Chapter 6

Other automata models for
pomsets

The covering relation of a pomset without autoconcurrency is a -dag. This
allows us to speak of the set of pomsets that is accepted by an asychronous
cellular automaton: A pomset (V, <, \) is accepted by the 3-ACA A iff its Hasse-
diagram (V, —<, A) belongs to L(A). Actually, this was the original intention
when asynchronous cellular automata were generalized from dependence graphs
to more general structures in [DG96] (cf. also [Kus98, DGKO00]).

For pomsets, other automata models have been considered in the literature.
In particular, Arnold considered P-asynchronous automata [Arn91] and Lodaya
& Weil dealt with branching automata [LW98a, LW98b, LW00]. The primary
aim of this chapter is to compare the expressive power of these automata with
the expressive power of our ¥-ACAs. This is achieved by a comparision of the
expressive power of these automata models with that of monadic second order
logic.

6.1 Branching automata by Lodaya & Weil

In several papers, Lodaya & Weil considered branching automata and proved
results analogous to Kleene’s and to Myhill-Nerod’s Theorems [LW98b, LW98a,
LWO00]. Their automata work on so called series-parallel pomsets, sp-pomsets for
short, defined as follows: A labeled partial order (V,<,\) is a sp-pomset if the
partially ordered set (N, <y) cannot be embedded into (V, <) (cf. Figure 6.1).
To give an alternative description of sp-pomsets (that also explains the name) we
need some more notation: Let t; = (13, <1, A1) and to = (V5, <5, A2) be labeled
partial orders with Vi NV, = (. The serial product t; - t, of them is the labeled
partial order
(V1 U Va, <4 UV x VU <5, A U A).
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X2 T4
T €3

Figure 6.1: The partially ordered set (N, <)

Thus, in ¢ - t5, the pomset t, is put on top of the pomset ¢;. On the contrary,
the parallel product t; || t5 is defined to be

(V1UVa, <3 U<y, A1 U Ag),

i.e. here the two partial orders are set side by side. Now it is a result in the
folklore of order theory that a partially ordered set is series-parallel iff it can
be constructed from the one-point partial orders by the application of the op-
erations - and || (cf. [Gis88]). In other words, the set of all sp-pomsets SP(X)
over the alphabet X is the least class of ¥-labeled partial orders containing the
one-point pomsets that is closed under the application of the serial product - and
the parallel product ||.

Lodaya & Weil introduced an automata model that is suitable to accept sp-
pomsets:

Definition 6.1.1 A branching automaton is a tuple B = (5,Ts, Ty, T}, 1, A)
where

S is a finite set of states,

I and A are subsets of S of initial and accepting states, respectively,

T, C S x X x S is the set of sequential transitions,

Ty C S x (S xS) is the set of fork transitions, and

T; C (S x S) x S is the set of join transitions.

Branching automata were introduced in [LWO98b] in a slightly more general
form (they allowed branching automata to branch into more than two subpro-
cesses), but the definition given here yields the same expressive power. Since
branching automata are meant to run on sp-pomsets, their runs can be defined
by induction on the construction of sp-pomsets from the one-point pomsets by
serial and parallel product. Let p,r € S be states of the branching automaton
B and let a be the one-point a-labeled pomset. Then there is a run from p to
r on a (denoted p — r) iff (p,a,r) € T,. Now let s,t be sp-pomsets. Then

there is a run p =Yy r iff there exists a state g € S and runs p — ¢ and

q L Finally, there is a run p ﬂ) r iff there are states pi, po, 71,79 € S, a fork

transition (p, (p1,pe)) € T}, runs p; — 71 and p, 5 ry, and a join transition
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D2 T2

J41 T1

Figure 6.2: A run on s || ¢

((r1,72),7) € T; (this definition is visualized in Figure 6.2, edges that form a fork
or a join transition are connected by an angle at their sources or their targets).
An sp-pomset s is accepted by B iff there exist « € I and ¢ € A and arun ¢ — q.
By L(B) we denote the set of sp-pomsets accepted by B.

To describe the expressive power of branching automata in the spirit of
Kleene’s theorem [Kle56], Lodaya & Weil introduced several classes of rational
expressions for sets of sp-pomsets:

For S,T C SP(X), let

S-T = {s-t|seS,teT}

S|T = {s||t|seSteT},
S* = {s1-s9-83--8,|n>1,5 €S}, and
S = {s1]|s2]| 83+ || sn|n>1,s €S}

A set S C SP(X) is rational if it can be constructed from the finite subsets of
SP(X) by the operations U, -, ||, *, and ®. It is weakly rational if the operation ® is
applied to languages of the form K- L, only. Finally it is series-rational if it can be
constructed from the finite subsets of SP(X) by the operations U, -, ||, and * (i.e.
without the parallel iteration). Clearly, any series-rational language is weakly
rational and any weakly rational language is rational. These two implications
cannot be inverted for (a || a)® is rational and not weakly rational and a® is
weakly rational but not series-rational. Since in the construction of series-rational
languages the parallel iteration cannot appear, for any series-rational language
S there exists an n € N with w(s) < n for any s € S, i.e. any series-rational
language is width-bounded.

The set SP(X) can be seen as an algebra with the two associative operations -
and ||. A structure (S,-,||) is an sp-algebra [LW98a] if - and || are associative
binary operations on S and || is in addition commutative. A set L C SP(X)
of N-free pomsets is algebraically recognizable if there exists a finite sp-algebra
(S,-,]]) and a homomorphism 7 : (SP(X), -, ||) = (S, -, ||) such that L = n 'n(L).
Lodaya & Weil showed the following relation between the concepts introduced so
far:
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Theorem 6.1.2 ([LWO0O0]) Let L C SP(X). Then the following are equivalent
1. L is series-rational.
2. L 1s algebraically recognizable and width-bounded.
3. L can be accepted by a branching automaton and is width-bounded.

Our next aim is to complete this picture concerning the recognizable languages
of sp-pomsets in the spirit of Biichi’s theorem, i.e., we want to relate the expressive
power of monadic second order logic to that of branching automata.

Example 6.1.3 Let a denote the a-labeled one-point pomset for any a € X.
Then S = (a || a)® is a rational language. It consists of all antichains of an even
number of a-labeled vertices. In particular, S is not width-bounded and therefore
not series-rational. Furthermore, S cannot be monadically axiomatizable since it
is impossible to axiomatize the finite sets of even size in this logic relative to all
finite sets.

The example above shows that not every rational sp-language can be monad-
ically axiomatized. It is not clear which additional features should be adjoint
to MSO to obtain precisely the expressive power of rational sp-languages. Even
though there are rational languages that cannot be monadically axiomatized, this
does not occur in the context of weakly rational languages:

Proposition 6.1.4 Let L be a weakly rational language. Then there exists a
monadic sentence o such that L = {t € SP(X) | t = o}.

Proof. Clearly, any finite set of sp-pomsets can be monadically axiomatized.
Now let S and T be two sets of sp-pomsets axiomatized by the monadic sentences
o and 7, respectively. Then SUT is axiomatized by oV 7. The set S || T' consists
of all sp-pomsets satisfying

AXVaVy(zr e XAy X —a||yy Ao [ X AT [ X9

where o [ X is the restriction of ¢ to the set X and 7 [ X that of 7 to the
complement of X. Similarly, S -7 is axiomatized by

AX(VaVy(zr e XNy g X max<y)ANo [ X AT [ X9).

Next we show that S* can be described by a monadic sentence: The idea of
a sentence axiomatizing S* is to color the vertices of an sp-pomset s by two
colors such that the coloring corresponds to a factorization in factors s = sy - so -
s3 - - -8, where every factor s; belongs to S. The identification of the S-factors
will be provided by the property of being a maximal convex one-colored set. More
formally, we define ¢ = IX3IY (o1 A ¢x A py) where ¢; asserts that X and YV
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form a partition of the set of vertices. The formula ¢x states that the maximal
subsets of X that are convex satisfy o, i.e.

vx =VZ( ZC X AZisconvex A
VZ'(Z CZ' CXNZ is convex — Z = Z')
—o | Z)

and the formula ¢y is defined similarly with Y taking the place of X.

Finally, we have to deal with the parallel iteration . Recall that it is applied
to languages of the form S = S - Sy, only. Hence, any element of the iterated
language S (as a partial order) is connected. Thus, the informal sentence

@ =VZ(Z is connected — o [ Z)

axiomatizes S®. Since in monadic second order logic the transitive closure of
the comparability relation < U > can be defined, one can express that a set is
connected. Hence, S® can be monadically axiomatized whenever S is the product
of two monadically axiomatizable languages. 0

Thus, rational languages are not necessarily monadically axiomatizable, but
weakly rational languages and therefore series-rational languages are monadi-
cally axiomatizable. Hence, by Theorem 6.1.2, any algebraically recognizable
and width-bounded set of sp-pomsets is monadically axiomatizable. The inverse
implication is based on the following model theoretic notion: Let s,t € SP(X) be
sp-pomsets. Then s and t are monadically indistinguishable of level n (s =, t),
if we have s = ¢ <= t = ¢ for any monadic sentence of quantifier depth at
most n. The relation =, is obviously an equivalence relation on SP(X). Further-
more, it has only finitely many equivalence classes since there are, up to logical
equivalence, only finitely many monadic sentences of quantifier depth at most n.
A simple application of monadic Ehrenfeucht-Fraissé-games yields that =,, is even
a congruence on (SP(X),-,||) (cf. [EF91, Proposition 2.1.4]). This fact implies

Theorem 6.1.5 Let L C SP(X) be width-bounded. Then the following are equiv-
alent

1. L is monadically axiomatizable.

2. L can be accepted by a branching automaton.

Proof. The implication 2=-1 is a special case of Proposition 6.1.4 together with
Theorem 6.1.2. For the other implication, let L be axiomatized by the monadic
sentence . Let n be the quantifier depth of ¢. Furthermore, let (S, -, ||) be the
quotient of the sp-algebra (SP(X),-,||) w.r.t. =,. Then nat : SP(X) — S is a
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homomorphism such that s = ¢ <= ¢ € nat(s) <= @ €nat(t) < t k=
for any s,t € SP(3) with s € L and ¢ € nat ™' nat(s). Hence the homomorphism
nat recognizes L, i.e., L is algebraically recognizable and can therefore be accepted
by a branching automaton by Theorem 6.1.2. 4

So far, we proved in this section a Biichi-type theorem for sp-pomsets which
answers a question left open in [LW00]. Next, we will investigate the relation
between the expressive power of branching automata and asynchronous-cellular
automata: Branching automata accept pomsets which, in general, are no X-dag.
Therefore, we will consider the set of Hasse-diagrams of pomsets accepted by a
given branching automaton. Conversely, an ACA can accept ¥-dags that are not
Hasse-diagrams of pomsets. But, for any ACA A, we find a branching automaton
B accepting the same Hasse-diagrams of sp-pomsets as A does:

Corollary 6.1.6 Let A be a X-ACA. Then there exists a branching automaton
B such that Ha(L(B)) = L(A) N Ha(SP(X)).

Proof. By Theorem 5.1.1, the set L(A) is a monadically axiomatizable set of
Y-dags. Similarly, Ha(SP(X)) is monadically axiomatizable. Hence there is a
monadic sentence ¢ that is satisfied by an sp-pomset ¢ iff the Hasse-diagram of
t belongs to L(A), i.e., L(A) N Ha(SP(X)) = {Ha(t) | t € SP(X) | t = ¢}. Now
Theorem 6.1.5 ensures the existence of a branching automaton B as required. [J

Thus, any asynchronous-cellular automaton can be simulated by a branching
automaton. To show that the converse holds as well, we first prove that sp-
pomsets permit k-chain-coverings:

Lemma 6.1.7 Let n € N. Then there exists a natural number k such that
Ha(t) € Dy for any sp-pomset t € SP(X) of width at most n.

Proof. Let t = (V,<,\) € SP(X) be of width at most n. We show that any
totally unconnected set in spine(Ha(t)) (cf. page 61) contains at most 2n(n +
1) — 1 elements: By contradiction, let X C V be a totally unconnected set in
spine(Ha(t)) of size 2n(n + 1). Then it contains a chain of size 2n + 2 since n
is the maximal size of an antichain in ¢. Let 27 < 29 < :++ < Z9,42 be a chain
in X. Since z,4; and x,,9 are unconnected in spine(Ha(t)), there is y € V with
Tne1 —< y that is incomparable with x,, o, or there exists z € V with z —< x4
that is incomparable with x,, 1.

Suppose that both, y and z, exist. If they are incomparable, we obtain y >
Tnt1 < Tpyo > 2, Y || {&nyo, 2}, and 2z || z,41. Hence the subposet of ¢ consisting
of {y, Tpy1,Tnio, 2} is isomorphic to (N, <y), a contradiction. Hence y and z
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have to be comparable. Since x,.1 < y and Ty,+1 || 2, this implies z < y. Since
Zpt1 and z, 1o are unconnected in the spine of Ha(t) and comparable, there exists
uw €V with z,11 < u < xpq2. Now y > u is impossible since x,; —< y. Thus,
in particular, z % u. Similarly, z < w is impossible since z —< 4o which also
implies y € u. Thus wu is incomparable from y and z. As we already know that
y and x,o are incomparable, we found a copy of (N, <y): y > 2z < 12 > u, a
contradiction. Thus, we cannot find y and z with the properties described above.

In other words, either we find an element y that covers x,,; and is incompa-
rable with z,,,2, or there is z covered by z,,» and incomparable with x,.;. We
only consider the first case since the second one is symmetric.

So any lower neighbor z of x,,, dominates z,,; and therefore x; < z for
1<i1<n+1 Soletl <i<n+1. Since z; and z,,o are unconnected
in spine(Ha(t)), there is y; € V with x; —< y; such that y; is incomparable
with x,42. Hence in particular y; and z; for ¢« < j are incomparable. Now let
1 <7< j<n+1and assume y; < y;. Then the elements y;, y;, z; and x,, form
an N which is impossible. Hence the elements y; are mutually incomparable for
1 <i< j<n+ 1. But this contradicts the fact that any antichain in ¢ has at
most n elements.

Thus, indeed, the size of totally unconnected sets in spine(Ha(t)) is bounded
for t € SP(X) with w(t) < n. Now the statement follows from Lemma 5.2.3. [

Let B be a branching automaton. Then the elements of L(3) can have auto-
concurrency, i.e., Ha(L(B)) is not necessarily a set of 3-dags. But if we consider
only those elements of Ha(L(B)) that are Y-dags, we obtain a set recognizable
by a X-ACA:

Corollary 6.1.8 Let B be a branching automaton. Then there exists a %-ACA
A such that Ha(L(B)) ND = L(A).

Proof. By Theorem 6.1.5, the sets L(B) and therefore Ha(L(B))ND are monad-
ically axiomatizable. Ha(L(B))ND = L(.A) is in addition width-bounded. Hence,
by Lemma 6.1.7, Ha(L(B)) N D C Dy, for some k € N. Now Theorem 5.2.10 com-
pletes the proof. Il

6.2 P-asynchronous automata by Arnold

Generalizing the asynchronous automata for traces, Arnold defined P-asynchro-
nous automata that are meant to accept X-labeled pomsets without autocon-
currency [Arn91]. In this section, we present in a condensed form some of his
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definitions and then show that the accepting power of P-asynchronous automata
is captured by that of 3-ACAs.

The tuple B = ((S:)icr: (0a,7)acs,ucr, t, Fy I, (Dg)aex) is a P-asynchronous au-
tomaton over the alphabet Y provided

1. I is a finite set of indices with ¥ C I,
2. 5; for i € I is a finite set of local states of process i,

3. 04t [LjesS; = Iljes S; is a local transition function for a € ¥ and
0£JCT,

4. D, : S, — 2"\ {0} is a mapping for a € X,
5. 1 € [[,¢; Si is the initial state and F' C [],.; S is the set of accepting states.

Above, I said that P-asynchronous automata are meant to accept pomsets.
But the way they do this is more involved than for ACAs. First, from an P-
asynchronous automaton, one defines a sequential automaton over Y as follows:
The set of states is the direct product of the local state spaces S =[], S;. The
transition function is defined in two steps: Let a € ¥ and s = (s;);e; € S. Then
J := D,(s) is a subset of I. Let (s})jes := 0a,1((s5)jes) and, fori € I\ J, s := s;.
Then 6(s,a) := (s})icr- In other words, the transition function 6 : S x ¥ — S
changes only some components of its state space. The function D, decides, which
components are changed according to which local transition function ¢, ;. Then
the tuple (5,4, ¢, F') is a classical sequential automaton over the alphabet ¥. Now
let w = ajas...a, € ¥* be some word over ¥. Since the sequential automaton
derived from B is total and deterministic, there is an initial computation path of

the form
0

Forl </ <m,let J,:= Dal(sfufl) # (), i.e. J; is the set of components of I that are
changed in the ¢th computation step. Then o(w) = (ay, J1)(ag, Jo) ... (an, Jy)
is a word over I' := ¥ x (27 \ {#}). On the alphabet I', we again consider the
dependence relation

L= (8;)ier — (Sg)iel =5 (Sf)iel =y (s )ier-

D ={((a,M),(b,N)) €T? | MNN # 0 or a = b}.

Let [o(w)] = (V, <, Ar) denote the trace from M(I', D) associated to the word
o(w). Finally, let m; : I' — ¥ be the projection to the first component of a letter
from T". Then [w]|s := (V,<,m o Ar) is a X-labeled partially ordered set. Note
that it is completely determined by the word w € ¥*, i.e. the P-asynchronous
automaton B defines a mapping from ¥* into the set of ¥-labeled partial orders.
The image of this mapping is denoted by P(B) = {[w]s | w € £*}. A set of
Y-labeled pomsets P is a-reqular if there exists a P-asynchronous automaton B
with P(B) = P.
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Let w € ¥* and let (V,;<,)\) = [w]g denote the associated partial order.
Since in (I, D) pairs with the same letter from ¥ are dependent, this partial
order has no autoconcurrency. Furthermore, the ¥-dag (V, —<, A) admits a |D|-
chain covering since the Hasse-diagram of the trace [o(w)] is a (I, |D|)-dag by
Example 5.2.1.

Now let again B be a P-asynchronous automaton and let (S,6,¢, F') denote
the sequential automaton derived from B. We write W(B) for the set of words
that are accepted by (S, 0,t, F') and call this set the word language accepted by
B. The pomset-language accepted by B is defined by

L(B) :={[w]s | w € W(B)}.

Note that any set of ¥-labeled pomsets that can be accepted by a P-asynchronous
automaton is contained in some a-regular set since L(B) C P(B). In particular,
for any P-asynchronous automaton B, the set Ha(L(B)) of Hasse-diagrams of
accepted pomsets consists of (3, k)-dags for some k. On the other hand, for & > 1,
there is no P-asynchronous automaton B with Ha(L(B)) = Dy. In particular, P-
asynchronous automata cannot accept Dy relative to Dy,. Since this is possible
by a X-ACA (cf. Corollary 5.2.7), the expressive power of 3-ACAs is not captured
by that of P-asynchronous automata. But, on the contrary, any P-asynchronous
automaton can be simulated by a ¥-ACA:

Theorem 6.2.1 Let B be a P-asynchronous automaton over . Then there exists
a 2-ACA A with Ha(L(B)) = L(A).

Proof. The word language o(W(B)) = {o(w) | w € W(B)} is recognizable
in I'*. By [Arn91, Lemma 5.1}, o(W(B)) is closed with respect to the trace
equivalence, i.e. if w' € o(W(B)) and v’ € I'* with [w'] = [V'], then v' € o(W (B)).
Hence the trace language {[o(w)] | w € W(B)} C M(I', D) is recognizable. By
[EMO6], it can be monadically axiomatized, say, by the sentence ¢. In ¢, replace
any subformula of the form Ar(z) = (a, M) by AMz) =an{iel |z € C}=M
and denote the resulting formula by ¢’. Now consider the following sentence 1):

JiesCs : ( C;is achain for i € T
Az, y: (v —< y— (A(z) = ANy) Vz,y € C; for some i € I))
Nz, y: (2 |y = Mz) # Aly))
Ag'

)

Then 1) axiomatizes L(B). Since the order relation < can be monadically defined
from the covering relation, we get that Ha(L(B)) can be monadically axiomatized.
This is a set of ¥-dags and, even more, it is contained in Dy, with k£ = |D|. Hence,
by Theorem 5.2.10, it can be accepted by some YX-ACA A. Thus, we showed
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Ha(L(B)) = L(.A) for some X-ACA A. O

Thus, the advantage of P-asynchronous automata is that they are determinis-
tic and therefore can easily be complemented. But this complementation always
refers to the set P(B), i.e. the complemented P-asynchronous automaton accepts
P(B) \ L(B). On the other hand, the expressive power of P-asynchronous au-
tomata is strictly weaker than that of asynchronous cellular automata.



