < a for all z € X. In
this case a is an upper bound of X. It is a minimal upper bound if X <z < a
implies £ = a. By mub(X), we denote the set of minimal upper bounds of X.
An upper bound a of X that is dominated by any upper bound of X is the least
upper bound, supremum or join of X. It is denoted by sup(X) or \/ X. The
supremum of a two-element set {a,b} is denoted by a V b. Dually, lower bound,
mazimal lower bound, largest lower bound or infimum or meet are defined. The
infimum of X C A is denoted by inf(X), A(X) or anbif X = {a,b}. An element
a € Ais join-irreducible if x V y = a implies a € {z,y} and a £ A. By J(4, <),
we denote the set of join-irreducible elements of A.

Let (A, <) be a poset and a € A. The width w(A, <) of (A, <) is the supre-
mum of the sizes of all antichains in A. The height of a is the supremum of all
sizes of chains C' < a. We denote the height of a in (A, <) by h(a, (A, <)) or
shorter by h(a, A) or just by h(a). Note that the minimal elements of a poset have
height 0. The length of (A, <) is the supremum of the heights of the elements
of A.

A partially ordered set (A, <) is a join-semilattice iff any finite subset of A has
a supremum. It is a lattice if in addition any finite subset of A has an infimum.
Note that if (A, <) is a lattice so is (A,>). Two intervals [a,b] and [d¢’, V'] in a
lattice (A, <) are transposed iff a =bAd and O =bV d'.
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A lattice of finite length is semimodular if a A b —< a implies b —< a V b. A
lattice (A, <) is modular if a < cimplies aV (bAc) = (aVb)Ac. A lattice (4, <) of
finite length is modular iff both (A, <) and (A, >) are semimodular. Furthermore,
in a modular lattice (A, <), transposed intervals are isomorphic. More precisely,
let [bAc,b] and [c,bV c] be two transposed intervals and define f(x) := x V ¢ for
bAc < x < b. Then this mapping f is an isomorphism of the two intervals [Bir73,
Theorem 1.7.13]. A lattice (A, <) is distributive if aV (bAc) = (aVb)A(aVc) for
any a,b,c € A. Then one also has the dual identity a A (bV ) = (aAb)V (aAc).
Furthermore, any distributive lattice is modular.

Let (A, <) be a poset. Then the set of ideals X = H(A, <) can be ordered
by inclusion. The poset (X, C) is a lattice, the supremum is given by union and
the infimum by intersection. One can easily check that it is even a distributive
lattice and that an ideal I € H(A, <) is join-irreducible in this lattice if it is a
principal ideal. Note that an ideal I € H(A, <) is join-irreducible iff it covers a
unique element of (H(A, <), C).

Now let (L, <) be a distributive lattice. Then (A, <) := (J(L,<),<) is a
poset and (H(A4, <), C) is a distributive lattice. If L is finite, this latter lattice is
isomorphic to (L, <) [Bir73, Theorem 1.4.3].

1.2 Monoid theoretic definitions

A monoid is a set M equipped with a binary operation - : M2 — M that is
associative and admits a neutral element 1. The left divisibility relation on a
monoid (M, -, 1) is defined by x < z iff there exists y € M with x -y = z. Since
the multiplication - is associative, this relation is transitive. It is in addition
reflexive since a monoid contains a neutral element. Hence (M, <) is a quasi
ordered set. Since 1 < M, the set {1} is a basis of (M, <). In general, < is
neither a partial order relation since it need not be antisymmetric (consider the
reals with addition) nor a wqo (consider the nonnegative reals with addition).

An alphabet ¥ is a nonempty finite set. The set ¥X* of words over ¥ gets
a monoid structure when equipped with the usual concatenation of words. The
neutral element is the empty word, which is denoted by €. The monoid (X*, -, ¢)
is called the free monoid over X.

Let (M;, -, 1;) be monoids for i« = 1,2 and let f : M; — M, be a function.
This function is a homomorphism if f(x -1 y) = f(x) -2 f(y) for z,y € M; and
f(11) = f(12). A congruence on the monoid M, is an equivalence relation ~ such
that z; ~y; for i = 1,2 and x;,y; € My imply x1 -1 £ ~ Y1 -1 Yo-

A dependence alphabet or trace alphabet is an alphabet ¥ endowed with a
binary relation D that is reflexive and symmetric. The relation D is called de-
pendence relation and its complement I = X2\ D is the independence relation.
From a dependence alphabet (3, D), one defines the trace monoid M(X, D) as
follows: First, let ~ denote the least congruence on the free monoid (X*,-,¢)
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with ab ~ ba for (a,b) € I. Note that two equivalent words v ~ w over ¥ have
the same length. Then M(X, D) = ¥*/~ is a monoid whose elements are called
traces. Thus, traces are equivalence classes of words. The length |z| of a trace
is the length of any of its representatives. Originally, these monoids where con-
sidered by Cartier & Foata [CF69] under the name free partially commutative
monoids. The name trace monoid was coined by Mazurkiewicz [Maz77].

Besides this algebraic definition of trace monoids, there is another, equivalent,
construction of them: Again, one starts with a dependence alphabet (3, D). A
dependence graph is either empty or a triple (V, <, \) where (V, <) is a finite
poset and A : V — ¥ is a mapping such that for z,y € V', one has

e || y implies (A\(x), A(y)) ¢ D and
e © —< y implies (A(z), A(y)) € D.

As usual in mathematics, isomorphic dependence graphs are not differentiated.
On the set of dependence graphs one defines a binary operation - by

(V1, =<1, A1) - (Va, <o, A2) = (ViUVa, <1 U <5 U(=1 0FEo <5), A1 U \g)

where E = {(x,y) € Vix Vs | (A1(2), A2(y)) € D}. Then one can easily check that
this operation is associative and that the empty dependence graph is a neutral
element.

Fora € ¥, let t, = ({a}, {(a,a)},{(a,a)}) denote the dependence graph with
one vertex that is labeled by the letter a. Since the monoid M(X, D) is generated
by the elements [a] for a € ¥, the mapping [a] — ¢, can uniquely be extended to
a homomorphism from the trace monoid M(3, D) to the monoid of dependence
graphs. It turns out that this homomorphism is an isomorphism of the monoids.
Hence traces can be considered as labeled partially ordered sets. The relation
between traces, i.e. equivalence classes of words, and labeled posets can be seen
in another light, too:

Recall that x < z iff there exists y € M(X, D) such that x -y = z. Since
x < z implies |z| < |y|, on the trace monoid M(3, D), the left divisibility relation
is a partial order. One can show that (lz,<) is a distributive lattice for any
trace x. Let (V, <, A) be the dependence graph associated to . Then the partial
order of join-irreducibles of (|, <) is isomorphic to (V, <). Vice versa, (z, <)
is isomorphic to the set of ideals of (V, <), i.e. to (H(V, <), Q).

1.3 Logic

In this work, a graph is a finite set V together with a binary relation E, i.e.,
we consider directed graphs without multiple edges. A dag is a directed acyclic
graph. A Y-labeled graph is a graph (V, F) together with a mapping A : V — ¥
i.e., we consider vertex-labeled graphs.
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Next, we introduce the monadic second order logic MSO that allows to reason
on Y-labeled graphs: So let ¥ be an alphabet, i.e. a finite set. Let V, = {x; |
i € N} be a countable set of elementary variables and V; = {X; | i € N} a
countable set of set variables. There are three kinds of atomic formulae, namely
E(zi,xj), Xj(x;) and Ma;) = a for 7,7 € N and a € ¥. Formulas are built up
from these atomic formulae by the usual connectors A and — and by existential
quantification over elementary and over set variables. More precisely, if ¢ and
are formulae, then so are -, @ A, Jx;¢0 and 93X, where ¢ € N. To define when
a Y-labeled graph (V, E, \) satisfies a formula, let f.:V, — V and f, : V, — 2"
be mappings. Then

(VaEa /\) ):fe:fs E(xiaxj) iff (fe(-Ti),fe(-Tj)) €k,

(VaEa /\) ):fe:fs Xj(xl) iff fE(xi) € fS(Xj)7

(V,E,X) Ep.p M) =a iff Ao fo(z;) = a,

(V,E,N) Eff —¢ iff not (V, E,\) =/.;, ¢, and

(V7 E, /\) ):fe:fs AP iff <V7 E, )‘) ):feyfs ¢ and (V7 E, /\) ):feafs Y.

Furthermore, (V, E, ) =y, 5, 3¢ if there exists a function g, : V. — V such
that (V, E, \) =, .7, ¢ and this function differs from f, at most in the value of z;.
Similarly, (V, E,\) &y, 7, 3X;p if there exists a function g : V; — 2V such that
(V,E,X) 4.4, ¢ and this function differs from f; at most in the value of Xj.

Let (V, E, \) be a Y-labeled graph and let ¢ be a formula whose free variables
are among {xg,x1, ..., Tk, X0, X1, .., X¢}. Let furthermore f,, g, : Vo — V and
fs,9s : Vs — 2" be mappings such that f.(z;) = ge(x;) for 0 < i < k and f,(X;) =
9s(X;) for 0 < ¢ < £. Then it is an easy exercise to show that (V,E,\) =y, 1, ¢
iff (V,E,\) =g 4, ¢- For this reason, one usually writes

(Va E’ )‘) ): (P[fe(xo)a fe(xl)’ .- 'afe(wk)afs<X0)afs(X1)a .- 'afs(XK)]

for (V’ E, )‘) ’:feyfs ©-

A formula without free variables is called sentence. Since the satisfaction of
a sentence by a graph does not depend on the functions f, and f,, we will in this
case simply say that the sentence holds in the graph. A formula is an elementary
formula if it does not contain any set variable. To stress that some formula is
not elementary, we will speak of monadic formulas, too.

Let (V, E, X) be some Y-labeled graph. The elementary theory Th(V, E, \) of
this graph is the set of all elementary sentences that hold in (V, E, \). Similarly,
the monadic theory MTh(V, E, \) is the set of all monadic sentences valid in the
graph. We also define the elementary and monadic theory of classes of ¥-labeled
graphs C by

Th(C) = (] Th(V,E,N\), and
(V,E,\)eC
MTh(C) = (] MTh(V,E,N)

(V,E,\)eC
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i.e. the elementary (monadic, respectively) theory of a class of graphs is the set
of all elementary (monadic, respectively) sentences that hold in all graphs of this
class.

Let C; C C, be two classes of X-labeled graphs. The class C; is monadically
aztomatizable relative to Cy iff there exists a monadic sentence ¢ such that for any
(V,E,\) € C, we have (V, E,\) € C, iff (V, E, \) = ¢. If ¢ is even an elementary
sentence, the class C; is elementarily ariomatizable. Thus, the notion “axiomati-
zable” always refers to classes of graphs. Differently, the notion “definable” refers
to relations inside some graph: Let G = (V, E, \) be a ¥-labeled graph, n € N
and ¢ be a monadic sentence whose free variables are among {xg, z1,...,2, 1}
Then

QOG = {(Uo,vl, .. .,Unfl) € Vn | G ): SO[UOavla e '7vn*1]}

is the n-ary relation defined by ¢. An n-ary relation R C V™ is monadically
definable inside G if R = ¢ for some monadic formula . Elementarily definable
relations are defined similarly.

Later, we will also use logical formulae to reason on unlabeled graphs. It
should be clear that this just requires that atomic formulas of the form A\(z) = a
do not occur in the formula in question. The notions satisfaction, sentence, ele-
mentary and monadic theory etc. then are the obvious restrictions of the notions
we defined above. In the last chapters of both parts, we will concentrate on
(labeled) partially ordered sets which are special (labeled) graphs. To make the
formulas more intuitive, we will occasionally use subformulas of the form =z <y
as a substitute for E(z,y) and z € X for X (z). Recall that in the definition
of the satisfaction of a monadic formula, monadic variables range over arbitrary
sets. Therefore, we considered functions f, : Vi, — 2V. If (V, <) is a partially
ordered set, one can restrict the monadic variables to range over chains or an-
tichains, only. This is done by considering functions f; : V, — 2V where f,(X) is
an (anti-)chain for any X € V. The resulting satisfaction relations are denoted
by [=a4 if set variables range over antichains, and by |=¢ if the set variables range
over chains, only. The monadic chain theory and the monadic antichain theory
are defined canonically by

MATh(V,<) = {y monadic sentence without A(z) = a
MCTh(V,<) = {¢ monadic sentence without A(z) =a

MATh() = (] MATh(V,E,\), and
(VLE,N)ePB

MCTh(B) = () MCTh(V,E,N\),
(VLE,N)EP

where P is any set of posets.
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As usual, we will use abbreviations like

eV for —(—p A ),
o =1 for -V, and
Ve for —dz—e.

Finally, for some properties that can obviously be expressed by a monadic for-
mula, we will simply use their mathematical or English description as for instance
“Uier Xi is everything” for “Va A, ., Xi(z)” where T is a finite set or “X is a
chain” for “VaVy((X(z) A X(y)) = (E(z,y)V E(y,z)))” .

1.4 Some notations

This very last part of the first chapter is devoted to some technical notions that
will be used throughout this work. Most of them are standard in one or the other
community but might be not so usual in another.

Let A, B be sets and f : A — B. By im f, we denote the image of f, i.e.
the set {f(a) | @ € A} C B. The identity function A — A is denoted by idy4
while the identity relation on A is Ay = {(a,a) | a € A}. For A’ C A, a function
f A" = B is a partial function from A to B. The set A’ is the domain dom(f)
of the partial function f. By part(A, B), we denote the set of partial functions
from A to B with nonempty domain. Already in the preceding section, I used the
symbol 24 for the powerset of A. By m : A x B — A, we denote the projection
to the first component of the direct product A x B. Similarly, 7 : A X B — B is
the projection to the second component. Finally, we write [n] = {1,2,...,n} for
the set of positive integers up to n while n denotes the set {0,1,2,...,n—1}.



