Part 1

Asynchronous cellular machines

Chapter 2

>-dags and asynchronous cellular
machines

In this chapter, we define ¥-dags and asynchronous cellular automata, the central
topics of the first part of the present work. In addition, this chapter contains
several examples that hopefully enable an intuition connected to the notions
defined.

We start with the definition of a ¥-dag. These directed acyclic graphs gener-
alise an aspect of dependence graphs known from trace theory: As defined in Sec-
tion 1.2, a dependence graph is a labeled partially ordered set (V, <, \). Let —<
denote the associated covering relation. Then (V, —<,), called Hasse-diagram of
the dependence graph (V, <, \), is an example of a 3-dag. In particular, A~*(a),
the set of a-labeled nodes, is linearly ordered by the reflexive and transitive clo-
sure of the edge relation —<, and for any node y and any label a, there is at
most one a-labeled node x with x —< y and at most one a-labeled node z with
y —< z. These properties define a Y-dag:

Definition 2.1.1 Let ¥ be an alphabet. A X-dag is a triple (V, E,\) where
(V, E) is a finite directed acyclic graph and A : V — ¥ is a labeling function such
that

1. A7!(a) is linearly ordered with respect to E* for any a € ¥, and

2. for any (z,y), (2/,y') € E with A\(x) = Ma'), My) = A(¥'), we have
(xz,2") € E* if and only if (y,y') € E*.

By D, we denote the set of all X-dags.

As usual, we will identify isomorphic ¥-dags. So let (V,E,A) € D. Since
(V, E) is acyclic, E* is a partial order on V. By the first requirement, vertices
that carry the same label are comparable with respect to the partial order E*.
In computer science, this property is referred to as “no autoconcurrency”. In
particular, the width of the partially ordered set (V, E*) is bounded by |¥| and

10

CHAPTER 2. ¥-DAGS AND ACMS 11

a b C
a C
a b

Figure 2.1: An {a,b, c}-dag

there is a natural covering of a Y-dag by the || chains A7!(a) for a € ¥. Any
edge connects two such chains. The second clause ensures in particular that two
edges connecting the same chains (in the same direction) cannot “cross”. More
precisely, let (z,y), (2/,y') € E with A(z) = A(z') and A(y) = ('), i.e. these
two edges connect the same chains in the same direction. Then, by the first
requirement, z and z’ are comparable with respect to E*, say (z,2') € E*. Then
the second requirement forces (y,y’) € E*. In particular, if (z,y),(z,y') € E
with A(y) = A(y'), then y = ¢ and dually if (x,y), (2',y) € E with A(z) = A(2'),
then z and 2’ are forced to be equal.

Example 2.1.2 1. Let ¥ = {a,b,c}. Then the labeled directed acyclic graph
depicted in Figure 2.1 is a Y-dag.

2. Let (P, <) be a finite partial order and A : P — ¥ be a mapping. Then
the triple (P, <, A) is a pomset without autoconcurrency if, for any a € X, the set
A~!(a) is linearly ordered by < (e.g., the left dag in Figure 2.2 is a pomset without
autoconcurrency). Note that (V, E*, \) is a pomset without autoconcurrency for
any Y-dag (V, E,\). Conversely, a pomset without autoconcurrency is not a -
dag for it may violate the second requirement. Now let x —< y denote that z < y
and there is no element properly between x and y (We say that x is covered by vy).
The Hasse-diagram Ha(P, <, \) of (P, <, \) is the labeled directed acyclic graph
(P,—<,\). It is easily checked that this Hasse-diagram is a ¥-dag whenever
(P, <, \) is a pomset without autoconcurrency (cf. the right dag in Figure 2.2).

Let t = (V, E,\) € D be a ¥-dag and = € V. Then the reading domain R(x)
of x is the set of all letters a from ¥ that satisfy

JyeV:Ay)=aand (y,z) € E,

i.e. R(z) is the set of labels of those nodes y € V that are connected with x
by an edge (y,z). Informally, these nodes can be seen as the lower neighbors of

CHAPTER 2. ¥-DAGS AND ACMS 12

a b C a b C
a C a C
a a b

Figure 2.2: A pomset without autoconcurrency and its Hasse-diagram

x in the dag (V, E,\) (but not necessarily in the partial order (V, E*, \)). For
a € R(z) let 9,(x) denote the (unique) element y of A\~'(a) with (y,z) € E.
Thus, {0a(x) | @ € R(x)} is the set of lower neighbors of = in the X-dag t.

Example 2.1.2 (continued) Let x denote the element of the Y-dag from
Figure 2.1 depicted by a solid circle. Since x is the target of edges whose source is
labeled by a and by ¢, respectively, the reading domain R(x) is {a, c}. Differently,
the solid circle in the ¥-dag from Figure 2.2 is the target of only one edge whose
source is labeled by c. Hence, for this ¥-dag, R(z) = {c}.

Next we define asynchronous cellular machines, the model of parallel systems
that we are going to investigate. An asynchronous cellular machine over X or
Y-ACM is a tuple

A = ((Qau Ea)aeza (50,,])(162an27 F)

where

1. (Qq,C,) is an at most countable, well-quasi ordered set of local states for
any a € X,

2. 00 ¢ [lpes @b — 2@ is a nondeterministic transition function for any
a€eX, JCX and

3. F C U cs I, @b is a finite set of accepting states.

One can think of a ¥-ACM as a X-tuple of sequential devices. The device
with index a performs the a-labeled events of an execution. Doing so, it reads
states from other consitutents of the ¥-ACM. But it changes its own state, only
(see below for a formal definition of a run).

CHAPTER 2. ¥-DAGS AND ACMS 13

A ¥-ACM is deterministic if, for any a € 3¥,J C ¥ and ¢, € @, for b € J
the set d,,7((gs)pes) is a singleton.! The set of all local states Uses, @a will be
denoted by Q.

A ¥-ACM is monotone if, for any a € £, J C X, py,p, € @Qp for b € J and
q € Qg,, we have

q € 0a,((Pv)ses) and py Ty py for b € J == 3¢" € 00,7 ((Ph)ses) : ¢ Ea -
Intuitively, this means that increasing the input of a transition does not disable
the transition and increases its output.

A ¥-ACM is called asynchronous cellular automaton over 33 (¥-ACA for short)
provided the sets of local states). are finite for ¢ € 3. Usually, for an ACA we
will assume the wqos . to be the trivial reflexive relation Ag, on .. Hence,
any asynchronous cellular automaton is monotone.

Example 2.1.3 Let ¥ be an alphabet. For a € ¥ let Q, := N* be the set of
all functions ¥ — {0,1,2,...}. The local wqos C, are defined by f C, g iff
f(b) < g(b) for any b € ¥. Next, we define the transition function by

0 if there exist ¢,d € J with ¢ # d and f.(c) < fq(c)
{g} otherwise

5a,J((fc)cEJ) = {
where the function ¢ : ¥ — N is given by

) sup{f.(b) | c € J} ifa#b
9(b) = {1+sup{fc(b)|c€J} if a =b.

Furthermore, F is the set of all tuples (f.).es for J C X with f.(b) € {0, 1} for all
be X and f.(c) =0 for c € J. The 2-ACM A = ((Qu, Ca)aess (0a,7)acs,scs: F)
is not deterministic since in some cases 0, 7((fc)ces) is the empty set. Defining
Q, = QU{ L} with L C, f for f € Qq and 0, ;((fe)ees) = {L} in all cases
where it was undefined so far, we obtain a deterministic ¥-ACM A’. Note that
this ACM is not monotone. We will return to this example later and show that
A accepts the set of all Hasse-diagrams of pomsets without autoconcurrency.

Next we define how a X-ACM can run on a Y-dag and when it accepts a
¥-dag. Let t = (V,E,) be a ¥-dag and A a X-ACM. Let r : V' — | J, .5 Qa be
a mapping and x € V be a node of t. Then r satisfies the run condition of A at
x (relative to t) if

(%) € Ox@)R() ((106(T))ber(z))-

ote that a deterministic X- is “complete” since d4,7((qs)bes . As usual, this is
!Note that a deterministic ©-ACM is “ lete” since d,, 0. A 1, this i

no proper restriction since “incomplete” Y-ACMs can be “completed” by the introduction of
an additional state.

CHAPTER 2. ¥-DAGS AND ACMS 14

The mapping r is a run of A on t if it satisfies the run condition for any x € V.
Note that, for a run 7 and 2 € V, we always have r(x) € Q\(y) since the image
of 5)\(95)3(3;) belongs to Q)\(ac).

Although the transitions of a ¥-ACM A are modeled by functions 6, ;, we
can think of them as tuples (g, (py)ees) With ¢ € 64.7((Ps)ses)- Such a tuple can
be understood as a directed acyclic graph with node set {¢,py | b € J} and
edges from p, to ¢q for b € J. Furthermore, the nodes are labeled by elements
of ¥ x @ where ¢ gets the label (a,q) and p, is labeled by (b,p;). Note that
on the other side a run r on a Y-dag t = (V, E, \) defines a (3, @)-labeled dag
by t' = (V,E,\ x r). Then r is a run iff for any y € V, the restriction of
t' to y and its lower neighbors is a transition, i.e. if ¢ can be “tiled” by the
transitions. Differently from nondeterministic graph acceptors, considered e.g. in
[Tho97b, Tho97a], here we take only into account the lower neighbors and not
all neighbors of a node y. The reason for this restriction is that we understand
a X-dag as a process that continues in time. Having this in mind, it is clear that
the state reached by performing a node y can depend only on its history but not
on the future.

Now let r be a run on the ¥-dag t = (V, E, A). It is successful provided there
exists a tuple (¢q)ser(v) € F with

r(max(A™(a))) g, ¢, for all a € A(V),

i.e. if the “global final state” (r(max{A™'(a)}))ser(v) dominates some accepting
state in the direct product of the wqos C,. Let L(A) C D denote the set of all
Y.-dags that admit a successful run of A. Let M be a set of ¥-dags and L C M.
Then we say that L can be accepted by a X-ACM relative to M if there is a X-
ACM A with L(A) N M = L. Sometimes we will omit the term “relative to M”
if the set M is clear from the context or if M is the set of all 3-dags. The word
“recognize” is reserved for asynchronous cellular automata, i.e. a set of ¥-dags L
is recognizable relative to M if there exists a X-ACA A with L = L(A) N M.

Example 2.1.3 (continued) Let ¥ be an alphabet and let Ha denote the set
of Hasse-diagrams of pomsets without autoconcurrency. Then Ha C D. Fur-
thermore, let A denote the X-ACM defined above. We show that L(.A) = Ha:
For a Hasse-diagram (P,—<,\) € Ha let r(z)(a) be the number of a-labeled
elements below z (possibly including z, cf. Figure 2.3 for an example where a
tuple (z,vy, z) denotes the function {(a,z), (b,y), (¢, 2)}). For z € P, the reading
domain R(x) is the set of labels of vertices covered by x. Thus, the vertices d.(x)
for ¢ € R(z) are mutually incomparable. Hence, for ¢ € R(x), the vertex 0.(x)
dominates the largest number of c-labeled vertices among {0y4(x) | d € R(x)}.
Hence 7(0.(x))(c) > r(0a(x))(c) for d € R(x) \ {c}, ie. r is a run of A on
(P,—<,\). Since any tuple (g.).c; dominates some state from F, this run r is
accepting, i.e. Ha C L(.A). Conversely, let r be a successful run of .4 on the ¥-dag

CHAPTER 2. ¥-DAGS AND ACMS 15

a, (3,0,0) 9p(2,2,009 ¢ (1,1,2)
a, (2,0,0) ¢, (1,1,1)

a,(1,0,0) 93 (1.1,0)

Figure 2.3: A run of A

(V,E,\). By C, we denote the reflexive and transitive closure of the edge rela-
tion E. Then, for any 2 € V| ¢ € R(z) and a € ¥ we have r(0.(z))(a) < r(z)(a),
i.e. hy : (V, E*) — N defined by h,(x) := r(x)(a) is monotone with respect to the
partial order (V, E*). Furthermore, by the definition of 4, s, for any x € V' and
¢,d € R(x) with ¢ # d we have h.(0.(z)) > h.(04(z)). Hence 0.(x) £ 04(x). Since
we can similarly infer ,(x) [Z 0.(x), the elements 0.(x) and 9;(x) are incompara-
ble. Hence (V, E, \) is a Hasse-diagram. Thus, the set of Hasse-diagrams can be
accepted by a ¥-ACM with infinitely many states. Recall that the ACM A is not
monotone. It is not known whether there exists a monotone ACM A’ equivalent
to A, in particular, I do not know whether finitely many states suffice. On the
other hand, Lemma 4.1.3 below will show that the set of not-Hasse-diagrams can
be accepted by a 3-ACA, i.e. by a X-ACM with only finitely many states.

Example 2.1.4 Let L be the set of all ¥-dags t satisfying
the number of d-labeled vertices of t is even for any d € .

This set can be accepted by a X-ACM that differs from the ACM A from Exam-
ple 2.1.3 only in the wqos C,: Here, we define f C, g iff f(b) < g(b) for b € &
and f(a) = g(a) mod 2. Then a tuple (f.).cx dominates some accepting state
iff f.(c) is even for all ¢ € J. Consider the run of A on the X-dag in Figure 2.3:
The maximal a-labeled vertex carries a state f, with 3 = f,(a). Furthermore, let
f» and f. denote the state at the maximal b-labeled and c-labeled vertex, respec-
tively. Then the tuple (f,, fs, fc) does not dominate (in the wqo C, x C; x C,)
any state from F, i.e. the run r is not successful.

We finish this chapter with some examples of the expressive power of mono-
tone ACMs. In the first of these examples, we consider ACMs that run on words
over X.. To do this, we identify a word over X with the Hasse-diagram of a linearly
ordered X-labeled poset. In this sense, we can show that the “word-language”

CHAPTER 2. ¥-DAGS AND ACMS 16

{a™b" | 1 < n < m} can be accepted by a monotone ACM. This in particu-
lar implies that monotone ACMs are more powerful than finite automata since
ACMs can have infinite sets of states. In addition, we will show that the set
{t"a™ | 1 < n < m} cannot be accepted by a L-ACM. Thus, the set of lan-
guages acceptable by a monotone ACM is not closed under reversal. This might
be surprising at first glance, but it is not really so since the notion of well quasi
ordering as well as that of monotonicity are not symmetric.

Example 2.1.5 Let ¥ = {a,b} and L = {a™" | 1 < n < m} C . We
consider the words in ¥ as Hasse-diagrams of linearly ordered sets so that L C ID.
Let A denote the following ¥-ACM:

Q. = Qp, = N with the usual linear order which is a wqo,

(0 ifbe J
04,7 ((qc)cer) = § {1} if J=10
({¢a +1} otherwise, ie. if J = {a}, and
(0 if J ={a,b}or J=10
06,5 ((¢c)ces) = {max(0,q, — 1)} if J ={a}
({max(0,q, — 1)} otherwise, i.e. if J = {b}.

The state (1, 1) is the only accepting state from F. We show that the only Hasse-
diagrams of linearly ordered sets that are accepted by A are those from the set L:
So let (V, E,\) € L. It is of the form

a Qo ... A by by e by,

with 1 < n < m, Aa;) = a and A\(b;) = b for all suitable i. Then the mapping
r:V — N with r(a;) = i and r(b;)) = m — i is a run of A on (V,E,). It is
successful since the final global state (g.)ccx equals (m, m—n) and m—n > 1. If,
on the contrary, (V, E, \) is the Hasse-diagram of a linear order, but not from L,
then

either it contains some a-labeled vertex that covers a b-labeled one,

or it contains some b-labeled vertex which is not the target of any edge,

or it is of the form a™b™ with m < n.

In the first case, the ACA A does not have any run on (V,FE,\) due to
0a.7((¢c)ces) = O whenever b € J. Similarly in the second case, since d,g = 0. In
the third case, there is a run of A on (V, E,), but the final global state is of the
form (m,0) and therefore not successful.

Now let L' = {b"a™ | 1 < n < m} denote the set of reversed words from L.
We show that there is no monotone ¥-ACM A’ that accepts the Hasse-diagrams
that correspond to words in L’ relative to the Hasse-diagrams of linear orders:
By contradiction, assume there is such a ¥-ACM A’. For n > 0 let t,, denote the
Hasse-diagram corresponding to "a™*!. Since these words belong to L', there
exists a successful run r, of A’ on ¢, for any n > 0. Let ¢, denote the state that

CHAPTER 2. ¥-DAGS AND ACMS 17

is associated by r, to the last b-labeled vertex in t, (i.e. g, € Qp is the state of
A’ that is reached after performing the b-prefix of v"a™*!). Since C, is a wqo,
there are n < m with ¢, Cj ¢,n. Now consider the Hasse-diagram ¢ associated to
the word b™a™*!. Since n < m, this word does not belong to L’. Nevertheless,
since A’ is monotone, there is a successful run on ¢t = (V, E, \): This ¥-dag has
the form:

by b .. b ay Qo ... Qnp
The mapping 7, [{b1,0bs,...,by,} satisfies the run conditions for b; relative to
t since 7, is a run of A’ on t,. Furthermore, 7,(b,) = ¢» Jp ¢n. Since

Tn(a1) € 0a4p)(¢n) and since A’ is monotone, there exists r(a1) € da () (gm)
with r,(a1) C, r(a1). By induction, we obtain states r(a;) J, 7,(a;) such that
Tm | {b1,b2,...,b;} Ur is a run of A" on ¢. Since r(ant1) Jo Th(an+1) and
Tm(bm) Jp 7n(by), the final global state (7,(by,), 7(an41)) of this run dominates
that of r, which equals (r,,(b,), 7 (an+1)). But r, was successful, hence so is this
new run, i.e. ¢ is accepted by A’.

Note that the language {0™a™ | 1 < n < m} cannot be accepted by a finite
sequential automaton. Hence, it is not monadically axiomatizable. The last
example in this chapter gives an elementarily axiomatizable set of X-dags that
cannot be accepted by a monotone ACM:

Example 2.1.6 Let ¥ = {a, b} and let ¢ denote the first-order sentence

Vz3y((Ax) = a) = ((My) = 0) A (z,y) € E)).

Note that a Y-dag satisfies ¢ iff every a-labeled element is the source of an edge
that leads to a b-labeled vertex. Furthermore, let L be the set of all ¥-dags that
satisfy ¢. We show that L cannot be accepted by a monotone X-ACM:

By contradiction, we assume A to be a 3-ACA such that L(A) = L. For
n € N consider the X-dag t, = (Vp,, En, An) defined as follows: The set V;, equals
{a;,b; | i =1,2,...,n} with the edge relation

{(ai,aiﬂ) | 1<1< n} U{(bi,bﬂ_l) | 1<i< n}U {(az,bz) | 1< < n}

and the labeling A,(a;) = a and A\, (b;) = b for 1 < i < n (cf. the first 3-dag in
Figure 2.4 for the case n = 8).

Recall that ¢ states that every element labeled by a is the source of an edge
leading to an element labeled by 0. Hence t, € L. By the assumption that
A accepts those Y-dags that satisfy ¢, there exists a successful run 7, of A on
t, for all n € N. Let w, denote the word r,(a1)r,(az)rn(as)...m(a,) € Q.
By Higman’s Theorem [High2| (page 2), there exist m < n such that w, is
dominated by a subword of w, that contains the last position, i.e. such that
there exist 1 < j; < jo < -+ < jipy, = n with rp,(a;) C, rn(aj;). Now consider the

CHAPTER 2. ¥-DAGS AND ACMS 18
by by by b b5 bg b7y bg

yyssss

ai ag as ai as ag ar asg

by by bs by by

aq a9 as aq as Ug ar as

Figure 2.4: cf. Example 2.1.6.

Y-dag t = (V, E, A) defined by V = {ay,as,...,a,,b1,b9,...,bn}, A(a;) = a and
A(b;) = b for all suitable 7 and the edge relation

(see the second Y¥-dag in Figure 2.4 with m =5,n=28,j1 =1,Jo = 3,j3 = 6,j4 =
7, and j5 = 8). Then t ¢ L. On the other hand we construct a successful run
r of A on t as follows: Let r(a;) = ry(a;) for 1 < i < n. Then r satisfies the
run condition at a; since 7, is a run. Recall that rp,(a;) T, m(aj,) = r(aj,)-
Since A is monotone, there exists 7(b1) € &y q)(r(a;,)) with r,(b1) 5y r(b1).
Inductively, we find r(b;) € 6p{ap}(r(aj;), 7(biz1)) With 7(b;) Ty rm(b;). At the
end, 7(by) Jp Tm(bn). Thus, the final global state (r(ay),r(by)) dominates
(rm(am), rm(bm))- Since r,, was successful, so is r, i.e. t € L(A), a contradiction.

On the other hand, the set D \ L can easily be accepted by a X-ACA, i.e.
with only finitely many states. A Y-dag does not belong to L iff it has an a-
labeled vertex that is not the source of any edge connecting it to a b-labeled
vertex, i.e. the state associated to this vertex by a possible run is not seen by
any b-labeled vertex. Thus, the idea of a ¥-ACA that accepts the complement
of L is to nondeterministically pick at least one a-labeled vertex and mark it by
a distinguished state. The b-transitions just have to check that they do not read
this distinguished state.

