Chapter 3

Decidability results

In the preceding chapter, we defined X-ACMs as a model of a computing device
that can perform computation tasks concurrently. The behavior of a ¥-ACM is
the accepted language, i.e. a set of X-dags. Hence a 3¥-ACM describes a property
of ¥-dags. Since the intersection as well as the union of two languages L(A;)
and L(A5) can be accepted by a ¥-ACM, properties describable by ¥-ACMs can
become quite complex. Then it is of interest whether the combined property
is contradictory, or, equivalently, whether at least one Y-dag satisfies it. Thus,
one would like to know whether a 3-ACM accepts at least one X-dag. In this
chapter, we show that it is possible to gain this knowledge even automatically,
i.e. we show that there exists an algorithm that on input of a ¥-ACM decides
whether the ¥X-ACM accepts at least one Y-dag. In other words, the aim of this
chapter is to show that the question “Does A accept some Y-dag?” is decidable.
More precisely, it is shown that the set

{A] A is monotone and effective and L(A) = (0}

is recursive. I am grateful to Peter Habermehl who pointed me to the paper
[F'S98a, FS98b] that deals with well-structured transition systems. The proof of
the mentioned decidability rests on this result.

3.1 Notational conventions and definitions

Let Nt = {1,2,...}. Nevertheless, in this chapter an expression sup(M) for
M C Nt will be understood in the structure (N, <). The useful effect of this
convention is that sup(M) = 0 for M C N* if and only if M is empty.

Let A be a set. Then in this chapter, a word is a mapping w : M — A where
M is a finite subset of N*. If M = {ny,ns,...,ng} with n; < ng < --- < ny,
the finite sequence w(n;)w(ns) ...w(ny) is a word in the usual sense. Two words
v:M — Aand w: N — A are isomorphic (and we will identify them) if there
is an order isomorphism (with respect to the usual linear order of the natural

19

CHAPTER 3. DECIDABILITY RESULTS 20

s — ¢
Y Y1
s — i

Figure 3.1: Lifting of a transition in a WSTS

numbers) 7 : M — N with v = won. By A* we denote the set of all words over A.
Furthermore, for w € A* and a € A let wa denote the word v : domwU{n} — A
with n > domw, v | domw = w and v(n) = a. By ¢, we denote the empty word,
i.e. the mapping ¢ :) — A.

Recall that we identify isomorphic ¥-dags. Hence, we can impose additional
requirements on the carrier set V' as long as they can be satisfied in any isomor-
phism class. It turns out that in the considerations we are going to do in this
section, it will be convenient to assume that for any ¥-dag (V, E, \)

V C NT and that the partial order E* is contained in the usual linear
order on NT.

Note that on the set H := A(a) we have two linear orders: E* and the order
< of the natural numbers. Since < extends (V, E*), these two linear orders on
H coincide. Hence, for a run r of some 3-ACM on ¢t = (V, E, \), the mapping
r [A7 a) : A7 (a) = Q, is a word over @, whose letters occur in the order given
by (V, B*).

3.2 Well-structured transition systems

A transition system is a set S endowed with a binary relation —C S2. Fort € S,
we denote by Pred(t) the set of predecessors of t in the transition system S, i.e.
the set of all s € S with s — t. A well-structured transition system or WSTS is a
triple (S, —, <) where (S, —) is a transition system, < is a wqo on S and for any
s,s',t € S with s — t and s < s’ there exists ¢’ € S with s — ¢’ and t < ¢'. Thus,
a WSTS is a well-quasi ordered transition system such that any transition s — ¢
“lifts” to a larger state s’ > s (cf. Figure 3.1). This definition differs slightly from
the original one by Finkel & Schnoebelen [FS98b] in two aspects: First, they
require only ' —* ¢’ and they call a WSTS satisfying our axiom “WSTS with
strong compatibility”. Secondly, and more seriously, their transition systems are
finitely branching. But it is easily checked that the results from [FS98b, Section
2 and 3] hold for infinitely branching transition systems, too. Since we use only
these results (namely Theorem 3.6), it is not necessary to restrict well-structured
transitions systems in our context to finitely branching ones. In [FS98b], several
decidability results are shown for WSTSs. In particular, they showed

CHAPTER 3. DECIDABILITY RESULTS 21

Theorem 3.2.1 ([FS98b, Theorem 3.6]) Let (S, —, <X) be a WSTS such that
=< is decidable and a finite basis of Pred(Ts) can be computed effectively for any
s € S. Then there is an algorithm that solves the following decision problem:
input: two states s,t € S.

output: Does there exist a state t' € S with s —* t' = t, i.e. is t dominated by
some state reachable from s?

Since in their proof the algorithm that decides the existence of the state ¢’ is
uniformly constructed from the decision algorithm for < and the algorithm that
computes a finite predecessor basis, one gets even more:

Theorem 3.2.2 There exists an algorithm that solves the following decision
problem:
input: 1. an algorithm that decides <,
2. an algorithm computing a finite basis for Pred(1s) for s € S, and
3. two states s and t from S
for some well-structured transition system (S, —, <).
output: Does there exists a state t' € S such that s =*t' = t?

In this section, we will show that there is an algorithm that, given a ¥-ACM,
decides whether this ACM accepts some Y-dag. To obtain this result we use
well-structured transition systems introduced above and in particular Theorem
3.2.2. Of course, the first idea might be to define a transition system as follows:
The states are the runs of the ¥-ACM A, i.e. we could define the state set Z to
equal {(t,7) | t € D and r is a run of A on t}. The transitions of the transition
system should reflect the computation steps of the ACM A, i.e. we could define
(t,r) ~ (t',r") iff there exists a maximal vertex = of ¢ such that t = ¢\ {z}
and 7 = 7' | t. Then (Z,~») is indeed a transition system that mimics the
computations of the ACM A. But to make it a well-structured transition system,
we need a well-quasi order on Z that is compatible with ~». Since the states of
this transition system are labeled graphs, one could try the minor relation that
is a wqo on unlabeled graphs. But (at least to the author) it is not clear whether
this can be extended to labeled graphs (it is even unclear what the labeling of a
minor should be).

Recall that the transition relation of the WSTS should reflect the atomic
computation steps of the ¥-ACM A. But the labeled graph (¢,7) contains much
information that is not necessary for this purpose. The only information we really
need is

1. the state sequence of the a-component of the automaton A, i.e. the Q,-word
r [A71(a), and

2. which nodes of t can be read by an additional node z, i.e. for each a,b € ¥
we need the information which a-labeled node has already been read by
some b-labeled node.

CHAPTER 3. DECIDABILITY RESULTS 22

For a -ACM A = ((Q4, Cy)aes, (0,7)aes,scs, F), this idea is formalized as
follows: Let t = (V, E,\) be a ¥-dag and let r : V — @ be a run of A on t. For
a€ X, let v, ;=7 [A !(a). As explained in Section 3.1, A"!(a) is a subset of N*
where the order relation E* coincides with the usual linear order < on N. Hence
v, : A7 a) = Q, is a word over @,. Now we define mappings pos? : ¥ — V as
follows: For a,b € X, let post(b) denote the last position in the word v, that is
read by some b-labeled vertex. Formally

pos’(b) :=sup{z € A (a) | Iy € A7) : (z,y) € E}

where the supremum is taken in N such that we have pos?(b) = 0 iff the set is
empty. Note that pos?(b) is in general not the last position in v, that is dominated
by some b-labeled vertex in the partial order (V, E*, A). The tuple (v4, POSY)sex
is called the state associated with the run r, denoted state(r) := (v4, POSY)sex-

Example 2.1.3 (continued) Let t = (V,E,\) be the ¥-dag and let denote
the run of A depicted in Figure 2.3 (page 15). Then we have the following:

pos; = {(a,0),
posy = {(a,0),

Va (1,0,0)(2,0,0)(3,0,0)
v = (1,1,0)(2,2,0)
ve = (1,1,1)(1,1,2)
pos, = {(a,2),(b,2),(c,0)}
(b1
(b,0

This situation is visualized in Figure 3.2. There, the words v,, v, and v, are
drawn vertically. On the left of a node, the associated state of A can be found.
The letter b at the right of the second a-node indicates that this node equals
pos?(b). Finally, pos¥(c) = 0 is indicated by the fact that ¢ does not appear at
the right of the word wv,,.

As explained above, we want the set of states S to contain state(r). Thus,
S C [Les (@i x N¥). Now we define the state set S completely:

S = {(Ua,posZ)aeg € H(Q; x N*) | im(pos?) C dom v, U {0} for a € E} :

a€Y

Note that 0 ¢ N* and therefore in general im pos? ¢ dom v,,.

CHAPTER 3. DECIDABILITY RESULTS 23

(3,0,0) (1,1,2)
(2,2,0) I
(2,0,0)0a,b I (1,1,1)oc
(1,1,0)0b, ¢ Ve
(1,0,0)¢ o

a

Figure 3.2: The state state(r) of the run from Figure 2.3

The state (wq, pos¥)ees is a successor of the state (v,,pos!)sexn, denoted
(Va, POSY)aes: — (Wq, POSY)aes, iff there exist a € X, 0 # J C 3, pp € Qp for
be J and q € Q, such that

(1) q € a1 ((Po)bes),

(i) w, = {ch forc=a

Ve otherwise,
(ili) pos¥(b) = post(b) for all b, c € ¥ satisfying ¢ ¢ J or a # b, and
(iv) posl(a) < pos¥(a) € dom v, such that v, o pos¥(a) = p. for c € J.

In this chapter, we will refer to these conditions just as (i),(ii) etc.

The following example indicates that state(r) — state(r’) whenever (¢,r) ~»
(t',r"), i.e. that the transition system (S, —) really reflects the computations of
the ACM A. Even more, we will show that (under some additional assumptions
on A) the states of the form state(r) for some run r are precisely those states
that are “reachable” in the transition system (S, —) (cf. Lemma 3.3.3). This will
enable us to prove the desired decidability result.

Example 2.1.3 (continued) Let ¢’ denote the extension of the ¥-dag ¢ from
Figure 2.3 by an a-labeled node as indicated in Figure 3.3 (first picture). Fur-
thermore, this picture shows an extension r’ of the run r, too. The second picture
depicts the state state(r’). The reader might check that state(r’) is a successor
state of state(r).

First, we will show that the result of Finkel & Schnoebelen can indeed be
applied, i.e. that we can extend the transition system (S, —) to a well-structured
transition system.

So we have to extend the wqo C, on @), to words over (Q,: To do this, recall
that we consider words as mappings from a finite linear order into the well-quasi

CHAPTER 3. DECIDABILITY RESULTS

a, (4,0,2)

a,(3,0,0) ¢ ¢, (1,1,2)

a,(2,0,0) ¢ ¢, (1,1,1)

a, (1,0,0) b, (1,1,0)

(4,0,2)

(3,0,0)0a (1,1,2)0a
(2,2,0) i

(2,0,0) 0 b i (1,1,1) 0c
(1,1,0)0b, ¢ Ve

(1,0,0)¢ °

a

Figure 3.3: A successor state of state(r) from Figure 3.2

24

CHAPTER 3. DECIDABILITY RESULTS 25

ordered set),. Therefore, an embedding n : v — w is defined to be an order
embedding of domv U {0} into dom w U {0} such that

n(0) = 0, n(supdomwv) = supdomw, and v(i) C, w o n(i) for i € domw.

Thus, there is an embedding 7 : v < w iff one obtains v from w by first deleting
some letters (but not the last) and then decreasing the remaining ones with
respect to C,. If T, is trivial (i.e. the identity relation Ag,), there exists such
an embedding iff v is a subword of w and the last letters of v and w coincide.
Now a quasi-order < on the states of the transition system (S, —) is defined by

(Ua,pOSZ)aez j (wauposg)aeE iff

there exist embeddings 7, : v, < w, such that 7, o pos! = pos? for
any a € X.

As explained above, the existence of the embeddings 7, ensures that v, is dom-
inated by some subword (including the last letter) of w, letter by letter. The
requirement 7, opos? = pos? ensures that the pointer pos?(b) (if not 0) points to
some position in this subword and that this position corresponds (via 7,) to the
position in v, to which pos?(b) points. It is obvious that < is reflexive and tran-
sitive, i.e. < is a quasiorder. If C, is a partial order for any a € ¥, the relation
= is even a partial order since (v,, post)ecs = (Wq, POSY)acy implies |v,| < |w,]
for any a € X.

Lemma 3.2.3 Let A be a X-ACM. Then (S, =) is a well quasi ordering.

Proof. Let w € Q* and pos” : ¥ — domw. We construct a word w’ over the
set Q x 2* by dom w' := domw and w(i) := (w(i), (pos®)~'(i)). Now let v € Q*
and pos’ : ¥ — domw and construct v’ € (Q x 2%)* similarly. Then there is
an embedding n : v < w with 7 o pos’ = pos® iff there exists an embedding
n' v — w'. Thus, (v, post)ees =X (Wq, pos¥)geyx iff v), can be embedded into w/,
for any a € X..

By Higman’s Theorem [High2], words over a well-quasi ordered set (Q,LC)
form a wqo with respect to the embeddability. Since the direct product of finitely
many wqos is a wqo, the lemma follows. Il

For any ¥-ACM, the structure (S,—) is a transition system whose set of
states is equipped with the well-quasi order <. if the ¥-ACM is monotone, the
triple (S, —, <) is a well-structured transition system.

Theorem 3.2.4 Let A be a monotone X-ACM. Then S(A) = (S,—, =) is a
well-structured transition system.

CHAPTER 3. DECIDABILITY RESULTS 26

Proof. Let (v, post)ees, (e, pos?)ees and (vl, pos?)ees be states from S such
that

(0!, pos?)ees:
Y]

(Ucaposg)ceE — (wc,pOSf;”)cez-

Let 7, : v. < v'. denote embeddings that witness (v, pos?)eex < (v., pos?)ees.
Since (ve, posY)ees — (We, pOs¥)ces, there exist a € B, 0 # J C X, py € Qp for
be J,and g € Q, satisfying (i)-(iv).

In particular (by (1)) ¢ € das((Po)bes)- By (iv), we get in addition p, =
ve(post(a)) Ce v on.(pos? (a)) =: p... Hence, by the monotonicity of the $-ACM
A, there exists ¢’ € d, 5 ((p})ses) such that ¢ T, ¢'.

Let w;, := v,q¢' and w, := v, for ¢ # a. Extend 7, to n, by 7, = 1, U
{(sup dom w,, supdom w’)} and 7’ := 7, for ¢ # a and define pos?’ := 7. o pos?
for ¢ € . Then (w!,pos?)ees € S and (w., pos¥)ees =< (W, pos?)eex Wwit-
nessed by the embeddings 7. It remains to show that (w’,pos®).cs is a suc-
cessor of (v), pos?)eey, i.e. we have to prove that (i)-(iv) hold for (v, pos?)ees,
(w!, pos?)ees, a,J and pj for b € J and ¢': Property (ii) follows from the defini-
tion of w’. Now let b,c € ¥ with ¢ & J or a # b. Then pos? (b) = 1. o pos?(b) =
n.opos?(b) since (iii) holds for the undashed elements. Since pos?(b) € dom v, we
have 7. o pos?(b) = 1. o pos?(b) = pos? (b), i.e. we showed (iii). To verify (iv), let
¢ € J. Then pos? (a) = 1. o pos?(a) = 1, 0 pos?(a) < 1. o pos¥(a) since (iv) holds
for the undashed elements and 7, is an order embedding. Since 7, o pos¥(a) =
pos?’ (a), we get pos? (a) < pos?' (a) € imn.. Since pos?(a) # 0 and 7/, is injec-
tive, we obtain pos? (a) = 7, o pos¥(a) # 0, i.e. pos? (a) € im 7. \ {0} C dom v/
Finally, v/ o pos? (a) = p, holds by the choice of p.. O

To apply Theorem 3.2.2 to the WSTS (S, —, <), our next aim is to show that
in (S, —, <) a finite predecessor basis, i.e. a finite basis of Pred(1(w¢, pos¥?)cex),
can be computed for any state (w., pos¥)cex. Note that T(w., pos?)eex in this
expression is meant with respect to the wqo <. Before we can prove this (cf.
Lemma 3.2.8), we consider the quasiorder C on S: For v,w € Q%, let v C/ w iff
|v| = |w| and there exists an embedding of v into w. Note that whenever v C! w
we can obtain w from v by simply enlarging the letters of v independently from
each other. Since comparable words (with respect to C!) have the same length,
C! is only a quasiorder, but not a wqo. Similarly to =/, we define (v,, pos?)aes C
(Wa, POSY) aex iff |Ug| = |w,| for a € 3 and (vg, post)aes < (W, POSY) ses-

CHAPTER 3. DECIDABILITY RESULTS 27

We call a X-ACM effective if there is an algorithm that given a € ¥, J C ¥,
pp € Qp for b € J and ¢ € Q, computes a finite basis of

{ ((py)ees, q) € HQb X Qa | ¢ € 64,7((Py)oes);q Ca ¢ and py Ty py, for b € J}

beJ

with respect to the direct product (Hb6 P Eb) X E4. We call such an algorithm
a basis algorithm of A. Intuitively, an ACM is effective if a finite basis of all
transitions above a given tuple of states can be computed. Note that this tuple
is not necessarily a transition. On the other hand, we do not require that the set
of all transitions, i.e. the set {(¢, (Pv)ses) | ¢ € 00,7 ((Pb)bes)} is a recursive subset
of Q, X [[yc,; Qp, and this might not be the case as the following example shows.
Furthermore note that any asynchronous cellular automaton is effective since (as
a finite object) it can be given explicitly.

Example 3.2.5 Let ¥ = {a} and @), = N. On this set, we consider the complete
relation N x N as wqo C,. Furthermore, let M be some non recursive subset of
N and define, for n € N:

501 (1) = {n,n+1} ifneM
afa} i) = {n} if n& M.

Furthermore, let 6,9 = {1}. Now let ¢t = (V, E/, \) be a X-dag (i.e. ¢ is the Hasse-
diagram of a finite linear order) and let r : V' — N be some mapping. Then r is
a run of the ¥-ACA A = (Qq, (00,7)scqa}, F) iff r(z) < r(z4+1) < r(z) + 1 for
any v € V and {z € V | r(z) # r(z + 1)} C M. Since this latter inclusion is
not decidable, one cannot decide whether r is a run. On the other hand, A is
effective since {(1,1)} is a finite basis of any nonempty subset of Q, X Q,.

The preceding example suggests the question whether L(.A) is recursive for
any monotone and effective 3-ACM A. Later (Corollary 3.3.6), we will show that
this is indeed the case. Anyway, for an effective ACM, we can show:

Lemma 3.2.6 There is an algorithm that, on input of an alphabet ¥, a basis
algorithm for an effective ©-ACM A and a state (we, pos¥)ees € S, outputs a
finite basis with respect to T of the set of all states (v., pos?)eex, € S satisfying

I(w), post)ees = (U}, POSY)ee — (W}, DOSY)ces
LI

('(Uc, posg))cez

Proof. In this proof, we assume that domw = {1,2,...,supdomw} for any
word w # .
First, we describe the algorithm:

CHAPTER 3. DECIDABILITY RESULTS 28

For any a € ¥ and any () # J C X that satisfy
(a) w, # € and sup dom w, ¢ im pos? and
(b) posi(a) # 0 for b € J
compute a finite basis B(a, J) of the set of all tuples ((p})ses,q") € [[1e; Qo X Qa
satisfying
(€) ¢' € 0a,((p}y)bes), wa(supdomw,) C, ¢" and wy o posy(a) Cp pj, for b € J.
Such a finite basis can be computed by an application of the basis algorithm with
q = wy(supdomw,) and p, = wy(posy’ (a)) for b € J.
For any ((p})ees,q') € Bla, J), let (w',pos?)eex € S denote the uniquely deter-
mined state that satisfies
(d) domw!, = dom w, and pos?” = pos? for ¢ € ¥ and

. if c € J,i =pos? (a)
(e) wl(i) =< q if ¢ = a,i = sup dom w/,

we(i) otherwise.
For ¢ € ¥, let v. denote the word over). uniquely determined by

(£) dom v/ = domw!, \ {supdomw’} for c =.a
dom w, otherwise, and

(8) ve = we [domuwy.
Finally, output the finite set of states (v, pos?).y that satisfy
(h) pos? (b) = pos? (b) for b,c € ¥ with ¢ ¢ J or a # b and
(j) pos? (a) < pos? (a) for c € J.

First we show that for any (v/, pos?).ex that is output by the algorithm above
we have (v/,pos?)eex — (Wl pos?)eex I (we, POSY) cex:

Since (v), pos?)ecx is output, there exist a € ¥,) # J C %, p, € Q, for
b e J with ((p))ses,q') € Bla,J) and ¢ € @, such that (a)-(j) hold. For ¢ € &,
the identity function 7, : domw, U {0} — domw! U {0} satisfies 7, o pos¥? =
pos? by (d). By (c) and (e), we obtain w.(i) C. w’ o n.(i) for i € domw,.
Hence (we,pos?)ecy < (w!,pos?)eex. Since in addition |w.| = |w!|, we get
(e, POS)ees T (10, post” e

It remains to show that (i)-(iv) (page 23) hold for the states (v’, pos?).cx. and
(w!, pos?’)eex: and for a, J,p), for b € J and ¢':
(i): This is immediate since (c) holds.
(ii): If ¢ # a, (f) and (g) imply v/ = w... Furthermore, these two statements also
ensure w,, = v, w/,(supdomw!,) = v, ¢’ by (e).
(iii): This is immediate by (h).
(iv): Let ¢ € J. Then, by (j), pos? (a) < pos¥ (a). Hence pos? (a) # 0 and
therefore pos? (a) € domuw’. For ¢ # a, this implies pos? € domuv’ since,
by (f), domv, = domw.. To deal with the case a = ¢, recall that pos¥(a) #
supdomw, by (a). Hence, from (d), we can infer pos;”'(a) # sup dom w!, and
therefore pos? (a) € domw! \ {supdomw’} = domv by (f). Thus, we showed
pos? (a) < pos? (a) € domv’, for ¢ € J. Again, let ¢ € J. Then v’ (pos? (a)) =
wi(posy’ (a)) = pl, by (e).

CHAPTER 3. DECIDABILITY RESULTS 29

It remains to show that a state (v, pos?)eex € S dominates some output of
our algorithm whenever there exists a state (w”, pos?”)eex; € S such that:

(v, posY Jeex — (W, post) ces
LI

(wca pOS?)CEE

Since (v7,post)eex — (W, pos?”)ees, there exist a € X, 0 # J C X, pf € Qp

for b € J and ¢" € Q, satisfying (i)-(iv). We show that a and J satlsfy (a)
and (b):
(a): Since (w”,pos?)eex I (we, pos?)eey, it holds |w,| = [w!| = [v"¢"| > 0 by
(ii) and therefore w, # e. Furthermore, im pos?” C domv”U{0} by (iii) and (iv).
But dom v/ = dom w! \ {sup dom w/ } by (ii) and therefore sup dom w, ¢ im pos¥.
(b): Let ¢ € J. Then pos®”(a) € domv” # 0 by (iv). Hence pos?” (a) # 0 which
does not belong to dom v!.

Furthermore note that w,(posy(a)) Ty wy (posy” (a)) = vf (pos¥” (a)) = pil by
(iv) for any b € J. Similarly, w,(sup dom w,) C, w’(sup domw!) = ¢" by (iv) and
(by (1)) ¢" € 5aj((pg)bej) Since B(a J) is a basis, there is ((p})ses, ¢') € B(a, J)
such that p} Cy g for b € J, ¢ C, ¢" and (c) holds. Now construct (w., pos').es
and v/ for ¢ € ¥ according to (d)-(g) and set pos? = pos’ . To show (h),
let b,c € ¥ with ¢ € J or a # b. Then, by (iii), pos? () = pos?” (b). Since
(wa, pos?)aexs T (w!, pos¥”)sex is witnessed by the identity functions, we get
pos? (b) = pos¥’ (b) = pos?(b) = pos¥ (b) where the last equality holds by (d).
Thus, (h) holds. To show (j), let ce J. Then by (iv), pos? (a) < pos?” (a) and
we can continue as above by posy () < pos?’(a) = pos¥(a) = pos? (a) thereby
proving (j). Hence h := (v.,pos?).ex is a state from S that is output by our
algorithm. It remains to check h T (v”,pos?)eex; Which is left to the interested
reader. 4

CHAPTER 3. DECIDABILITY RESULTS 30

Lemma 3.2.7 Let (2., pos?)ces, (0", pos?)ees and (v, pos?)eex be states from

S with

(v, posY Neex — (W, post”)cex
e

(.Tc, posg)cEE
Then there exist states (w,, pos®)ees, (., pos?)eex and (wh, pos?)ees such that
1. |\we| — |z <2|E|+1 for c€ ¥ and

2. (véla pOSZH)CEE - (wg’ pOSg’”)cez

Y Yl
(04, posY Jeew = (W), POSY) cex
LI
(UJC, pOSZU)CGE
Yl

(xca pOS?)cEE

Proof. Since (v”,pos?)ees — (w”,pos?’)eex, there are a € ¥, § # J C %,
vy € Qp for b € J and ¢q € @, such that (i)-(iv) (page 23) hold. Let 7. : 2, — w!
be embeddings that witness (7., pos?).es =< (w”,pos?)ees. We may assume
that 7. is just the identity function, i.e. domz. C domw?!, z.(i) C. w/ (i) for
i € domx,, supdom z, = sup dom w/, and pos? = posf:”" for c € ¥.

First, we define (w’, pos”)eex: For ¢ € ¥, let

dom w/, := (dom z, Uim pos! Uim pos?” U{supdomv/})\ {0}

and w!, = w” | domw!,. Furthermore, let pos”’ = pos?” = pos®. Then im pos?’ C
domz. U {0} C domw’ U {0} ensures (w., pos?)eex € S.

We show (wé,lgos}f")ceg < (w", pos?”) cex:: Note that domx, C dglm w!. Fur-
thermore, impos? C domwv! U {0} and (v),pos!)eex — (w!,pos¥)eex imply
impos?’ \{0} C domw”. Since impos? \{0} C domw” and supdomuv’ €
dom w! U {0}, we therefore get domw! C domw. Thus, the identity function
7, := idgom wrugo} : domw, U {0} — domw; U {0} is an order embedding that sat-
isfies w' (i) = w” on’(i) for i € domw/. Since (v, pos? ecx — (W, Pos?”)cex, we
have domv! C domw! and therefore supdomv! < domdomw! = sup dom z,.
Hence supdom w/, = supdomz, = supdomw?. Thus, ' : w. — w! is an em-
bedding. Since pos?’ = pos¥’, we in addition get pos?” = 7/ o pos? implying
(w::a poszcu)CEE j (U)g, poséu)CEZ- ,

Next, define (w,, pos¥)ces by domw, = domw,, pos¥ := pos¥ and

wali) = ze(1) if i € domz,
T lwli(i) otherwise.

CHAPTER 3. DECIDABILITY RESULTS 31

Again, since impos? = impos? C domw’ U {0} = domw, U {0}, the tuple
(we, pos?)cex. belongs to S. Furthermore |domw,.| = |domw.| < |domz.| +
lim pos?” |+ |im pos?” |+1 implies |w.| —|z.| < 2|E|+1. Thus, the first statement
holds.

Note that domz, C domw. = domw,. Furthermore, we showed above
supdomz, = supdomw!); hence supdomz, = supdomw,.. Finally, for i €
domz., we have z.(i) = w.(i). Thus, the identity function domz. U {0} —
domw, U {0} is an embedding of z, into w,. Since, in addition, pos? = pos? =
pos?, we get (x¢, pos?)cex = (We, POSY) cex-

For i € dom z., we have w.(i) = x.(i) C. w! (i) = w.(i). Now (w,, pos¥)ces =
(w!, pos?’).ex follows immediately since w,(i) = w’ (i) for i € domw!,\ dom x,
dom w, = dom w’, and pos? = pos?’.

Finally, we construct (v, pos?)eex: Let dom v’ := dom w’Ndom v”, and define
vl = w I domv! and pos? := pos? for ¢ € ¥. Then (v/,pos?)ees; € S since
im pos? = impos? C (domw’, N domv”) U {0} = dom v’ U {0}. For i € dom v/,
we have v.(i) = w.(i) = w!(i) by the definition of v and of w!, respectively.
In addition, i € domv” and, from (v”,pos?)eex — (w”, pos?”).ex, we obtain
wl (i) = v (i) i.e. we showed v.(i) = v/ (7).

Now let ¢ # a. Above, we showed sup dom w, = supdomw,. We infer v, =
w” from (v, pos?)eex — (w",pos?)ees. Therefore sup dom w!, = sup dom v”.
Hence domv, = domw!, N domv” implies supdom v, = supdomv”. Thus, for
¢ # a, the identity function domv!, U {0} — domv” U {0} is an embedding of
vl into v. Next we show this fact for ¢ = a: Since dom v/, = domw/, N dom v/,
we obtain dom v/, < supdomv!. Furthermore, sup domv! € domw! U {0} and
sup dom € dom v U {0} imply sup domv! € domwv/, U{0}. Hence supdomv! =
supdom). Thus, indeed, the identity function dom v, U {O} — dom vl U {0}
is an embeddlng of v, mto vy for any ¢ € X. Since posy = pos?, we have
(v, pos? Jeex < (v, pos?)eex as required. ,

It remains to show (v.,pos?)eces — (W, pos?)ceyx, i.e. that (ii)-(iv) hold for
the states (v., pos?)eex and (w', pos?’).ex and for a, J, p, for b € J and ¢:

(ii) For ¢ # a we have domv, = domw, N domv! = dom w, N domw! since
domv! = domw! follows from (vé’,posg")ceg — (W, pos?")eex. Now domw!, C
dom w! implies dom v, = domw!. Thus v, = w. | domv, = w!. Similarly, we
obtain dom v/, = domw! N domv! = dom w!, N (dom w! \ {supdom w/}). Recall
that sup dom w/, = supdom w! and therefore dom v/, = domw/, \ {supdomwy,}.
Since w! (sup dom w!) = ¢, we obtain w,, = v,q from v, = w,, [domv,.

(iii) Let b,c € ¥ with ¢ & J or a # b. Then pos? (b) = pos?" (b) and pos?’ (b) =
pos?’ (b). Using (iii) for the states (v”,pos?).es and (w”,pos®”).cs, We obtain
pos? (b) = pos?” (b) and therefore pos? (b) = pos? (b) as required.

(iv) Let ¢ € J. Since (iv) holds for the states (v”, pos?).ex and (w”, pos?”)ex, We
get pos? (a) = pos? (a) < pos?’ (a) = pos? (a) and pos? (a) € domv!. Since, in
addition, pos?'(a) € dom w’U{0}, we infer pos®’(a) € domv" N (dom w’U{0}) =
dom v Ndom w’, = dom v Finally, we get v’ o pos? (a) = v" o posw”(a) = p,. O

¢

CHAPTER 3. DECIDABILITY RESULTS 32

The two preceding lemmas are the basis for our proof that a finite basis of
Pred(1(z., pos?)cex) can be computed for any state (z., pos?)ces:

Lemma 3.2.8 There exists an algorithm that computes the following function:
input: 1. an alphabet X,
2. a basis algorithm of an effective and monotone 3-ACM A,
3. a finite basis B. of (Q.,C.) and an algorithm to decide C. for
c€ X, and
4. a state (X, posT)eex € S
output: a finite basis of the set Pred(f(x., pos?)eex).

Proof. For simplicity, let M denote the set Pred(1(x., pos?).ex). Let H be the
finite set of all states (w., pos¥)cex in S that satisfy

dom . C dom w,,

we(i) = (i) for i € dom . and w,(i) € B, otherwise,

pos? = posy and

|we| — |z.| < 2|E|+ 1 for c e X.

Note that H can be computed effectively. Furthermore, the identity functions
witness (2., pos?)cex X (We, POSY)cex for (we, pos?)ees: € H.

For (w.,pos?)ecex € H, by Lemma 3.2.6, we can compute a finite basis
B((we, pos?)ex) (with respect to C) of the set of all states (v., pos?)eex sat-
isfying

3(’(1]2, pOSZ:U’)cEE €S5: (véa posg’)ceﬂ — (wéa pos’gﬂ)cEE
LI

(’LUC, pOSQCU)CEZ-

Let (v, pos?)ees € B((we, pos¥)ees). Then there exists a state (w., pos?)ees
that is a successor of (v, pos?).z and dominates (w,., pos¥)ees With respect
to C. Since (2., pos?)ees = (W, pos?)ees, we therefore get (z.,pos?)ees =<
(wl, post)eex. But this implies (v}, pos?)ees € Pred(1(z,, pos?)ees), i-e. we
showed B((w,, pos?)ces) C Pred(1(z., pos?)cex) = M. Now define

B = U B((we, posy) cesx)-

(we,pos¥)ces €H

It remains to show that B is a basis of M: So let (v, pos?).es € B. Then
there exist (w., pos?)eex € H and (w), pos?')eex € S such that
(ve, POSY)eess — (W, POSY)ces
(]

(wca poszcu)cez
Yl

(xca pOSf)cez-

CHAPTER 3. DECIDABILITY RESULTS 33

Hence (w!,pos”)ees = (¢, pos?)ees and therefore (v/,pos?).es € M, ie. we
showed B C M which implies 1B C TM.

Now let (v”,pos?)ees € M. Then there exists (w”, pos?”)eex: € S such that
(0" pos? Ve — (W, pos?)eex > (¢, pos?)eex. Hence, by Lemma 3.2.7, there

are (we, pos®)eex € H, (v, pos?)eex € B and (0!, pos?)eex € S with

(v, post Jees — (W, post)ees

Y Y

(Ué7 pOSZ,)CEE — (wéa posqcU’)CEE
LIl

(wca posch)CEE
Y

(l'ca POSf)cez-

Hence v" € 1B and therefore M C 1B. Since this trivially implies 1M C 1B,
the set B is indeed a finite basis of M. Il

The results we obtained so far in this section can be summarized as follows:
From a monotone and effective 3-ACM, we defined a WSTS. This WSTS has
a decidable wqo and a computable finite predecessor basis. In other words, we
can apply Theorem 3.2.1 and even Theorem 3.2.2. Hence we can decide whether
there is a state in the WSTS that is reachable from (v., pos?).es and dominates
(We, pos?)cex. for any states (ve, pos?)ces and (we, pos?)ces. It remains to relate
this decidability to the X-ACM we started with.

3.3 The emptiness is decidable for ACMs

To apply the decidability result of Finkel & Schnoebelen (Theorem 3.2.2) to 3-
ACMs, we have to relate runs of a ¥-ACM and paths in the transition system
(S, —). Roughly speaking, states of the form state(r) for some run r correspond
to reachable states in (S, —). Here, “reachable” means reachable from a depth-

1-state defined as follows:
Let A be some £-ACM and S(A) = (S, —, <) be the associated WSTS. A
state (wq, pos¥)eex € S is a depth-1-state if

1. |we| <1forae€X,
2. pos?(b) =0 for a,b € X, and
3. we(mindom(w,)) € 0,9 for a € ¥ with w, # «.

Let (wg, pos?)aex be some depth-1-state. Let V = {a € ¥ | w, # 0} and E = ().
Finally, let A = idy. Since w,(mindom(w,)) € 6,9 for a € V, the mapping
a — w,(min dom(w,)) is a run of A on the ¥-dag t = (V, E,). Furthermore, the

CHAPTER 3. DECIDABILITY RESULTS 34

Y-dag t is (considered as a partial order) an antichain since E = (). If conversely
t is an antichain and 7 is a run of A on ¢, then state(r) is a depth-1-state.

Unfortunately, the truth is not that simple, i.e., there are states reachable
from a depth-1-state, that are not of the form state(r) for some run r:

Example 3.3.1 Let ¥ = {q,b}, Q. = {¢.} and @, = {¢}. Furthermore,
the transitions of the asynchronous-cellular automaton 4 are given by {q,} =
Oa, (0} (@) = 009, {@} = b0, and O = 6, otherwise. Then v, = ¢, and v, = ¢,
define a depth-1-state. Now let w, = ¢uqa, Wy = s, pos? = {(a,0), (b,0)} and
posy = {(a,1),(b,0)}. These entities define a state (w., pos¥).ex that is a suc-
cessor state of the depth-1-state (v, post).cx. But there is no ¥-dag ¢ and run r
of A on t such that (w,, pos¥).cx. = state(r).

To make the idea that a state is reachable iff it corresponds to a run of the
ACM A work, we will define finitely many asynchronous-cellular automata A(f)
for f : X — X with the following nice properties:

e A Y-dagt is accepted by A iff there exists a function f : ¥ — ¥ such that
t is accepted by A x A(f).

e In the well-structured transition system associated to A x A(f), reachable
states correspond to runs of A x A(f).

Then, for any function f, we can apply Finkel & Schnoeblen’s result on the
associated well-structured transition system, and combine the outcomes into an
answer whether L(A) is empty.

After explaining the idea of our proof, we now come to the technicalities: Let
Y be an alphabet. A weak ¥-dag is a triple (V, E, A) where (V,E) is a finite
directed acyclic graph and A : V — ¥ is a labeling function such that

1. for all z,y € min(V, E*) with A(z) = A(y), we have z = y, and

2. for any (z,y), (z',y') € E with A(z) = Ma'), A(y) = A(Y'), we have x = 2’
if and only if y = ¢/'.

Note that any Y-dag is a weak Y-dag. Similarly to ¥-dags, we can define R(y) for
anode y in a weak X-dag (V, E, A) to be the set of all labels A(x) with (z,y) € E.
Since in a weak Y-dag for any node y and any a € R(y) there is a unique node
x with A(z) = a and (z,y) € E, we can also use the notion d,(y) to denote this
vertex. Hence, for a ¥-ACM A, we can speak of a mapping r : V — @ that
satisfies the run condition at a node x € V relative to t.

Lemma 3.3.2 There exists an algorithm that on input of an alphabet ¥ and a
function f: X — X outputs an asynchronous cellular automaton A(f) such that

1. Upess L(A(f)) =D, and

2. for any weak Y-dag t = (V,E,X), any f : ¥ — X and any mapping r
that satisfies the run condition of A(f) for any x € V relative to t, the set
A" (a) is a chain w.r.t. E* for any a € 3.

CHAPTER 3. DECIDABILITY RESULTS 35

Proof. First, we give the construction of the ACAs A(f): Let f : ¥ — X.
The set of local states shared by all processes equals the set of nonempty partial
functions from X to itself, i.e. Q@ = @, = part(X,X) for a € X. The transition
functions ¢, ; are defined by

a9 = g € part(S,) | a € dom(g) = f~(a) # 0}
and for J # () by
G € 0a,7((gp)bes) < a € dom(g) and (Vc € dom(g)3b € J : go(c) = a)

for g, € part(X, X)) for b € J. Finally, all tuples of local states are accepting.

To show the first statement, let t = (V,E,\) € D be a ¥-dag. Since ¢
is a X-dag, nodes that carry the same label are linearly ordered with respect
to E*. Hence, we can choose maximal chains C, C V with A*(a) C C, for
any a € . Note that the minimal node of the chain C, is minimal in ¢. We
set f(a) := A(minC,) and obtain a function f : ¥ — 3. To prove the first
statement, it remains to show that A(f) accepts t: We define a mapping r :
V — @ = part(X,X) with dom(r(z)) = {a € £ | z € C,}. Now let z € V
and a € dom(r(z)). If there exists y € C, with (x,y) € E, then there exists a
least such node y since C, is a chain. Let r(x)(a) be the label of this minimal
node. If there is no such node y, define r7(z)(a) := a. Since & € Cy) for any
x € V, the function r(x) is indeed nonempty and therefore belongs to Q. Now
let y € V be some node with a = A(y). We want to show that r satisfies the
run condition of A(f) at y relative to ¢: First let y be minimal in ¢. Since
A (a) C C,, we get a € dom(r(y)). Now let b € f~'(a), i.e. f(b) = a. Then by
the choice of f, we get a = A(min Cj). Since Cj is a maximal chain, the node
min C is minimal in £. Since ¢ is a Y-dag, its minimal nodes carry mutually
different labels. Hence y = minCj, € C,. This implies b € dom(r(y)) and
therefore f~'(a) C dom(r(y)). Conversely let b € dom(r(y)). Then y € C
and, since y is minimal in ¢, y = minC,. Hence a = A(y) = A(min Cy) = f(b)
ensures dom(r(y)) C f~'(a). Thus, the mapping r satisfies the run condition of
A(f) at the minimal nodes of ¢ relative to t. Now let y € V be nonminimal.
Then J := R(y) # 0. Since y € A7*(a) C C,, we get a € dom(r(y)). Now let
c € dom(r(y)), i.e. y € C.. Since C, is a maximal chain, there exists a lower
neighbor (with respect to the partial order E*) = of y which belongs to the chain
C.. Hence (z,y) € E and ¢ € dom(r(z)). Furthermore, x is not maximal in
(V,E*). Let y' € C, be minimal with (x,y') € E. Then A(y') = r(z)(c). Since
(x,y) € ET and y € C,, we obtain xEty'E*y which ensures y' = y. Hence
Ay) = r(z)(c).

Now we prove the second statement of the lemma. Let f : X — X be some
mapping. Furthermore let ¢t = (V, E, \) be a weak Y-dag and let r : V — @ be
a mapping that satisfies the run condition of A(f) for any node z € V relative
to t. We will prove that C, := {x € V | a € dom(r(z))} is a chain. Since by

CHAPTER 3. DECIDABILITY RESULTS 36

the definition of the transition functions 4, ; we have A(z) € dom(r(z)) for any
x € V, this will imply A™'(a) C C, and therefore that A™*(«a) is linearly ordered.

Now let z,y € C.. Since r satisfies the run condition of A(f), there exist
X0, T1, -, Ty € V such that g € min(t), z, = x, (x5, 241) € E for 0 < i < n,
and ¢ € dom(r(x;)) and r(z;)(c) = A(x41) for 0 < i < n.

Similarly, we find nodes yo,y1,...,ym € V such that yo € min(t), y,, = v,
(Yiyvit1) € E for 0 < i < m, and ¢ € dom(r(y;)) and (y;)(c) = Myit1) for
0 <17 < m. Without loss of generality, we may assume n < m.

Since ¢ € dom(r(zy)) and R(zg) = 0, we obtain ¢ € f~}(\(zg)) since the
run condition is satisfied at the node xy. Hence f(c¢) = A(xy) and similarly
f(e) = A(yo). Since the minimal nodes of the weak ¥-dag ¢ carry different
labels, this implies xy = 7y. By induction, let 0 < 7 < n with x; = y;. Then
(i, xit1) € E, (Yi,yis1) € E and Naxi1) = () (c) = r(yi)(c) = AM(yiy1). Since
t is a weak Y-dag, this implies x;11 = y;+1. Thus, we get x = x, = y, E*y as
required. 0

Now let A; = ((Q), El)aesx, (0} 1)acs,scx, F') for i = 1,2 be two X-ACMs.

Then the direct product A; x Ay = ((Qq, Ca)aes, (04,7)aes,scs, F) has the fol-
lowing obvious definition:

Q. = Q. xQ2,
C, = C,xLC2
8,y (Dys D bes) = 80,5 ((Dp)bes) X 03, 1) (P)bes), and
F = {(qé,qg)aej | (¢})acs € F" for i =1,2}.

It is easily seen that the direct product of monotone and effective ACMs is mono-
tone and effective, again. Furthermore, this direct product accepts the intersec-
tion of the two languages, i.e. L(A; x As) = L(A;) N L(Az). Hence, to decide
whether L(.A) is empty, by the first statement of the preceding lemma, it suffices
to decide whether L(A x A(f)) is empty for each function f : ¥ — 3. This is
the reason why we now start to consider these direct products.

Lemma 3.3.3 Let A" be a S-ACM and f: X — X. Let A= A" x A(f) and let
S(A) = (S, —, X) be the WSTS associated with A. Let (w,, pos¥).ex be a state
of (S,—). Then the following are equivalent:

(1) There exist a X-dag t and a runr of the X-ACM A ont such that state(r) =
(waa pOSZJ)GEZ-

(2) The state (wq, post)ees is reachable from some depth-1-state in the transi-
tion system (S, —).

CHAPTER 3. DECIDABILITY RESULTS 37

Proof. Throughout this proof, let A = ((Qq, Ca)aes, (04,7)acs,scs, F).

(1) = (2): Let t = (V,E,\) be a ¥-dag and 7 : V — @ a run of A on .
Recall that we assume V' C N with # < y whenever (z,y) € E. We can in
addition require that € min(V, E*) and y € V \ min(V, E*) imply = < y. Since
the linear order < of natural numbers extends the partial order E* on V', we can
enumerate V such that V = {1, x,...,2,} with z; < z;41. Furthermore, there
is k € N such that min(V, E*) = {x1, 29, ..., 2} by our additional requirement.
For i = k,k+ 1,k +2,...,n, let V; := {x1,29,...,25}, t; := (Vi;, E,\) and
r; : Vi = @ be the restriction of r to V;. Then, for all suitable ¢, r; is a run of the X-
ACM A on the ¥-dag t;. Furthermore, Vi, = {z1, 29, ..., 2} is the set of minimal
nodes of ¢ with respect to E* and t; is the restriction of ¢ to its minimal nodes.
Hence state(r) is a depth-1-state. It remains to prove state(r;) — state(r;;1) for
k < i < n to obtain the desired result by induction. Let (v,, pos?).cx. = state(r;)
and (wq, pos?)eex = state(r;11). Furthermore, let a = A(zi41), J = R(xit1),
Pp = 10p(xi41) for b € J, and ¢ = r(z;41).

We show that (i)-(iv) hold for these elements: Since i+1 > k, the node x;;; is
not minimal in ¢. Hence it is the target of some edge from E, i.e. J # (). Since r;;;
is arun on t;y1, we get ¢ € 0, 5((ps)ses) and therefore (i). Since Vi1 \ Vi = {11}
and r; = 141 [Vi, we get i [A7He) = rip1 [A7Y(e) for ¢ # a. Hence w, = v,
for ¢ # a. Furthermore, w, = rip1 [A a) = (r; | A7Ya)) rig1(zi41) = vag.
Thus, we showed (ii). Note that the only edges in t;,1 that do not belong to ¢;
are of the form (z,x;41) with A(z) € R(x;11) = J, i.e. their source is labeled by
an element of J while the target is labeled by a. Hence, for b,c € ¥ with ¢ € J
or a # b, we have pos?(b) = pos¥?(b), i.e. (iii) holds.

To show (iv), let ¢ € J. Then pos¥(a) = 0.(x;+1) since there is an edge
(x,2441) in t;y with A(z) = ¢. Let y,z € V; such that A\(y) = a and \(z) = b
with (z,y) € E. Then y < x;;; and therefore z < 0.(x;11) by the second
requirement on Y-dags. Hence pos?(a) < pos¥(a). Since 0.(z;4+1) € Vi, we also
get pos¥(a) € A !(c) N V; = domw,.. By the very definition of p., we have
w, o pos¥(a) = r o pos¥(a) = r0:(xit1) = Pe, 1. (iv) holds. Thus we showed
state(r;) — state(r;11) and therefore the implication (1) — (2).

(2) — (1): When we defined the concept of a depth-1-state, we showed that
they are of the form state(r) for some run r of A. Hence the implication (2) — (1)
holds for depth-1-states and it remains to show that, given a run r, any successor
of state(r) in (S, —) is of the form state(r’) for some run r’ of the 3-ACM A. So
let t = (V, E,\) be a ¥-dag and let r : V' — @ be a run of A on ¢. Furthermore,
let state(r) = (Vg, posY)aex — (Wq, POSY)gex- Then there exist a € &, 0 # J C X,
Py € Qp for b € J and ¢ € Q, such that (i)-(iv) hold. Define V' := V U {z}
and let A := AU {(z,a)}. The set of edges E’ will consist of all edges from F
and some edges of the form (z,z) with © € V. According to the definition of a
run, we should have additional edges with A(z) € J only and, conversely, for any
¢ € J there has to be a new edge (z, z) with A(z) = c. Furthermore, the state at
the source of this new edge should equal p.. By (iv), pos¥(a) € dom v, = A7!(c).

CHAPTER 3. DECIDABILITY RESULTS 38

Hence pos?(a) belongs to V' and is labeled by c. Now we define
E':= EU{(pos¥(a),z) | c € J}.

Then (V', E’) is a dag since the only new edges have a common target z. We show
that ¢' = (V', E', X') is a weak ©-dag: Since J # (), there is an edge whose target
is z, i.e. z is not minimal in (V’, (E')*). In other words min(¢) = min(#'). Since
t is a Y-dag, this implies that the minimal nodes of ¢’ carry mutually different
labels as required by the first axiom for weak ¥-dags. Now let (z,y), (¢/,y') € £
with A(z) = A(2') and A(y) = A(y). We have to show x = 2’ <= y =¢'. Since
t is a ¥-dag, this holds if (z,y), (2',y’) € E. So assume (z,y) € E'\ E, i.e.y =z
and z = pos?(a) for some c € J. If x = 2', we get 2’ = x = pos¥(a) > pos!(a)
by (iv) since ¢ € J. Thus, 2’ > sup{Z € A7!(c) | Iy € A"Y(a) : (7,7) € E}.
Hence (2',y') ¢ E and therefore ¢y’ = z = y. Conversely assume y = y’. Then
T = posy,(a) = posy,. (a) = 2. Thus, ¢' is indeed a weak ¥-dag.

Now let ' := rU{(z,¢)}. For x € V, this mapping satisfies the run condition
of A relative to t and therefore relative to ¢'. Since the edges in t' with target z
are of the form (pos¥(a),z) with ¢ € J, we have R(z) = J and 0.(z) = pos¥(a)
for ¢ € J. Hence, by (iv), 70.(z) = p. for ¢ € J. Since q¢ € 0, ((pc)ces), the
mapping '’ satisfies the run condition at z relative to t’, too. Recall that A is the
direct product of A" and A(f). Hence m, o r' satisfies the run condition of A(f)
at any node x € V' relative to the weak ¥-dag t'. Hence, by Lemma 3.3.2 (2),
the set (X')~!(b) is a chain w.r.t. (E')* for any b € . To show that ' is a ¥-dag,
it remains to prove the second condition, i.e. that for any (z,y), (2/,y’) € E’ with
A(z) = A(z') and A(y) = A(y') we have

(z,2) € (B')" = (y,) € (E')".

Since t is a Y-dag, this equivalence holds if (z,y), (z',y') € E.

So assume (2/,y’) € E'\ E. Then 3y’ = z. Since A(y) = A(v’), the nodes y
and y' = z are ordered w.r.t. (E')*. Since z = y' is maximal in ¢’ w.r.t. (E')*,
this implies (y,y') € (E')*. We show (z,2') € (E')*: If (z,y) &€ E, we are
done since then y = 3y’ and therefore x = 2’. So assume (x,y) € E. Since
(',y") € E"\ E, there exists ¢ € J with 2’ = pos¥(a). Hence 2’ > posl(a)
by (iv). But posi(a) = sup{Z € A7'(c) | Iy € A"'(a) : (z,y) € E} and the
node zx is contained in this set. Hence, indeed z’ > = w.r.t. the linaer order on
the natural numbers. Since 2’ and z carry the same label, they are comparable
w.r.t. E*. Hence (z,2') € E*. Thus, we showed the required equivalence in case
(«',y') € E"\ E.

Now assume (z,y) € E'\ E and therefore y = 2. First, let (z,2') € (E')*
and therefore < z’. Since x = pos¥(a) for some ¢ € J, we obtain x > 2’ as
above. Hence x = 2/ and, since t' is a weak Y-dag, v = . Thus, we showed
(v,y) € (E')*. Now assume (y,y’) € (E')*. Since (z,y) € E'\ E, we obtain

CHAPTER 3. DECIDABILITY RESULTS 39

similarly to above, (y',y) € (E')*, i.e. y = y'. Since t' is a weak ¥-dag, this
implies x = x'.

Thus, t' is indeed a ¥-dag. Hence 7’ is a run of the X-ACM A on the X-dag t'.
It is an easy exercise to show state(r’) = (w,, pos¥).ex proving the implication
(2) — (1). O

Recall that we wanted to apply Theorem 3.2.4 to decide whether L(.A) is
empty, i.e., eventually, the emptiness question shall be reduced to the question
whether some particular state (w., pos?).cx can be dominated by a state reach-
able from some state (v, pos?).cx. The results so far point in the direction that
(ve, post)ces will be a depth-1-state. Next we define which state (v, pos?)ces will
be considered. They, of course, have to be related to the set of accepting global
states of the X-ACM A:

Let A" = ((Q4, E4)aex, (65 s)aes ycs, F') be a B-ACM and f : ¥ — X. De-

al) —a

fine A = A" x A(f) and let A = ((Qa, Ca)acs (0a,7)aexn,scx, F). Furthermore,
let B. be a finite basis of the set of local states). of the product automaton
A=A x A(f) for c € . Now let J C ¥ and let g. be some local state from the
product automaton for ¢ € J. We define States((g.).cs) to consist of all states

(We, pos?)cex from S(A) such that for all ¢ € X:

lw| < 138], (w,=¢ <= c¢ J), and w, € Bq, for c € J.

Note that due to the restrictions |w. < |X| and w, € B}q. U {¢}, the set
States((¢c)ces) is finite. Since, in addition, the set F' of accepting states of
A" x A(f) is finite, we even have that |J . States(g) is finite. The following
lemma states that L(A" x A(f)) is not empty iff some state of this finite set
Uger States(q) is dominated by a state in S(A’ x A(f)) that is reachable from a
depth-1-state.

Lemma 3.3.4 Let A be a X-ACM, f: £ — ¥ and A = A'<A(f). Furthermore,
let S(A) = (S, —,=). Then the following are equivalent:

1. A accepts some Y-dag, i.e. L(A) = L(A") N L(A(f)) # 0.

2. There exist an accepting state (qq)acs of A, a depth-1-state (v, pos?)ees
from S, a state (wq, pos?)ees. € States((¢a)acs) and a state (wh, pos)aes
in S such that (v, pos?)eex —* (wl, pos®)aes = (Wa, POSY)aes.

Proof. Let t = (V,E,\) € L(A). Then there exists a successful run r of A
on t. By Lemma 3.3.3, state(r) = (w!, pos?)aeyx. is reachable from some depth-
1-state (v, pos?)uex. Since r is successful, there is (¢c)eervy € F such that
wh(supdomw’) = r(sup A *(c)) . q. for c € A(V) =: J.

For a € ¥, define a word w, € Bq, U {¢} as follows: Let domw, :=

a

(im pos?’ U{sup domw’}) \ {0}. If domw, # 0, let w,(max domw,) := ¢,. For

CHAPTER 3. DECIDABILITY RESULTS 40

1 < i < maxdomw), choose w,(i) € B, with w,(i) C, w/(i). Furthermore, let
pos? = pos?’. Then (wg, post)acy < (w!, pos? ey witnessed by the identity
mapping from domw, U {0} to domw! U {0}. By the very construction it can
easily be checked that (we, posy)ces: € States((gc)ces) € Uy States(q).
Conversely, let (g,)acs € F be an accepting state of A. Furthermore, let
(Wa, POSY) aex € States((¢a)acs) and suppose (L posY aes —* (wh, post Vaes =
(wa, post)aeg for some depth-1-state (v, pos?),ex. We assume furthermore that
(W, pos Vaex = (W, POSY)gex is witnessed by the embeddings 7, : w, < w’. By
Lemma 3.3.3, there exists a ¥-dag ¢t = (V, E, A\) and a run r of A on ¢ such that
(w!, pos?)aex = state(r). Since w!, is the empty word iff w, is empty, we obtain
AV)={aeX|w,#c}={a€X|w, #c}. ForaeX with w, # ¢, ie. for
a € A(V), we have w! (supdomw/) J, w,(supdomw,) = ¢g,. Hence the run r is
successful. O

Summarizing the results of this section, finally we show that the emptiness of
effective and monotone ¥-ACMs is uniformly decidable:

Theorem 3.3.5 There exists an algorithm that solves the following decision
problem:
input: 7. an alphabet X3,

2. a basis algorithm of an effective and monotone X-ACM A,

3. the set of final states F' of A’,

4. a finite basis of (Q.,C.), and an algorithm to decide C. for c € X.
output: Is L(A") empty?

Proof. We may assume that there is a € ¥ such that d,9 = {L} and 6.9 =0
for ¢ # a. Then there is only one depth-1-state (v, pos?)cex.-

By Lemma 3.3.2 (1), it holds L(A") = J;cxs L(A’ x A(f)). Hence it suffices
to decide the emptiness of L(A" x A(f)) for f: ¥ — X. So let A= A" x A(f).
Note that this ¥-ACM if monotone and effective, that we have access to a basis
algorithm for this ACM, that we know a finite basis for the sets of local states
and that we can decide the wqos of local states for any ¢ € ¥.. Now let S(A) =
(S, —, =X) be the associated transition system. By Theorem 3.2.4, it is a WSTS.
It is clear that < is decidable using the algorithms that decide the wqos of local
states in \A. By Lemma 3.2.8, from a state (w,, pos¥).ex € S, a finite basis of the
set Pred(1(wa, pos?).ex) can be computed effectively. Hence, by Theorem 3.2.2
the set of states that are dominated by a state reachable from (v,, pos?)geys is
recursive. Since |J . States(q) is finite, the result follows from Lemma 3.3.4. [J

A consequence of Theorem 3.3.5 is that for any monotone and effective X-
ACM A the membership in L(.A) is decidable:

CHAPTER 3. DECIDABILITY RESULTS 41

Corollary 3.3.6 Let A be a monotone and effective 3-ACM. Then the set L(.A)
18 Tecursive.

Proof. Let ¢t € D be some Y-dag. Then one can easily construct a 3-ACA A,
with L(A;) = {t}. Hence L(A x A;) is empty iff t ¢ L(A). Since the emptiness
of L(A x A;) is decidable, so is the question “t € L(.A)?”. O

Unfortunately, Theorem 3.3.5 keeps the promise made by the title of this
section only partially since we have to impose additional requirements on the
¥-ACMs:

e Of course, one cannot expect that the emptiness for arbitrary ¥-ACMs is
decidable. There is even a formal reason: In general, a 3-ACM is an infinite
object that has to be given in some finite form. Hence some effectiveness
requirement is necessary.

e On the other hand, the monotonicity originates only in our proof using
well structured transition systems. These transition systems clearly require
some monotonicity but it is not clear whether this is really needed for the
result on asynchronous cellular machines.

Recall that by Example 2.1.3 the set of Hasse-diagrams of all pomsets without
autoconcurrency over an alphabet ¥ can be accepted by some ¥-ACM. One can
check that the ACM we gave is not monotone. Unfortunately, we were not able to
construct a monotone ¥-ACM accepting all Hasse-diagrams nor did we succeed
in showing that such a ¥-ACM does not exist. If we were able to accept all
Hasse-diagrams by a monotone and effective ¥-ACM, the question “Is L(.A) NHa
empty?” would be decidable for monotone and effective ACMs A.

An asynchronous cellular automaton over ¥ is a X-ACM where the sets of
local states Q. are finite for ¢ € . Hence the identity relations on @), for ¢ € &
are well quasi orders. Thus, the set of -ACAs A with L(A) # 0 is recursive. It is
easily seen that a deterministic ACA can effectively be complemented. Similarly,
one can effectively construct a deterministic ACA that accepts the intersection
of two languages accepted by deterministic ACAs. Hence, as a consequence of
the theorem above, the equivalence of deterministic ¥-ACAs is decidable. The
following chapter shows that this is not the case for nondeterministic ¥-ACAs.

