Chapter 5

The expressive power of ACAs

This chapter deals with the question which properties can be expressed by a X-
ACA. By Corollary 3.3.6, the expressible properties are at least recursive. On
the other hand, Example 2.1.6 shows that not all recursive sets of Y-dags are
recognizable. The situation is similar to that of finite sequential automata and
sets of words: Any language that is accepted by a finite sequential automaton is
recursive, but the converse is false. In this setting, several answers are known to
the question which properties can be checked by a finite sequential automaton:
Kleene showed that these are precisely the rational properties. By the Myhill-
Nerode Theorem, a property can be checked by a finite sequential automaton if its
syntactic monoid is finite. Furthermore, Biichi and Elgot [Biic60, Elg61] showed
that a property of words can be checked by a finite automaton if and only if it can
be expressed in the monadic second order logic. This relation between a model
of a computational device (finite sequential automata) and monadic second order
logic is a paradigmatic result. It has been extended in several directions, e.g. to
infinite words [Biic60], to trees [Rab69], to finite [Tho90b] and to real [EM93,
Ebi94] traces, and to computations of concurrent automata [DK96, DK98]. This
relation does clearly not hold for 3-ACMs in general: Example 2.1.5 provides
a word language that can be accepted by a X-ACM (that is even monoton and
effective), but not by a finite sequential automaton. Hence, this set of X-dags
cannot be axiomatized in monadic second order logic. Therefore, we examine
whether there is such a close relation between »-ACAs and MSO.

It is shown that any recognizable set can be axiomatized by a sentence of the
monadic second order logic. Since the converse is not true (cf. Example 2.1.6),
we then restrict furthermore to so called (¥, k)-dags and show that a set of (3, k)-
dags is recognizable (relative to the set of all (¥, k)-dags and even relative to the
set of all X-dags) iff it can be monadically axiomatized. But it is necessary to
allow nondeterminism in the automata since the expressive power of deterministic
3-ACAs is shown to be strictly weaker.
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CHAPTER 5. THE EXPRESSIVE POWER OF ACAS o8

5.1 From ACAs to MSO

In this section, we will prove that for any ACAs A, there exists a monadic sentence
which axiomatizes the language accepted by A. The proof of this result follows
[DGI6] (see also [DGKOO]). There, the restricted case of Y-dags that are Hasse-
diagrams was dealt with. The only difference between this former result and the
result we are going to prove now is the following: The monadic second order
logic considered in [DG96] makes statements on partial orders and not on dags.
Since the partial order E* can be expressed by a monadic formula over dags,
this is no difference as far as the expressive power is concerned. But one needs
more quantifier alternations which is the reason why in our setting the following
theorem states only the existence of a monadic sentence which might not be
existential.

Theorem 5.1.1 Let A be a possibly nondeterministic X-ACA. There exists a
monadic sentence @ over Y. such that

L(A) ={teD|t = ¢}

Proof. Let A = ((Qq)aes; (0a,7)aex,scx, F) be a X-ACA. We will construct a
monadic sentence which will be satisfied exactly by the ¥-dags that are accepted
by A. Let k be the number of states in | J .y, @4 We may assume that | .y, Qo =
(k] = {1,...,k}. The following sentence v claims the existence of a successful
run of the automaton.

¢ =3X;...3X; (partition(Xy, ..., Xi) A (Vz trans(z)) A accepted)

We will now explain this sentence and give the sub-formulas partition, trans
and accepted. A run over a Y-dag t = (V, E,\) is coded by the set-variables
Xq,..., Xg. More precisely, X; stands for the set of vertices mapped to the state
i by the run. The formula partition(Xj, ..., Xy) ensures that the set-variables
Xi,..., Xy describe a mapping from V' to | ¢y, Qa:

partition(Xy, ..., X) = Vaj\/a:EXi /\( /\ Xiij:(]))_

i€[k] 1<i<j<k

Then, we have to claim that this labeling of vertices by states agrees with the
transition functions of the automaton:

trans(x) = \/ Mz)=aNz e XAy ((y,z) € E— Ny) € J)

9€0a,7((a)be)
e /\/\Hy((y,w)EE/\)\(y)zb/\yEXi))

beJ
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where the disjunction ranges over all letters a € ¥, states ¢ € @), subsets J C X
and tuples (g)ses € [[pc, @b such that ¢ € 4,5 ((g5)ses)-

It remains to state that the run reaches a final state of the automaton. Let
accepted denote the disjunction of the following sentence for (f3)pes € F:

<V:c (Mz) € J) A /\ Fz((—Fy (Ma) =Ay) Az <y)) AXMz) =bAz € be)>.

beJ

Since the formula 1/ describes an accepting run of the automaton for »-dags,
we get the statement of the theorem. O

Note that the proof of the theorem above makes use of the finiteness of the sets
of local states @), in a ¥-ACA. The first language from Example 2.1.5 shows that
this finiteness is necessary for the theorem to hold: The language given there
can be accepted by a monotone ACM but it is not regular and therefore not
monadically axiomatizable. Furthermore, Example 2.1.6 shows that the converse
of the theorem does not hold: There, we presented a language that is elementarily
axiomatizable, but not acceptable by a monotone ACM and can therefore in
particular not be accepted by a 3¥-ACA.

5.2 (X, k)-dags

Theorem 4.1.10 in particular implies that the set of recognizable ¥-dag-languages
is not closed under complementation. Hence, there are monadically axiomatizable
languages that cannot be accepted by any ¥-ACA. This section is devoted to the
class of (X, k)-dags that we introduce next where the expressive power of X-ACAs
and MSO coincide. The results presented here were originally shown for Hasse-
diagrams in [Kus98]. Here, the presentation follows [DGKO0] and is in addition
extended to (3, k)-dags.

5.2.1 k-chain coverings

Let t = (V, E, \) be a X-dag. Furthermore, let k£ be a positive integer and C;, C V
for 1 < £ < k. We call the tuple (Cy,Cy,...,Ck) a k-chain covering of t if

1. C, is a chain with respect to the partial order E* for £ =1,2,... k,

3. for any (z,y) € F, there exists ¢ € [k] with z, y € C; and there is no element
of Cy properly between = and y (i.e. zE*2E"y and z € Cy imply = = z).

The Y-dag t is a (3, k)-dag if it has a k-chain covering. Let Dy denote the set of
all (X, k)-dags.
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Example 2.1.6 (continued) Consider the first ¥-dag in Figure 2.4. It can
be covered by the chains C; = {ay, as, ..., a;, b;,bi11,bi10,...,bs} for 1 < i < 8.
Hence it is a (%, 8)-dag. The reader may check that it is not possible to cover
it by fewer chains, i.e. that it is not a (X, k)-dag for £ < 8. Recall that the set
L cannot be accepted by a 3-ACA. Later (Theorem 5.2.10) we will see that the
reason for this is that L is not contained in D for any k£ € N.

Example 5.2.1 Let (X, D) be some trace alphabet and (V,<,\) € M(X, D).
Then (V, <, ) is a pomset without autoconcurrency. Hence the Hasse-diagram
t = Ha(V,<,\) of this trace is a ¥-dag. Even more, it is a (X, k)-dag with
k = |D|: For (a,b) € D, let Cop = A7(a) UXH(b) C V. Since a and b are
dependent, this set is a chain. Now let z,y € V with 2 —< y. Then A(z) and
A(y) are dependent, i.e. x and y belong to some chain C,; with (a,b) € D.

Suppose (V, E) is the Hasse-diagram of the partially ordered set (V, <). Then,
by Dilworth’s Theorem [Dil50], the width of (V,<) and the number of chains
necessary to cover the poset are closely related: The poset (V, <) has width at
most k iff there are k linearly ordered sets (Cj;, <;) such that (V<) is the union
of these chains, i.e., such that V = [J;.,.,Ci and <= (U,c;<, <i)*. This is
similar to our definition of a k-chain-covering of (V, E), the difference being that
we require in addition that the edges of (V, E') are covered by the chains C;. The
set of (3, k)-dags can nevertheless be described by the width of a partial order
whose elements are the edges of the ¥-dag: Let (V, E,\) be a ¥-dag such that
(V, E*) has a minimal element and V' contains at least 2 nodes. On the set of
edges E, define a partial order C by (z,y) C (2/,y') iff (y,2") € E*. The width
of the partial order (E,C) is called the chainwidth of (V, E, ).

Lemma 5.2.2 Let t = (V,E,)\) be a X-dag such that (V, E*) has a minimal
element and V' contains at least 2 nodes. Then t € Dy iff the chainwidth of t is
at most k.

Proof. Lett € D} and suppose that its chainwidth is at least £+ 1. Then there
exists an antichain {(z;,v;) € E|1<i < k+1} in (E,C). Furthermore, there
exists a k-chain-covering (Cy)i<¢<i of t. Hence, for any ¢ with 1 < i < k + 1,
there is one chain Cy with z;,y; € Cy. This implies that there are i < j with
Ti, Vi, 5, y; € Cp for some £, ie., {;,y;,x;,y;} is linearly ordered by E*. Now
yiE*x; or y;E*x; follows, contradicting our assumption that the edges (x;,y;) for
1 <¢<k+1 form an antichain.

Conversely, let the chainwidth of ¢ be at most k. Then the partially ordered
set (E,C) can be covered by k chains D,. Let Cy = {z,y | (z,y) € D;}. Then
(Cr)1<i<k is a k-chain-covering of ¢, i.e., t € Dy. d
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For later use (Chapter 6), we also introduce the spine of a ¥-dag. This
notion is a generalization from [HR95] where it is defined for Hasse-diagrams. Let
t = (V,E, ) be a ¥-dag. We define a new edge relation E' O E by (x,y) € E’
iff (z,y) € E or

1. (z,y) € E*,
2. for any z € V we have (z,z) € E = zE*y, and
3. for any z € V we have (z,y) € E = zFE*z.

Thus, (z,y) € E' if either (z,y) € E or xE*y and any upper neighbor of z (any
lower neighbor of y) is below y (above x, respectively). The directed graph (V, E’)
is the spine spine(t) of t. By unc(spine(t)), we denote the maximal size of a set
in V that is totally unconnected in spine(?).

To show that for any (X, k)-dag t the size of totally unconnected sets in
spine(t) is bounded, we will use the following result by Ramsey (cf. [Cam94] for
the general formulation):

Ramsey’s Theorem [Ram30] Let c,r be positive integers. Then there is a
positive integer R.(c) such that for any mapping d of the two-element subsets of

[R.(c)] into [c] there exists an r-element subset A C [R,(c)] such that we have
d(B) = d(C) for any two-element subsets B and C of A.

Lemma 5.2.3 Any X-dag t in Dy satisfies unc(spine(t)) < |X|- Ra(k+1). Con-
versely, any Y-dag t with unc(spine(t)) < m is an element of Dy with k =
2(m+1)[2)* - 1.

Proof. First suppose ¢t = (V, E,\) € D, and assume, by contradiction, that
unc(spine(t)) > |X| - Ro(k + 2). Since the width of (V, E*) is at most |X|, there
is a set A C V with at least Ryo(k + 2) elements that is totally unconnected in
spine(t) and linearly ordered in (V, E*). For z, 2’ € A with zE*x' set

0 if there exists y € V with (z,y) € F and (y,2') & E*
1 otherwise.

h({z,2'}) = {
By Ramsey’s Theorem, there are x1,zs,...,25+2 € A such that h({x;,z;}) is
constant and z;Etz; for i < j. If h({x;,z;}) = 0, there exist y; € V with
(x;,y;) € E and (y;,x541) € E* for 1 < ¢ < k + 2. Hence the edges (x;,y;)
with 1 < i < k + 1 form an antichain in (E,C) of size k + 1 implying that ¢ has
chainwidth larger than k. In case h({x;, z,}) = 1, we can argue dually and, again,
obtain that ¢ has chainwidth larger than k. But this contradicts our assumption
t € Dy, together with the preceding lemma.
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Now let unc(spine(t)) < m and k = 2(m + 1)|X|*> — 1 and suppose ¢ & Dy.
Then (E,C) contains an antichain of size k£ + 1. Since any element x € V has
at most |X| upper neighbors in (V, E), there is an antichain {(z;,y;) € E |1 <
i <2(m+1)|X|} with z; # z; for i < j. Since furthermore (V, E*) has width at
most |X|, we can assume that (x;,z;) € ET for 1 <i<j <2(m+1).

Let A={z; |1 <i<2(m+1)}. We define a set B C A as follows: For
any maximal sequence 1 < i; < iy < ...i, < 2(m + 1), let z;, ., belong to B
(i.e., the elements at an odd position belong to B and those at even positions
do not). Then B contains at least m + 1 elements. Let x;,z; € B with i < j.
Then (y;,x;) ¢ E* since {(x;, ;) € E|1 <i<m+ 1} is an antichain in (EF, C).
But this implies that {z; | 1 < i < m + 1} is totally unconnected in spine(t),
contradicting our assumption unc(spine(t)) < m. O

Our last alternative characterization of the Y-dags that admit a k-chain-
covering is in terms of k-chain-mappings that we define next:

Definition 5.2.4 Let t = (V,E,)\) be a ©-dag, k € Nand A : V — (2 \ {0}).
The function A is a k-chain mapping if

(1) for all minimal vertices x,y € V, if  # y then A(x) N A(y) = 0,

(2) for all non minimal vertices y € V and ¢ € A(y), there exists x € V with
(x,y) € E and £ € A(x),

(3) for all vertices € V that are not maximal and for all £ € A(z), the set
{y eV |(z,y) € E,L € A(y)} is empty or has a least element, and

(4) for all (z,y) € E, there is £ € A(z) N A(y) such that for any z € V with
xETzETy it holds £ € A(z).

The following lemma relates k-chain mappings and k-chain coverings thereby
justifying the name k-chain mapping.

Lemma 5.2.5 Let t = (V,E,\) be a ¥-dag. Then t € Dy iff there exists a k-
chain mapping. In particular, if A is a k-chain mapping of t and { € [k], then the
set ATH(0) = {x e V | L€ Az)} is a chain with respect to E* and (A1 (€)) e is
a k-chain covering. Conversely, if (C¢)icp) @8 a mazimal k-chain covering, then
A(z) ={l € [k] | z € Cy} defines a k-chain mapping.

Proof. Let t € I,. Then there exists a k-chain covering (Cp)mep) of t. We
may assume that the chain covering (Cy)sepr is maximal with respect to the
componentwise inclusion (i.e. incorporating any vertex newly into one of the
chains C; destroys its property to be a k-chain covering). Now define A(z) :=
{t e[kl |z € C}. Then A:V — (2H\ {@}) since V = Upepy - Since Cy
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is a chain for each ¢ € [k], any two different minimal elements of ¢ belong to
disjoint sets of chains. Hence the first property of Definition 5.2.4 is satisfied.
Now let y € V' be non minimal and ¢ € A(y). Since the k-chain covering (Cy)ecx
is maximal, there exists x € V with (z,y) € E and ¢ € A(z). Hence, the second
requirement is satisfied. The targets in Cy of edges that originate in a nonmaximal
vertex x are linearly ordered. Hence this set admits a least element as required
by the third condition. If (z,y) € E, there exists ¢ € [k] such that x,y € C,
and no element of Cy is properly between x and y. Hence ¢ € A(x) N A(y) and
for any z properly between x and y we have £ & A(z). Thus, we proved the last
statement of Definition 5.2.4.

Conversely, let A be a k-chain mapping of the ¥-dag ¢t. For ¢ € [k], define
Co={z €V | L€ Ax)}. Since A(z) # 0 for all z € V, we get V' = [,y Ce-
By the last property for A, for any (z,y) € F there exists ¢ € [k] with z,y € C
such that no element of C} lies properly between x and y. It remains to show
that C, is a chain for any ¢: Let x,y € C,. By the second property of A, there
exists a sequence Tg, 1, ...T,; = z of elements of C; with zy minimal in (V, E*)
and (z;,x;11) € E. We can even assume that x;,; is the least element of Cy above
x; such that (x;,z;41) € E. Similarly, there exist elements yo, y1,. .-y, =y of C;
with yo minimal in (V, E*) and (y;,y;4+1) € E such that y;;; is the least element
of Cyp above y; with (y;,y;41) € E. Now let m < n. By the first property of
A, zog = yo. Let 0 < 7 < m be such that x; = y;. This element is the source
of edges going to z;;1 and to y;11. Since we chose x;4; and y; 11 minimal in C}
above x; = y; with (z;,7;11) € E and (y;,¥:+1) € E, we obtain x;;1 = y;41. This
shows that (z,y) € E*, i.e. C; is a chain. O

5.2.2 k-chain coverings are recognizable

Next we construct an ACA Ay that “produces” k-chain mappings (i.e., any suc-
cessful run of Ay corresponds to a k-chain mapping and vice versa, Lemma 5.2.6).
This implies immediately that Dy is recognizable relative to D. In addition, we
will use the produced k-chain mapping to relabel a (X, k)-dag into a trace. This
latter result will enable us to use the theory of Mazurkiewicz traces to show that
any monadically axiomatizable set of (X, k)-dags is recognizable relative to Dy.
We start with the definition of the automaton .A;: Recall that part([k], X) is
the set of partial functions g from [k] to ¥ with dom(g) # (). We write part(k, )
for this set part([k],X). For a partial function f € part(k,X), we first define an
ACA Ai(f) whose local states are partial functions in part(k, ). Intuitively, a
node z of some (X, k)-dag ¢t will be labeled by the partial function g in some run
of Ai(f) if dom(g) is the set of chains Cy going through z and for all ¢ € dom(g),
g(£) is the next action for the chain ¢. The partial mapping f is in some sense
the initial state of the automaton Ag(f): f(¢) = a iff the chain ¢ starts with an
action a. As we will see, runs of this automaton correspond to k-chain mappings.
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More precisely, the ACA Ag(f) is defined as follows: The set of local states
(common for all processes) is Q = part(k,X). For a € X, let d,9 consist of all
nonempty partial functions ¢ € @ with dom(g) = f!(a). For @ # J C ¥ and
gp € Q for b e J, we let 8, 5((gp)pes) be the set of all nonempty partial functions
g € @ such that

1. for b € J there exists £ € dom(g) with gy(¢) = a and
2. for ¢ € dom(g) there exists b € J with g,(¢) = a.

Finally, all tuples of states are accepting. Let Ay denote the disjoint union of
the automata Ag(f) for all partial functions f € part(k,X). Note that not all
runs of Ay are successful, only those that lie completely inside Ag(f) for some
f € part(k,X) are. This can be easily checked by considering the final global
state.

The following lemma shows that the k-chain mappings A on a X-dag t coincide
precisely with the mappings domor : V' — 28 where r is a successful run of the
automaton A, constructed above.

Lemma 5.2.6 For k € N andt = (V,E,\) € D, we have:

1. for any successful run v of Ay on t, the mapping domor : V — 2K\ {0} s
a k-chain mapping.

2. For any k-chain mapping A on t, there exists a successful run r of Ay on t
such that A = dom or.

Proof. 1. Let r : V. — part(k,X) be a successful run of Ay on ¢ and let
A = domor. There exists a partial function f € part(k,X) such that r is a run
of Ai(f). Now let ,y € V be minimal and distinct. Then r(z) € 0y(x)g, and
therefore dom or(z) = f~*(A(x)). Similarly, domor(y) = f~*(A(y)). Since = and
y are incomparable with respect to E*, A(z) # A(y). Hence A(z) and A(y) are
disjoint. Thus we showed the first condition of Definition 5.2.4.

Now, let € V be non minimal. For b € R(z), there exists a unique vertex
xp € V with (zp,2) € F and A(xp) = b. Let also g, = r(xp) and g = r(x). Since r
satisfies the run condition of A(f) at x, we have g € 0x(z),R(z)((95)beRr(z)). Now we
deduce that for all £ € A(x) = dom(g), there exists b € R(x) with £ € dom(g,) =
A(zp) showing Definition 5.2.4 (2). Next, we show Definition 5.2.4 (4) for the
edge (xp,x): Since g € Ox(z)R(z)((95)beRr(z)), there is £ € dom(g) N dom(gy) =
A(x) N A(zp) such that r(zp)(¢) = A(x). Now assume z,EzE*x with £ € A(x).
Then x, = 9y(x). Since r is a run of Ag(f), we obtain \(z) = r(xp)(£) = A(x).
This shows that z and x are targets of edges that originate in w3, and that
they carry the same label A(z). Hence they are equal, i.e. there is no element
z properly between x, and x such that ¢ € A(z). Thus, Definition 5.2.4 (4)
holds. To show Definition 5.2.4(3), let + € V and ¢ € A(x) such that the set
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{y e V| (z,y) € E and ¢ € A(x)} is not empty. Note that this set is a subset of
the chain Cy. Hence it has a least element.

2. Assume now that A is a k-chain mapping. We will construct a successful
run r of A such that domor = A. Let x € V. Indeed, the domain of the partial
function r(z) € part(k,X) will be A(z). Now, for all £ € dom(r(z)) = A(z), if
there is y € V with (z,y) € E and ¢ € A(y), then, by Definition 5.2.4 (3), there is
a least such y. If such a vertex y exists then we set r(x)(¢) = A\(y) and otherwise
we set 7(z)(¢) = a for some a € ¥ (in this last case, we can give any value since
it will never be used).

Let f € part(k,X) be the partial function defined by ¢ € dom(f) iff there
exists a minimal vertex x € V with ¢ € A(x) and in this case we set f({) = A(z).
Note that f is well-defined thanks to Definition 5.2.4 (1).

We show that indeed r is a run of Ag(f): Clearly, if z € V is minimal then
we have dom(r(z)) = A(x) = f~}(A(z)) as required by the initial transitions of
Al

Now, let z € V be non minimal. For all b € R(z), let (x}, x) € E be such that
A(wp) = b. We will show that 7(x) € 0x(z),r(z) (7 (Ts)ser(z))- First, for all b € R(x),
by Definition 5.2.4 (4), there exists ¢ € A(z) N A(zp) = dom(r(x)) N dom(r(xy))
such that no element z with ¢ € A(z) lies properly between z;, and z. By the
construction of r(xy), it follows that r(x;)(¢) = A(z). Second, for £ € dom(r(z)) =
A(z), there exists b € R(x) with ¢ € A(z) = dom(r(xp)) by Definition 5.2.4 (2).
By definition of r(x;), it follows that r(x)(¢) = A(x). Thus we have shown that
r is a run of Ag(f) which concludes the proof. O

As an immediate consequence of the lemma above and Lemma 5.2.5, we obtain
that Dy is recognizable relative to D:

Corollary 5.2.7 For k € N, we have L(A) = Dy. O

Now we define a trace alphabet (I', D) as follows: Let
I:=3x 2%\ {p}).
The dependence relation D is defined by
D ={((a,M),(b,N)) | MO N # { or a = b}.

This binary relation on I' is obviously reflexive and symmetric. Thus (T', D) is
indeed a dependence alphabet. Let M(T', D) denote the trace monoid over (I', D).
Now let t = (V, <, Ar) be a trace over (I', D). From this trace, we define a ¥-dag
as follows: For z,y € V, let (z,y) € E iff there exists £ € my 0 Ap(x) N7 0 Ar(y)
such that

x=max{w <y |l moAr(w)}.

Now let TI(V, <, A) = (V, B, m1 0 Ap).
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For an arbitrary trace ¢t € M(T', D), II(¢) is a directed acyclic graph whose
vertices are labeled by elements from Y. Let M’ denote the set of all traces
t € M(T', D) such that II(¢) € Dy, i.e. that are mapped to a (X, k)-dag by the
mapping II. Note that the relation E defined above is elementarily definable in
(V,<,Ar). Since in addition the set of (3, k)-dags is monadically axiomatizable
relative to all X-labeled dags, the set M is axiomatizable relative to M(T', D).

Next, we define the “inverse” of II: Let ¢t = (V, E,\) be a (3, k)-dag. Then
there exists a maximal k-chain covering (Cy)ecp)- For y € V, define

Ar(y) = (Ay), {L € [k] [ y € Ci}).

The following lemma in particular implies that any (X, k)-dag is the image under
IT of some trace from M/, i.e. [I(M') = D).

Lemma 5.2.8 Let t = (V,E,\) be a (3, k)-dag and let (C;)icr) be a mazimal
k-chain covering of t. Let A\r(x) = (M (z),{¢ € [k] | x € C¢}) for x € V. Then
(V, E*, \p) = t and (V, E*, \r) € M.

Proof. Let < denote the partial order E*. First we show that (V, <, Ar) is a
trace from M(T', D): Let z,y € V with x —< y (with respect to the partial order
<). Then (z,y) € E. Since (C;)icy is a k-chain covering, there exists £ € [K]
with z,y € Cy. Hence { € my 0 Ap(x) N7 0 Ar(y) implying (Ar(x), Ar(y)) € D.
Now let x,y € V be incomparable. Since C; is a chain with respect to < for
1 <i<k, weget ) =mo(z)NmyoAr(y). Since (V,E,)\) is a X-dag,
and y carry different labels from ¥. Hence we showed (Ar(x), Ar(y)) ¢ D which
concludes the proof that (V, <, Ar) is a trace.

Now let II(V, E*, A\r) = (V,E',X). Then, X' = m 0 Ar = A. It remains to
show E = E'. So let (x,y) € E. Since (C¢)ecy is a k-chain covering, there exists
¢ € [k] such that =,y € Cy and no z € C; lies properly between x and y. Hence
x =max{w € C; | w < y} implying x = max{w < y | £ € 7w o A\r(w)}. Hence
(z,y) € E.

If, conversely, (z,y) € E’, then there exists ¢ € m o Ap(y) such that z =
max{w < y | £ € m 0 A\pr(w)}. Since m 0 Ar(x) = {l € [k] | = € C;}, we obtain
z € Cp. In addition, z < y implies zETy. By contradiction, assume (z,y) & FE.
Then there exists z € V with xETzE1y. Since there is no element of Cy properly
between z and y, the set C,U{z} is a chain with respect to E*. Since (z,y) ¢ E,
the tuple (Cy,...,Co_1,CU{z},Coyq, ..., Cy) is a k-chain covering contradicting
our assumption that (Cy)eepr) is maximal. Thus, we showed (z,y) € E. O
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5.2.3 Monadic second order logic

Lemma 5.2.9 Let ¢ be a sentence of the monadic second order logic over the
alphabet . Then there exists a sentence Y of the monadic second order logic
over the alphabet T using the binary relation < such that

{TI(s) | s e M(T", D) and s =y} ={t €Dy |t E ¢}

Proof. The sentence ¢ contains atomic formulas of the form A(z) = a for
a € 3 and of the form (z,y) € E. Replace any occurrence of an atomic formula
AMz) = a by V yep ry(ay=q Ar(z) = A. There is a monadic formula 7 using the
relation < and the mapping Ar that states for any two vertices x,y in a trace
t € M(T', D) that there exists £ € [k] such that x = max{w <y | £ € my 0 Ar(w)}.
Replace any subformula of ¢ of the form (z,y) € E by n(z,y). The result of
these replacements is denoted by . Note that ¥ is a sentence of the monadic
second order logic over the alphabet I' using the relation <. Now let s € M.
Then it is easily seen that s = @ iff II(s) = . Furthermore, there is a monadic
second order sentence p axiomatizing M’ relative to M(I", D). Thus, we have the
required equality for ¢y = n A . O

Before showing that any monadically axiomatizable set of (3, k)-dags can be
accepted by an ACA, we have to introduce a variant of asynchronous cellular
automata. This variant is meant to work on traces from M(T', D). Differently
from ACAs considered so far, not every letter of I' has its own sequential process,
but some of the processes are collected into one new sequential component. This
collection is given by a partition of I' into dependence cliques: So let I'; C I’
for i € [n] be mutually disjoint sets satisfying I'; x I'; C D (i.e. the letters
from I'; are mutually dependent). A trace-ACA over (I';)icpn) is a tuple A =

((Qz’)ie[n]a (5a,J)aEP,Jg[n]7 F) where
e (); is a finite set of local states for process 1,
® b0y [ljes— 2@ ig a local transition function with a € I';, and
o F'CUprscpm [1jes @ is a set of final states.

As remarked earlier, these automata will run on traces from M(T', D), more pre-
cisely, on the Hasse-diagram of a trace. The only difference in the definition of
a run for trace-ACAs is that the transition d,; writes into the process i with
a € I';. Thus the formal definition is an obvious variation of that from page 13.
Therefore, we omit it here.

Theorem 5.2.10 Let ¢ be a monadic sentence over the alphabet ¥ and let k € N.
Then there exists a ¥-ACA A such that L(A) ={t € Dy, |t = ¢}.
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Proof. By Lemma 5.2.9, there is a monadically axiomatizable set L C M(I", D)
such that II(L) = {t € Dy | t = ¢}. Hence by [Tho90b, EM96], the set L is
recognizable in M(T', D).

For a € 3, let 'y = {(a, M) € T'} denote the set of letters from I' whose first
component equals a. Then T', is a dependence clique in (', D) and the sets T,
are mutually disjoint and cover I". By an immediate variant of Zielonka’s result
[Zie87] (cf. also [CMZ93, Die90]), there exists a trace-ACA

Alp = ((Qf)GGE’ (6&7M),J)(G,M)€F,Jg21 FW)

over (I'y)qex) that accepts L relative to M(T', D).

Furthermore, let Ay = ((Qa)acs, (0a.7), F) be the ACA constructed above that
accepts the set of all (3, k)-dags. We define a X-ACA A" = ((Q,,)aex, (6, 5), F')
over the alphabet ¥ as follows: Q! = Q, x Q¥ and a tuple (gy, ¢s)pes belongs
to F' iff (gp)ees € F and (qp)oes € F?¥. To define the transition functions,
let &, ;((g5,)bes) be the set of all pairs (g,q) satisfying g € d4,7((gs)scs) and
a4 € 0/ ). ((@)bes) with M = dom(g). Note that a run of the -ACA A’
“contains” a run of Ay. This run “relabels” the (3, k)-dag ¢ in consideration into
some trace s € I171(¢) (see Lemmas 5.2.6 and 5.2.8). The trace s is in fact the
actual input of the trace-ACA A,. Therefore, the (X, k)-dag ¢ is accepted by A’
iff s € IT"1(¢t) is accepted by A, that is, iff ¢ = ¢. O

Recall that the above proof rests on the X-ACA A;. This automaton guesses
a k-chain-mapping, i.e., it is nondeterministic. Hence, this theorem leaves the
question open whether deterministic ACAs suffice to capture the expressive power
of monadic second order logic relative to the set of (X, k)-dags. The following
proposition states that this is not the case, i.e. in particular, that the nonde-
terministic X-ACAs stricly exceed the deterministic ACAs in expressive power
relative to (3, k)-dags:

Proposition 5.2.11 Let k € N with k > 1 and let the alphabet ¥ contain at
least two letters. Then there exists a set of (3, k)-dags that is monadically az-
tomatizable relative to Dy, but not acceptable by any deterministic X-ACA.

Proof. Tt suffices to prove the statement for £ = 2, and ¥ = {a,b}. So, let L
consist of all (X, k)-dags (V, E, ) over X that have a largest (with respect to E*)
vertex. This language is trivially axiomatizable in MSO relative to Dy.

We show that there is no deterministic ¥-ACA A accepting among the (X, k)-
dags all those that have a largest vertex: By contradiction, assume A is such a
Y-ACA. Let £ = |Q,|+2 and consider the (X, k)-dag t = (V, E, X) with vertex set
V=Aa;|i1=1,2,... 0}U{bi}, a1Eas ... EayEb; and with the canonical labeling
A with A(a;) = a and A(b;) = b. Then ¢t € L. Hence there is a successful run r
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of A on t. Since £ > |Q,| + 1, there are i < j < £ such that r(a;) = r(a;). Now
consider the (X, k)-dags t; and ¢ty with Vi =Vo ={a, | £ =1,2,...,5} U{b; } and
the canonical labeling. The edge relations are defined by a1 Er1asEva3 ... Eia;E1b
(i.e. Ef is a linear ordering with largest element b;) and a; EsasEsas . .. Esa; and
a;Esb; (i.e. in E}, the a-labeled elements are linearly ordered, but the maximal
element by covers a; and is not the largest element of (V5, E¥)). Since t; € L, there
is a successful run r; of A on ¢;. Since A is deterministic, we have r1(a;) = r(as)
for ¢ < j. This implies 71 (a;) = r1(a;) since the equality holds for the run . Hence
r1 is a run on ts, too. The global final state of r; considered on t; equals that
of r1 considered on t;. Hence t, is accepted by A, contradicting our assumption
since t5 does not have any largest vertex. O

Thus, differently from traces, for (3, k)-dags the deterministic ACAs are
strictly weaker in expressive power than monadic second order logic.

Our methods in particular imply that the monadic theory of Dy is decidable
for any k£ € N: Let ¢ be a monadic sentence. Using Lemma 5.2.9, we can build
a monadic sentence v that axiomatizes a preimage under Il of the models of ¢
in D;. Hence —) is a tautology iff ¢ is. Since the monadic theory of traces is
decidable [EM96], the result follows. There is another, more direct way to prove
this decidability: Given k& € N, one can bound the pathwidth (cf. [Bod98] for an
overview) of the dags in I, by some n. Since Dy is monadically axiomatizable,
and since the monadic theory of the dags of pathwidth at most n is decidable
[Cou90], the decidability follows. Anyway, using Theorem 5.1.1, one obtains the
following result:

Corollary 5.2.12 There exist algorithms that solve the following decision prob-
lems:
input: an alphabet ¥, k € N and a X-ACA A.
output: Is L(A) N Dy empty?
Is L(A) contained in Dy ?
Does L(A;) NDy = L(As) N Dy ?

Recall that by Proposition 5.2.11 the expressive power of deterministic X-
ACAs does not capture that of monadic second order logic relative to D. Hence,
we get in particular that nondeterministic ACAs are strictly more powerful than
deterministic ACAs within the class I, for £ > 2 and the same holds for the set
of all ¥-dags (which we already knew from Theorem 4.1.10). In this latter case,
the set of X-ACAs that have an equivalent deterministic X-ACA is not recursive
(Theorem 4.1.10). It is an open question whether this holds for the class of
(3, k)-dags, too, i.e. whether there is an algorithm that given a ¥-ACA A and
a positive integer k decides whether there exists a deterministic 3-ACA A, such



