Chapter 4

The undecidability results

The result of the preceding chapter shows that one can automatically check
whether a property of ¥-dags described by a 3-ACM is contradictory. Another
natural question is whether two properties are equivalent, i.e. whether two -
ACMs accept the same language. Since there is a 3-ACM that accepts all ¥-dags,
a special case of this equivalence problem is to ask whether a given ¥-ACM ac-
cepts all X-dags. This latter question, called universality, essentially asks whether
the described property is always satisfied.

The corresponding question for finite sequential automata has a positive an-
swer which is a consequence of the decidability of the emptiness: If one wants
to know whether a sequential automaton accepts all words, one constructs the
complementary automaton and checks whether its language is empty. Thus,
the crucial point for sequential automata is that they can effectively be comple-
mented. But Example 2.1.6 shows that the set of acceptable Y-dag-languages is
not closed under complementation. Therefore, Theorem 3.3.5 does not imply that
the universality of an ¥-ACM is decidable. On the contrary, we show that the
universality is undecidable even for ¥-ACAs. This implies that the equivalence
of two 3-ACAs, the complementability and the determinisability of a ¥-ACA are
undecidable, too. This result was announced in [Kus98] for Hasse-diagrams to-
gether with the sketch of a proof. This original proof idea used the undecidability
of the Halting Problem. Differently, our proof here is based on the undecidability
of the Tiling Problem. This change, as well as the formulation and proof of Lem-
mas 4.1.4 and 4.1.5 were obtained in collaboration with Paul Gastin. Throughout
this section, let ¥ = {a, b} if not stated otherwise.

Let € be a finite set of colors with white € €. A mapping 7 : {W,N,E,S} — €
is called a tile. Since the elements W, N etc. stand for the cardinal points, a tile
can be visualized as follows:
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Now let T be a set of tiles and k,¢ € N*. A mapping T : [k] x [{] = T is a
tiling of the grid [k] x [¢] provided for any (7, ) € [k] x [¢] we have

white ifi=1

1. f(,5)(W) =

f0,3)(W) {f(z —1,7)(E) otherwise

. white ifj=1

2. f(i,7)(S) =

f5,3)(8) {f(z’,j —1)(N) otherwise

Note that then f(i,7)(E) = f(i+1,j)(W) for i < k, and similarly f(i, j)(N) =
f(,7 +1)(S) for j < £. An infinite tiling is a mapping f : Nt x Nt — T such
that for any k£ € Nt the restriction of f to [k] x [k] is a tiling. It is known that
for a set T of tiles the existence of an infinite tiling is undecidable [Ber66].

A set of grids is unbounded if, for any k,¢ € Nt it contains a grid [k'] x [¢]
with £ < k" and ¢ < /'

Lemma 4.1.1 Let T be a set of tiles for the finite set of colors €. Then T allows
an infinite tiling iff the set of grids that allow a tiling is unbounded.

Proof. Let f: Nt x Nt — 7 be an infinite tiling. Then, for k,¢ € Nt let
k' = max(k, (). By definition, the restriction of f to [k'] x [k] is a tiling. Thus,
the set of tilable grids is unbounded.

For the converse let 7" denote the set of all tilings of squares [k] x [k] for some
k € Nt ordered by inclusion. Then this is a tree. Any node of the tree has finitely
many upper neighbors. Since the set of all tilable grids is unbounded, all squares
can be tiled. Hence T is infinite. By Konig’s Lemma, it has an infinite branch
(fi)ien+- Then f = J;cy+ fi is an infinite tiling. O

To encode the tiling problem into our setting of -dags, we will consider the
(k, 0)-grids [k] x [¢] with k,¢ € Nt and the edge relation

E = {((Zaj)a(27]+1))

{((,5), (i +1,5))

Let < be the reflexive and transitive closure of E’. Then the partial orders
([k] x [€], <) contain antichains of size min(k, ¢). Hence they do not fit into our

[1<i<k1<
[ 1<i<k,
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setting of ¥-dags where the size of antichains is restricted to n. Therefore, we
define

((,4), (@,5") € Eiff ((i,5), (i',5')) € E'or j+2=7,i=¢ and i = 1.

(see Figure 4.1). The X-dag ([k] x [€], E, A) is the folding of the grid [k] x [{] or
a folded grid. Let < denote the transitive and reflexive closure of E. Then the
partially ordered set ([k] x [¢], <) contains antichains of size 2, only, and F is the
covering relation of <. Furthermore, the chains {(i,25+ 1) | i € [k],2j +1 € [{]}
and {(7,27) | i € [k],25 € [¢]} form a partition of the partial order ([k] x [¢],=<).
We label the elements (7,25 + 1) of the first chain by a. Similarly, the elements
(1,27) of the second chain are labeled by b. Thus, two elements get the same label
iff their second components have the same parity. Note that in the folded grid
all vertices except (1,1) have a lower neighbor labeled by a, and that all vertices
(7,7) with j > 1 have a lower neighbor labeled by b. Hence for 1 < ¢ < k and
1 < j < /it holds

0 fori=7=1
R(,j)={{a} forl<i<kj=1lor(ij)=(12
{a,b}  otherwise.

Furthermore, we have

undefined fori=7j=1
(1—1,7) forl1<i<k,jodd

a(l .7 . =
(3, 4) (k,j—2) fori=1,1<j<¢odd
(1,7 —1)  for j even, and
undefined for j =1 or (4,7) = (1,2)
. 1—1,7 for1 <i<k,jeven
ab@aj) = ( ]) g

(k,j—2) fori=1,1<j</{even
(i,7j—1)  for j > 2 odd.
Let G comprise the set of all folded grids, i.e. we define G C D by

G ={([k] x [(], E,\) | k, £ € N"}.

Next, from a set of tiles T, we construct a X-ACA A7 that recognizes among
all folded grids those that allow a tiling. This automaton guesses a tile for any
vertex and checks that it is a tiling. This would be fairly easy if the X-ACA run
on a grid, but it has to run on a folded grid. Hence, on the folded grid, it has
to find out which edges belong to the original grid and which edges are new. In
other words, it has to distinguish between nodes of the form (1, j) and those of
the form (7, ) with 1 <.
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Figure 4.1: The folded grid ([6] x [5], E)

So let € be a finite set of colors and T a set of tiles. Then the ACA Ar is
given by Q, = Qy =T x {0,1} and

bap = {9€T[g(W

6@,{a}<<Qa73a)) = {g €T | g(W

- W) = white, g(S)
00,2((ges Sc)eex) = {{g €Ty = ¢a(E), g(S)
)
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All tuples of local states are accepting. Now let ¢ = (V, E, \) be a folded
grid with V' = [k] x [¢] and let f be a tiling of this grid. We define a mapping

r:[k] x [(] = T by
. £, 5),1) ifi=1
(i) = SO
(f(5,5),0) ifi>1
and show that it is a successful run of A7: Since f is a tiling of [k] x [{], we get

F(1L,1)(W) = f(1,1)(S) = white. Hence r(1,1) = (f(1,1),1) € 649 = Or(1,1),R(1,1)-
Now let 1 < i < ¢. Since f is a tiling, we have f(i,1)(W) = f(i — 1,1)(E)
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and f(i,1)(S) = white. Hence r(i,1) = (f(4,1),0) € daa3((f(z — 1,1),5,))
for any s, € {0,1}. Note that A(i,1) = a and R(7,1) = {a} Furthermore,
04((4,1)) = (i — 1,1). Hence we get r(i,1) € dxi1),r(i,1)(70.((4,1))), i.e. the run
condition of Ay is satisfied at all nodes of the form ( 1) with i € [k].

Next consider a vertex (1,j) with 1 < j < k odd. Then r(1,j — 1) equals
(f(1,7—1),1). Since f is a tiling, we obtain f(1,7)(W) = white and f(1,7)(S) =
f(1,7 —1)(N). Hence

r(1,7) = (f(1,7),1) € bas(r(k,j —2),r(L,j —1)).

Since j > 2 is odd, A(1,7j) = a and R(1,j) = ¥. From 3 < j we get (k,j — 2) =
0a((1,7)) and (1,7 — 1) = ,((1,7)). Thus, we showed

r(1,5) € xR (r8a((1, 7)), 786((1, 5)))-

For j even we can argue similarly. Hence we showed that the run condition of
A7 is satisfied at all nodes of the form (7,1) or (1,7) with 7 € [k] and j € [{].

It remains to consider a vertex (i,j) with 1 <7 <k and 1 < j < /. Assume
j to be even. Since i > 1, r(i,j — 1) = (f(i,j — 1),0). Since f is a tiling, we
have f(i, /)(W) = f(i — 1, 7)(E) and £(i, )(S) = £(5,j — 1)(N). Hence r(i, ) =
(f(4,7),0) € épx(r(i,j —1),r(i — 1,7)). Since j is even, A(i,j) = b. Note
that R(i,j) = X, 0,((4,5)) = (i,7 — 1) and 0,((4,7)) = (i — 1,7). Hence we
have 7(7,7) € 6xaij)ra,5)(T0.((2, 7)), 70((4,7))). Again, for j odd we can argue
similarly. Thus the mapping r is a run of the ACA A+ on t. Since any tuple is
accepting, t € L(A7). Thus we showed that A7 accepts all foldings of grids that
allow a tiling.

Conversely, let r be a successful run of Ar on the folded grid ¢t = (V, E, )
with V' = [k] x [(]. We show that f := m; or is a tiling: First observe that
moor(i,j) =1 iff (4,7) is minimal in (V, <) or (7, 7) has a lower neighbor x € V
with A(z) # A(4,7) and mp o r(z) = 1. Since (7,7 — 1) is the only possible lower
neighbor with a different label, myor(i,j) =1iff i=j=1or mor(i,j—1) = 1.
Hence by induction m o r(i,j) = 1 iff i = 1.

Since 7 is a run and A(1,1) = a, we obtain r(1,1) € da,1),0- Hence f(1,1)(W)
and f(1,1)(S) both equal white, i.e. f satisfies the conditions for a tiling at the

point (1,1).
Next let 1 < i < k. Then R(7,1) = {a}, A(i, 1) =a and 0,((i,1)) = (i —1,1).
Since r is a run, this implies 7(, j) € 64,0} (r(i — 1,1)). The definition of d4 (a}

implies f (7, 1)(W) f(i—1,1)(E) and f(i,1)(S) = Whlte since mpor(i—1,1) =
f(i—1,1). Hence f [ ([k] x [1]) is a tiling.

Now let 1 < j < ¢beodd. Then R(1,7) =%, A(1,7) = a, 0,((1,7)) = (k,j—2)
and 0,((1,7)) = (1,5 — 1). Since r is a run, this implies

r(1,7) € bux(r(k,j —2),r(1,5 —1)).
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Note that mp o7 (1,5 —1) = 1. Hence by the definition of 6, x, f(1,7)(W) = white
and f(1,5)(S) = f(1,5 — 1)(N). Since we can argue similarly for j even, the
restriction f [ ([1] x [£]) of f is a tiling.

It remains to consider the case 1 < i < k and 1 < j < ¢. Then R(i,j) = X.
Now let j be even. Then A(4,7) = b, 0,((7,7)) = (i,7—1) and 9,((7, 7)) = (i—1, j).
Since r is a run, r(i,j) € Gx(r(i,j — 1),r7(i — 1,7)). Since i > 0, we have
myor(i,j —1) = 0. Thus the definition of 0,y yields f(i,7)(W) = f(i — 1,7)(E)
and f(i,7)(S) = f(i,7 —1)(N). Again, for j odd we can argue similarly. Thus, f
is indeed a tiling of the grid [k] x [¢], i.e. we proved

Lemma 4.1.2 Let t be the folding of the grid [k]x [¢]. Thent € L(Ar) iff [k] x[(]
admits a tiling. In particular, L(A7) NG is the set of all foldings of tilable grids.

Note that A7 accepts the foldings of an unbounded set of grids iff it accepts
all folded grids. Lemma 4.1.1 and 4.1.2 imply that A+ accepts an unbounded
set of grids iff 7 admits an infinite tiling. Since the existence of an infinite tiling
is undecidable, it is undecidable whether a given 3-ACA A accepts the foldings
of an unbounded set of grids and therefore whether G C L(.A). Since G is not
recognizable (cf. Lemma 4.1.9 below), this result cannot be used immediately
to show the undecidability of the equivalence of ACAs. Nevertheless, it is a
milestone in our proof that continues by showing that D\ G is recognizable. This
will imply that for a tiling systems 7 the set of all 3-dags that are

a) no folded grid, or

b) a folded grid that can be tiled

is recognizable. But this set equals D iff the tiling system 7 allows an infinite
tiling, and the latter is undecidable. Thus, indeed, it remains to show that D\ G
is recognizable.

Recall that Ha C D is the set of Hasse-diagrams in D. It is easily seen that
(V,E,\) € D belongs to Ha iff it satisfies

(,2),(y,2) € E = (z,y) ¢ E*

for all z,y,z € V. Then G C Ha C D implies D\ G =D\ HaUHa\ G.

By Example 2.1.3, the set of Hasse-diagrams can be accepted by a ¥-ACM.
Next, we prove that the complement of this set can be accepted using only finitely
many states, i.e. by a ¥-ACA:

Lemma 4.1.3 There exists a X-ACA Agaeo with L(Apgae) = D\ Ha.

Proof. We present an automaton 4, that recognizes all ¥-dags (V, E, \) satis-
fying
there are an a-labeled vertex x and vertices y and z with
(x,2),(y,2) € E and (z,y) € E™. (*)
Let A, be the analogous automaton that accepts all ¥-dags satisfying the above
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condition where x is supposed to carry the label b. Then D\ Ha = L(A,)UL(A)
is recognizable.

To construct A,, let Q, = @ = {0,1,2,3}. Then, the transition functions
are defined as follows:

({0,1} if {g; [ j € J} S {0}
(3} if3e{qljed}
{23y if{g;[7eJ}={1,2}
{2} otherwise, and

({0} if{g[je {0}
{3t if3e{glied}
{2,3} if{g;|jeJ}={1,2}
{2} otherwise.

00,0 ((¢5)jes) = 1

ov,7((45)jer) = 4

A tuple of states is accepting, i.e. belongs to F', if it contains the local state 3.

Let t = (V,E,\) € D satisfy (x). Then there are x,y,z with A\(z) = a,
(x,2),(y,2) € E and (z,y) € ET. Define a mapping (cf. Figure 4.2) r : V — @
by

0 ifegw

1 ifv=
r) =4, "

3 ifz<w

2  otherwise.

In Figure 4.2, this mapping is depicted. There, solid vectors correspond to edges
from E, the dotted vector connecting x and y denotes that (z,y) € E*. Further-
more, the dashed lines indicate the borders between e.g. 7=(0) and r~'(2), the
values taken by 7 in an area is written there. Note that the small triangle around
x depicts 771(1) and contains x only.

We have to show r(v) € dxw),r()((705(V))ser(v)) (**) for any v € V: Note that
r~1(3) is a principal filter. Each nonminimal element of this filter reads a state 3,
i.e. these elements satisfy (%x). Since (z, z), (y,2) € F and z and y are different,
they carry different labels. Hence A(x) = a implies A\(y) = b. Thus we have
R(z) =3, r0,(2) = 1 and r0y(z) = 2. Hence (xx) holds for the minimal element
z of this principal filter, too. The set 7='(2) = {v € V | z < v,z £ v} is convex.
Note that 2 € 8..7((qa)acs) iff 3¢ {qa | d € J} € {0}. Now let v € r~'(2). Since
z%4v,3¢&{rd.(v)|ceR(v)}. If vis nonminimal in r1(2), it satisfies (%*) since
it reads the state 2. The minimal elements read the state at the vertex x which
equals 1. Hence they satisfy (»x), too. Note that {d.(z) | ¢ € R(z)} C r—1(0).
Hence z satisfies (x). Since, finally, 7~*(0) is an order ideal, (xx) holds for its
elements, too. Thus, r is a successful run of A,.

Conversely, let r be a successful run of A, on a ¥-dag t = (V, E,\). For
simplicity, let <:= E* denote the partial order induced by the edge relation E.
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Figure 4.2: cf. Proof of Lemma 4.1.3

Then r—1(3) is a filter, i.e. an upward closed subset of V' with respect to <. Since
the run is successful, this filter is not empty. Note that an element of r—1(3) is
minimal in this filter iff it reads a state 1 and a state 2. Since the filter in question
is not empty, it contains a minimal element z and there are elements x,y € V
with (z,2),(y,2) € E, r(z) =1 and r(y) = 2. Whenever a vertex v carries the
state 2, it reads the state 1 or the state 2. Hence, by induction, we find 2’ € V
with (2',y) € Et and r(2’) = 1. Since r(z) = r(z') = 1, they both carry the label
a implying that they are comparable. Furthermore, {rd.(z) | ¢ € R(x)} C {0}
and {rd.(z") | c € R(z')} C {0}. Since, as is easy to see, 7~ 1(0) is an order ideal
(i.e. downword closed), this implies © = a’. Hence (x,y) € ET, i.e. all X-dags
accepted by A, satisfy the condition (x). O

Before showing that Ha\ G is recognizable relative to Ha, we need an internal
characterization of those Hasse-diagrams that are folded grids. This characteriza-
tion is based on the notion of an alternating covering chain: Let a Hasse-diagram
t =(V,—<,\) € Ha and a set C C V be given. The set C is called alternating
covering chain if it is a chain (with respect to <:=—<*) such that

1. for all y € C with y # min(C), there exists x € C' with z —< y and
A(z) # Aly), and

2. for all y € C with y # max(C), there exists z € C with y —< z and
Ay) # Az).

Since we consider only Hasse-diagrams of width 2, it is easy to see that for any
x € V there exists a unique maximal alternating covering chain C with x € C.
This chain is denoted by C(z).
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Lemma 4.1.4 Lett = (V,—<, \) € Ha be a Hasse-diagram. Then t € G if and
only if

(1) for anyx € V, the element min C(z) does not dominate any b-labeled vertez,
and

(2) for any x,y € V with v —< y such that y does not dominate any b-labeled
element, we have (A) Vz' € C(x)3y € Cly) : 2" —< ¢/
(B) Yy € C(y)3z' € C(z) : 2" —< ¢.

Proof. First, let k,¢ € N* and define K; = {i} x [{] for 1 < ¢ < k. Then,
in the folded grid ([k] x [¢], E), K; is a chain. Since ((4,7),(i,j + 1)) € E and
A(i,j) = a iff j is odd, it is even an alternating covering chain. We show that
it is maximal: Let * —< min(K;) = (4,1). Then x = (i — 1,1) and therefore
AMz) = a = Ai,1). Hence K; cannot be extended downwards. Similarly, let
y € [k] x [¢] with (i,¢) = max K; —< y. Then y = (i 4+ 1, ¢) and therefore carries
the same label as (i, ¢). Hence K; is indeed a maximal alternating covering chain.
Hence, for (i,7) € [k] x [¢], C(i,j) = K;. Now it is routine to check properties
(1) and (2) (cf. Figure 4.1).

Conversely, suppose t = (V, —<, \) satisfies the conditions (1) and (2) and
let < denote the transitive and reflexive closure of —<. By (1), A(min C(x)) = a
for any x € V. Now let {a;,as,...,ax} = {minC(z) | x € V}. Since each q;
is labeled by a, this set forms a chain. So let a; < ag--- < a,. Since (again by
(1)) none of the elements a; dominates a b-labeled vertex, we have even a; —<

. —< ay. For simplicity, let C; := C(a;). The tuple (C;)icpy is a partition
of V. We denote the jth element of the ith alternating covering chain C; by zrf ,
ie. C; = {a},a?,a..., 2%} with ¢; = 2} —< 27 —< 2?... —< 2%. Note that

IR Z’ Z

Az]) = a iff j is odd and that ¢; is the size of the chain C.
Claim 1 forany 1 <7 < kand any 1 < j < {; we have j < {;,; and xf —< :L'gﬂ

This is shown inductively on j. Clearly, 1 < ¢;;; since a;41 = a;z +1- We
already remarked that z} —< leﬂ Now suppose 1 < j < ¢; and o <
:rf: We can apply (2A) since x; —< z},, and 2! € C;. Hence there exists
y" € Ciy1 with 7 —< /. Since Cj;; is a chain containing xzﬂl and 7/, these
two elements are comparable. If y' < x +11, we had 277! —< 27 —< ¢/ < 2l +1,
contradicting 277" —< xfﬂl Hence xfﬂl < y'. Since they both belong to the
alternating covering chaln C;11, there exists y” € C;,1 with :cz +1 —< " <.
From z} —< :czﬂ and y" € Cj;1, we obtain by (2B) the existence of " € C;
with 2”7 —< y”. Now the elements z’ ~! and 2" are cornparable If 2" < xj 1,
we had 2" < 27" —< 2l —< ¢, contradicting 2" —< y". Hence 2" < 2",
Since x”, :Cf € C;, they are cornparable Now z7 < ac' implies xj < z”. Hence
We have x] <" —<y" <y and 2] < y. ThlS implies y' = y”. Recall that

H—l —< y” € C;;1. Hence we showed y = .%'H_l, ie. 7 </t and :c —< x],, as

claimed.
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Claim 2 Forany 1 <i < kand any 1 < 7 < ¢;,1, we have j < /; andx —<:L'Z+1

Agaln this is shown by induction on j. Clearly, 1 < ¢; since a; = :c Now
Ty —< .TL'H_l follows from Claim 1. Now suppose 1 < j < ¢; such that l —< sz
for any j' < j. Then we can apply (2B) since —< sz and $z+1 € C;. Hence
there exists 2’ € C; with 2’ —< 7, ,. Since x —< a:ZH for j' < j, we have

x # a:f for j' < j. Hence the chain C; contains at least j elements, i.e. j < {;.
Now z —< w7, , follows from Claim 1.

Note that Claim 1 in particular implies £; < £y - -+ < £, Similarly, by Claim
2,0y >y > Uy, ie. by =Lly--- =l =:( Hence g: [k] x [(] =V :(,7) —
is a bijection.

Claim 3 For 1 < i < ' < kand 1 S j <Y, xg, is the least element of Cjy
dominating 27, i.e. #J, = min{z € Cy | 2} < z}.

This is trivial for 7 = ¢'. For i +1 = 7' it is clear by Claim 1. By induction,
suppose we showed that 27, | is the least element of Cy_; that dominates x7. Let

be the least element of Cj domlnatmg a:f Since |X| = 2, this element xz., has
at most two lower neighbors, namely x 771 (if §' > 1) since it precedes © ',’ in the
alternatlng covering chain Cy, and xz, , by Claim 1. Since 2/ is not dominated
by l, Le Oy, we therefore have x, 4> xj Hence, by the 1nduct10n hypothesis,
j' > j. Since J < a:z, , —< J,, we therefore showed that 27, is the least element
in Cy dominating 7.

Now we show that the bijection g : ([k] x [¢], ) (V, —<) is order preserving:

Let (i,7), (¢, 5") € [k] x [¢] with ((¢,7), (¢',5")) € E. Then we have
a) i=14and j+1=7, or

b) i+1=14and j=j', or

¢) i=k i'=1andj+2=j.

In the first case, we get immediately xf —< xg,’ since they are consecutive
elements of the alternating covering chain C;. In the second case, Claim 1 implies
x) —< xj’ In the third case, we get g9(i,j) = ] and g(¢,5") = 2]"*. Since j
and j + 2 have the same parity, A(z;) = A(z ”2) and therefore x] and z]** are
comparable If 2 2 < 3, by Claim 3 we have xk > xfc” which is properly larger
than 7, a contradiction. Hence z; < 2% . g(i,j) < g(i',7"). Thus we showed
that g is order preserving.

Next we show that f =g *: (V —<) — ([k] x [{], E) is order preserving So
let ] x] €V with 2] <z ,’ If «} and z, J carry the same label, j and j' have
the same parity. Hence A7, j) = )\( ) This ensures that (i,7) and (7', j') are
comparable. If (¢, 5) < (4,7), we get xl, =g, j ) < g(i, j) = 2] since g is order
preserving. But this contradicts the assumption ] —< :cg,,. Hence (i,7) < (i, j'),
ie. f(z ) < f(a] 7). Now assume that z/ and 3:1',’ carry different labels. Since
T —< x, ' this implies that they belong to the same maximal alternating covering

chain, i.e. i = and j + 1 = j'. But then f(z!) = (i,§)E(i,j +1) = @), O

Z’
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This characterization of the Hasse-diagrams of folded grids enables us to show
that D \ G is recognizable by a 3-ACA:

Lemma 4.1.5 There exists a 3-ACA A such that L(A) =D\ G.

Proof. By Lemma 4.1.3, there exists a X-ACA Agyeo with L(Agaeo) =D \ Ha.
From G C Ha C D, we get D\ G = D\ HaUHa\ G. Hence it suffices to construct
a X-ACA A with L(A) NHa=Ha\ G.

As a prerequisite, we give an ACA A! that marks all vertices which dominate
a b-labeled vertex: Let QX = @} = {0,1} where 0 stands for “does not dominate
any b-labeled vertex”. The transition functions are defined by d; ;((¢c)ces) = {1}

and
1} ifle{g|ceJ}
o c)ecs) = ¢
a,J((q )ees) {{0} otherwise

for any J C ¥ and ¢, € Q.. Then, obviously, for any run r of A' on a Hasse-
diagram t = (V, —<, \), we have r(z) = 0iff b & {\(y) | y < z} as claimed.
Next we prove that the set of Hasse-diagrams violating Lemma 4.1.4(1) can
be accepted by a £-ACA relative to Ha: Note that Lemma 4.1.4(1) is violated iff
there exists an a-labeled vertex x that dominates, but does not cover any b-labeled
vertex. To find such a vertex, we enrich the automaton A' by a second component
that propagates the information whether a transition of the form 0, (.3 (1) has
been applied. If the run of this enriched automaton uses such a transition, it
accepts, otherwise, it rejects. Note that the application of the transition dq (q}(1)
at a vertex x denotes that x is a-labeled, does not cover any b-labeled vertex, and
dominates such a vertex according to the definition of A'. Hence the enriched
automaton A1y accepts precisely those ¥-pomsets that violate Lemma 4.1.4(1).

It remains to prove that the negation of statement (2) of Lemma 4.1.4 can
be recognized. First, we show how to guess the element = and to mark the chain
C(z): Let Q" = {0,1,2} where 2 stands for “belongs to C(x)”, 1 for “does not
belong to C'(z), but dominates an element of C'(x)”, and 0 for “does not dominate
any element from C(z) . The transition functions of the automaton A" are given
by

{2} itbe J gy=2
0. ((ge)ees) = { {1} ifae Jg,>0o0rbe Jg=1
{0,2} otherwise

{2} faedg=2
0p.7((@c)ecs) = {1} ifbeJg>00rae g =1
{0} otherwise.

Let  be a run of this automaton on the Hasse-diagram ¢t = (V, —<, \). If x € V
with 7(z) > 0 then, either x covers some y with r(y) > 0, or A(z) = a. Hence the
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set of all vertices x with r(z) > 0 (if not empty) is a principal filter (with respect
to the partial order < induced by —<) whose minimal element is labeled by a.
In this principal filter, r(x) = 2 holds iff 2 covers some y with different label and
r(y) = 2, or x is the minimal element of the principal filter. Hence, the set of all
x € V with r(z) = 2 forms an alternating covering chain whose least element is
labeled by a. Using the automaton A!, it is easily possible to ensure that this
minimal element does not dominate any b-labeled vertex. Thus, we can construct
a ¥-ACA A% = ((Q2,Q3), (02 5,03 y)scs, F?) and subsets S*,.5Y C Q2 U Q3 such
that for any successful run r on a Hasse-diagram ¢t = (V, —<, A), we have

(a) r~1(S*) and r~1(S”) form nonempty alternating covering chains with min-
imal elements x and y,

(b) z and y do not dominate any b-labeled vertex, and
(c) x —< y.

Note that t = (V, —<, A) violates Lemma 4.1.4(2B) iff there exists a successful
run r of the ACA A% on ¢ and an element y' € V with r(y') € S¥ that does not
cover any =’ € V with r(z') € S*. Since this can easily be checked, we are
therefore able to construct a ¥-ACA A p) such that L(Aﬁ(QB)) N Ha is the set
of all Hasse-diagrams t that violate Lemma 4.1.4(2B).

To check the negation of Lemma 4.1.4(2A), we again use the automaton 4>
that marks nondeterministically two alternating covering chains C(x) and C(y).
This automaton will be enriched by the ability to mark some vertices from C(x)
and check that they are not covered by any element from C(y). More formally,
let @® = @Q* x {0,1}. For z € {a,b}, the transition function is given by

3 (62 ;((qe)ees) \ SY) x {0,1}  ifFc€ J: (g € S*As.=1)
5z,J<(QCaSC)ceJ) = { 9 .
67 7((ge)ces) x {0,1} otherwise.

Let r be a successful run of A® on a Hasse-diagram ¢ = (V,—<,\). Then
C(x) = v (5% x {0,1}) and C(y) = r~*(S¥ x {0,1}) are alternating covering
chains. Now suppose there is some 2’ € V with r(z) € S* x {1}. Then, according
to the definition of the transition function 0, s, there isno 3y’ € C(y) with 2’ —< ¢/
(since otherwise r(y') & SY¥ x {0,1}, a contradiction). Hence, in this case, (2A)
does not hold. Since the existence of a vertex x with r(z) € S* x {1} is easily
checked, we can construct a 3-ACA A4 such that L(A-24)) N Ha is the set
of all Hasse-diagrams ¢ that violate condition Lemma 4.1.4(2A).

Combining the automata A1), A-2p) and A-24), we get a X-ACA A’ such
that L(A')NHa is the set of all Hasse-diagrams ¢ that violate condition (1) or (2).
Using Lemma 4.1.3 and Lemma 4.1.4, one gets a ¥-ACA A with L(A) = D\ G.OI
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Putting the results obtained so far together, we find a 3-ACA that accepts
all folded grids that allow a tiling as well as all ¥-dags that are no folded grid:

Lemma 4.1.6 Let T be a set of tiles. Then there exists a ©-ACA A(T) such
that L(A(T)) is the set of all ¥2-dags that are no folded grid or a folding of a grid
that allows a tiling by T .

Proof. By Lemma 4.1.5, there exists a 3-ACA A’ with L(A') = D\ G. By
Lemma 4.1.2, L(A7) N G is the set of all foldings of tilable grids. Let A(T)
denote the disjoint union of A’ and A7. Then A(7) has the desired property. O

As outline on page 47, the existence of the X-ACA A(T) implies the unde-
cidability of the universality problem for 3-ACAs:

Theorem 4.1.7 Let X be an alphabet with at least two letters. Then there is no
algorithm that on input of a X-ACA A decides whether it accepts all X-dags, i.e.
whether L(A) = D.

Proof. It is clearly sufficient to consider the case ¥ = {a,b}. Let € be a finite
set of colors and 7 be a set of tiles. By Lemma 4.1.6, A(7) accepts all X-dags iff
all grids allow a tiling. But this is equivalent to the existence of an infinite tiling
which is undecidable. g

Since there is a X-ACA that accepts all ¥-dags, we get as an immediate

Corollary 4.1.8 Let X be an alphabet with at least two letters. Then the equiv-
alence of X-ACAs, i.e. the question whether L(A;) = L(A3), is undecidable.

By Corollary 4.1.8, the equivalence of two ¥-ACAs is undecidable. Rice’s
Theorem implies that for any Turing machine M, the set of equivalent Turing
machines is not recursive. This does not hold for ¥-ACAs in general: Let L C D
be finite. Then the set of ¥-ACAs A with L(A) = L is recursive: Let n :=
max{|V| | (V,E,\) € L}. Then, given a ¥-ACA A, one can first check whether
LA N{(V,E,\) € D | |V| <n} = L since the set {(V,E,\) € D | |V]| < n}
is finite and L(.A) is recursive. In addition, one can easily construct from A a
Y-ACA A’ such that L(A") = L(A)\{(V, E,A) € D | |[V| < n} (the X-ACA A’
has to count the vertices up to n and accepts only if A accepts and there are at
least .+ 1 nodes). Now, by Theorem 3.3.5, it can be checked whether L(A") = (),
i.e. whether L(A) = L.

It is not clear whether there are other sets L C ID such that the question
whether L(A) = L can be decided.
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By Example 2.1.6, there are X-ACAs that cannot be complemented. Hence,
they are not equivalent to a deterministic one. Our next goal is to show that it
is even undecidable whether a given ACA can be complemented or is equivalent
to a determinstic ACA (Theorem 4.1.10).

Lemma 4.1.9 Let M C G be such that for any i € N* there exist k,¢ € NT
with i < k and 1 < € such that ([i] x [{],E,\) € M. Let A be a ¥-ACA with
M C L(A). Then L(A) Z G.

Proof. Let k> |Qy| + 3 and 1 < ¢ such that ([k] x [¢], E,\) € M. Then k — 3
is at least the number of states of the second process of A. Since A accepts
all elements of M, there is a successful run r of A on ([k] x [¢], E, A). Since k is
sufficiently large, there exist m,n with 1 < m < n < k such that r(m, ¢) = r(n, ).

Now delete all vertices (m/,¢) in [k] x [¢] with m < m' < n, i.e. define P to
be the set [k] x [¢] \ {(m',£) | m < m' < n}. Furthermore, let E' := (E N P?) U
{((m,£), (n+1,¢))}. Then one can easily check that (P, E’, A\ [ P) is a ¥-dag that
does not belong to G. We show that the restriction of the run r to P is a successful
run of A on (P, E', \): Note that the node (n+1,¢) is the only one from P whose
set of lower neighbors in ([k] x [¢], E, A) (where it equals {(n, ), (n + 1, —1)})
and in (P, E'; X | P) (where it equals {(m, (), (n + 1,¢ — 1)}) differ. But since
r(m, ) = r(n, (), this does not influence the run condition. Hence (P, E', A | P)
is accepted by A, i.e. L(A) € G. O

Theorem 4.1.10 Let X be an alphabet with at least two letters. Then there is
no algorithm that on input of a X-ACA A decides any of the following questions:
1. IsD\ L(A) recognizable?
2. Is A equivalent with some deterministic X-ACA?

Proof. Again, it is sufficient to consider the case ¥ = {a,b}. Let T be a finite
set of tiles and let A(7) be the ¥-ACA from Lemma 4.1.6, i.e. A(T) accepts a
Y-dag t = (V, E, \) iff

a) tis no folded grid, or

b) tis a folded grid that allows a tiling by 7.
Then L := D\ L(A(T)) is the set of all folded grids that do not allow a tiling
by 7. We show that L is recognizable iff 7 allows an infinite tiling:

If 7 allows an infinite tiling, L is empty and therefore trivially recognizable.
Conversely, let A be a 3-ACA that recognizes L. By contradiction, suppose that
T does not allow an infinite tiling. Then, by Lemma 4.1.1, the set of tilable grids
is not unbounded, i.e. there exist k,¢ € N* such that for any k&' > k and ¢’ > ¢
the grid [k'] x [¢'] cannot be tiled. Thus, any folding of a grid [k'] x [¢] with
k" > k belongs to L. Let M := {[k'] x [¢] | k' > k}. Then this set satisfies the
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condition of Lemma 4.1.9 and M C L = L(A). Hence L(A) Z G, contradicting
L(A)=LCG.

This finishes the proof of the first statement since the existence of an infinite
tiling and therefore the recognizability of D\ L(A(T)) is undecidable.

Along the same line we can prove the second statement: If A(T) is equivalent
with a deterministic 3-ACA, D\ L(A(T)) is recognizable since any deterministic
Y-ACA can be complemented. Hence D\ L(A(T)) = () and therefore T allows
an infinite tiling. Conversely, if 7 allows an infinite tiling, D\ L(A(T)) = 0
implying L(A(7)) = D. But this set can be recognized deterministically, i.e. the
ACA A(T) is equivalent with a deterministic one. O

Obviously, deterministic ACAs can be complemented. I do not know whether
the inverse implication holds as well: Is any complementable X-ACA equivalent
to a deterministic ACA?



