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Chapter 7

Preliminaries

In the introduction, I explained that traces can be defined in two different ways:
either as combinatorial structures (dependence graphs) or as elements of a free
partially commutative monoid. The first part of the present work generalized the
first approach considering ¥-dags. Now we are going to deal with a generalization
of the second approach, i.e. we consider divisibility monoids. It might not be clear
at first glance that they indeed generalize trace monoids since the divisibility
monoids are defined in a different spirit than trace monoids, but from Theorem
8.2.10 it follows immediately that any trace monoid is a divisibility monoid. It
is the aim of this part to carry over large parts of the theory of recognizable
languages in the trace monoid to our setting of divisibility monoid.

This chapter starts with some simple monoid-theoretic preliminaries. Then,
we introduce left divisibility monoids and show some of their basic properties
that will be useful in our further considerations. These definitions as well as
the results in the first two sections are taken from [DK99, DKO0O0]. In the last
Section 7.3 of this chapter, a Foata Normal Form for the elements of a divisibility
monoid is defined and considered. This Foata Normal Form, besides the fact that
it stresses the connection with trace monoids, will be useful later in Chapter 10
where we will characterize when a divisibility monoid satisfies Kleene’s Theorem.

7.1 Monoid-theoretic preliminaries

A triple (M,-,1) is a monoid if M is a set, - : M x M — M is an associative
operation and 1 € M is the unit element satisfying 1 -2 = x -1 = x for any
x € M. Let (M,-,1) be a monoid and X C M. Then, by (X) we denote the
submonoid of M generated by X, i.e. the intersection of all submonoids of M
that contain X. If (X) = M, X is a set of generators of M. The monoid M is
finitely generated if it has a finite set of generators. Let X be a set. Then X*
denotes the set of all words over X. With the usual concatenation of words and
the empty word as unit element, this becomes a free monoid generated by X.
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Let M = (M,-,1) be a monoid. We call M cancellative if v -y-z=x-y -2
implies y = ¢/ for any x,y,y’, 2 € M. This in particular ensures that M does not
contain a zero element (i.e. an element z such that z-x = z-z = z for any x € M).
Now let = - y = z. Then, in a cancellative monoid y is uniquely determined. We
denote it by x7'z. For z,y € M, x is a left divisor of y (denoted x < y) if there
is z € M such that x - z = y. In general, the relation < is not antisymmetric.

Lemma 7.1.1 Let (M,-,1) be a cancellative monoid and a € M. Then the
mapping a : (M,<) — (a - M,<) defined by a(x) := a -z is a quasi order
1somorphism.

Proof. Since the monoid M is cancellative, the mapping a is bijective. Now let
b,c € M. If ab < ac, we find d € M such that abd = ac. Now b < ¢ follows by
cancellation. The other implication is trivial. U

Let T := (M \ {1})\ (M \ {1})%. The set T consists of those elements of M
that do not have a proper divisor, its elements are called #rreducible. Note that
T has to be contained in any set generating M.

The set of rational sets in a monoid (M, -, 1) is the least class € C 2M such
that

e all finite subsets of M belong to €,

e X - Y={z-y|lrzeX,yeY}and X UY belong to € whenever X, Y € €,
and

e (X) belongs to € whenever X € €.

A set L C M is recognizable iff there exists a finite monoid (.5, -, 1) and a homo-
morphism 7 : M — S such that L = n7'n(L). Recognizable sets are sometimes
called recognizable languages. 1t is easily verified that the set of recognizable
languages in a monoid (M, -, 1) is closed under the usual set-theoretic operations
union, intersection and complementation. Furthermore, in any monoid the empty
set as well as the whole set are recognizable.

In general, the sets of recognizable and of rational subsets of a monoid are
different and even incomparable. For finitely generated monoids, it is known
that any recognizable set is rational (and that this property characterizes the
finitely generated monoids). The other implication holds in particular in finitely
generated free monoids:

Kleene’s Theorem ([Kle56]). Let T be a finite set. Then a set L C T* is
rational iff it is recognizable.
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Since the set of recognizable languages is closed under the usual set-theoretic
operations, the set of rational languages in the free monoid 7™ enjoys these closure
properties.

For x € T*, let a(xz) denote the alphabet of z comprising all letters of T
that occur in #. Then Lg := (B) N L\ (Uycp(A4)) with B C T is the set of
elements x of L with a(z) = B. If L is rational, the language Lp is rational,
too. The language L is monoalphabetic if L = Lg for some B C T. The class
of monoalphabetic-rational languages (m-rational for short) in 7* is the smallest
class € C 27" satisfying

e all finite subsets of 7™ belong to €,
e X -Y and X UY belong to € whenever X, Y € €, and
e (X) belongs to € whenever X € € is monoalphabetic.

The following lemma seems to be folklore but we could not find an explicit
reference.

Lemma 7.1.2 Let T be a finite set. Then a language in T™ is rational iff it is
m-rational.

Proof. The implication <« is trivial. For the other implication, one shows by
induction on the size of B C T that (L) 5 is m-rational for any rational language L.
Then the result follows since (L) is the union of these languages.

For B = (), the statement is trivial. Now observe that

<L>B =K -(K)- U <L>X
XCB
with K = UCC;&B (L) - Lp. By the induction hypothesis for C, X C B, the

languages (L) and (L) are m-rational. In addition, K is monoalphabetic (its
alphabet equals B). Hence (L*)p is m-rational. O
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7.2 Definition and basic properties of
divisibility monoids

Definition 7.2.1 A monoid (M, -, 1) is called a left divisibility monoid provided
the following hold

1. M is cancellative and its irreducible elements form a finite set of generators
of M,

2. x Ay exists for any z,y € M, and
3. ({z, <) is a distributive lattice for any x € M.

Note that by the third axiom the prefix relation in a left divisibility monoid is
a partial order relation. Since, by Lemma 7.1.1, y < z implies z - y < x - z, a left
divisibility monoid is a left ordered monoid. Ordered monoids where the order
relation is the intersection of the prefix and the suffix relation were investigated
e.g. in [Bir73] under the name “divisibility monoid”. Despite that we require
more than just the fact that (M, -, <) be a left ordered monoid this might explain
why we call the monoids defined above “left divisibility monoid”. Since Birkhoft’s
divisibility monoids will not appear in our investigations any more, we will simply
speak of “divisibility monoids” as an abbreviation for “left divisibility monoid”.

Let (M,-,1) be a divisibility monoid and let x,y € M with z -y = 1. Then
1 <2 <1 implies x = 1 since by the third axiom < is a partial order. Hence we
have y = x -y = 1, i.e. there are no proper divisors of the unit element.

Example 7.2.2 Using classical results from trace theory, one can show that
any (finitely generated) trace monoid is a left divisibility monoid. Now let ¥ =
{a,b,c,d} be an alphabet. Let ~! be the least congruence on the free monoid
>* that identifies the words ab and cd. In a trace monoid, the equality ab = cd
implies {a,b} = {c,d} for any generators a,b,c,d. Hence the quotient monoid
¥*/~! is not a trace monoid. But, as we will see later, it is a divisibility monoid.
Similarly, let ~? identify aa and bb. Again, ¥*/~2 is no trace but a divisibility
monoid. Finally, identifying aa and bc again results in a divisibility monoid.
The proof that these three monoids are indeed divisibility monoids is delayed to
Chapter 8 where we will give a finite representation for divisibility monoids (cf.
Theorem 8.2.10).

Since a divisibility monoid (M, -, 1) is generated by the set T of its irreducible
elements, there is a natural epimorphism nat : 7 — M. Now let A C M be
finite and x € M with A < z. Since (Jx, <) is a lattice, the supremum y of A
in this lattice exists. Now let z € M be an upper bound of A in (M, <) which is
not necessarily in the lattice Jz. Then y and z have an infimum y A z in (M, <).
This infimum is an upper bound of A dominated by y. Thus y = y A z < z.
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Hence y is even the supremum of A in the partially ordered set (M, <). Thus we
showed that any finite set, bounded above, has a supremum in (M, <) (Lemma
7.2.3 below will imply that this holds for any bounded set A). This supremum
of A can be viewed as the least common multiple of A, whereas the infimum of
A is the greatest common (left-)divisor of A. Note that (M, <) is not necessarily
a lattice since it may contain unbounded pairs of elements. By Lemma 7.1.1,
multiplication in a left divisibility monoid (M, -, 1) from the left (but not from
the right) distributes over infima and suprema, i.e. a- (b A ¢) = ab A ac for any
byc € M and a- (bV c) = abV ac provided {b,c} (or, equivalently, {ab,ac})
is bounded above. This is essential in the following proof that shows that any
element of a divisibility monoid has only finitely many left divisors:

Lemma 7.2.3 Let (M,-,1) be a divisibility monoid and m € M. Then {m is
finite.

Proof. Let T C M be the set of irreducible elements of M. Then T is a finite set
of generators of M. By contradiction, assume n € N minimal such that there exist
X1y, Ty € T with |(x1 - T2 ...2,) infinite. Then n > 2. Let m :=x1 - 2. .. Zy.
Since the set |m is an infinite distributive lattice, it contains an infinite chain C'.
By Lemma 7.1.1, ({y € M | 2y <y < m}, <) = ((xe-x3...2,),<). Since n
is minimal, the sets |z; and {y € M | z; < y < m} are finite. Hence there
exist x,y € C such that < y, xV2; = yVa, and x Ax; = y A x;. Since
Im is distributive and complements in a distributive lattice are unique [Bir73,
Corollary to Theorem II.13], this implies # = y contradicting = < y. |

Thus, for an element m of a divisibility monoid, ({m, <) is a finite distributive
lattice. Let |m| denote the length of this lattice which equals the size of any
maximal chain deduced by 1. It is easily checked that x —< y iff there exists
t € T with z - nat(t) = y for any x,y € M. Hence the maximal chains in |m
correspond to the words w € T™* with nat(w) = m. This implies that any two
such words have the same length which equals |m)|.

By the second requirement on divisibility monoids, the partial order (M, <)
can be seen as the set of compacts of a Scott-domain. The lemma above ensures
that it is even the set of compacts of a dI-domain (cf. [Ber78, Win87]). Thus, we
have in particular (z Vy) Az = (x A z) V (y A z) whenever the left hand side is
defined.

Let M again be a divisibility monoid. Two elements x and y are complemen-
tary (denoted by z o y) if t Ay = 1 and {x, y} is bounded above. In this case the
supremum z = x V y exists in M. Then z and y are “complementary” elements
of the lattice |z which explains our choice of the name. Since M is cancellative,
there is a unique element z such that y -z = x VvV y. This element z is called the
residuum of x after y and denoted by = 1 y. Note that it is defined for comple-



CHAPTER 7. PRELIMINARIES 86

mentary elements x and y only. Hence x 1 y is defined iff y 1 x is defined and in
this case z(y 1 z) = y(z 1 y). Fixing 2 € M, we get a unary partial function r,
from M to M by dom(r,) :={y € M | 2@y} and r,(y) := y T 2. The function
r, will be called the residuum function of x. We may turn it into a total function
on M by introducing an additional element. Therefore an equation 7, (y) = r,(y)
means “r;(y) is defined iff r,(y’) is defined and in this case they are equal”.

As an example, consider the trace monoid over the dependence alphabet
(X, D). Then the infimum of two traces s and ¢ is trivial whenever no letter
occurs in s as well as in ¢. In this case the set {s,¢} is bounded iff any letter
from s is independent from any letter from ¢. Hence s and ¢ are complementary
if and only if they are independent in the sense of trace theory. Now assume s
and ¢ to be independent traces. Then their supremum equals st = ts. Hence the
residuum of s after ¢ equals s, i.e. the residuum function r; is contained in the
identity function idyys py and is completely given by the set of letters that occur
in t. In other words, the notion of a “residuum function” in a trace monoid is
pretty trivial, but in the context of divisibility monoids it turns out to be of great
importance as most of our proofs rely on this concept.

Lemma 7.2.4 Let (M,-,1) be a divisibility monoid and x,y € M with x ©y.
The residuum function r, is injective on its domain. Furthermore, |y| = |rz(y)|.

Proof. Let 3y € dom(r,) with 7,(y) = r,(y'). Then z Ay =2 Ay’ = 1. By the
definitions of 1 and r, we get zVy = z(yTz) = 2(y' tz) = 2Vy'. Hence y and ¢/
are complements of z in the lattice |(z V y). Since complements in a distributive
lattice are unique [Bir73], this implies y = ¢/'.

To show that 7, is length preserving, let z =2V y = x - rz(y). Then z is the
complement of y in the distributive lattice |z. Hence the height of z is the sum
of the heights of « and y in this lattice [Bir73]. O

Next we show some formulas satisfied by the residuum functions that will be
useful in our subsequent considerations.

Lemma 7.2.5 Let (M,-,1) be a divisibility monoid and x,2',y,z € M.
1. zoyz iff toy and ry(z) o 2.
Ty (x) =1 (ry(2)); in other words x 1 (yz) = (z Ty) 1 2.

r2(y2) = 12(y) - Ty () (2); equivalently yz ta = (y 1) (21 (x 1y)).

_[f Ty = Ty and yu).r then Tr,-y(m) - TTy(m’)'
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Proof. 1. First we show the implication =-. Therefore, let z @yz. Then
x Ayz = 1 and the set {z,yz} is bounded above. Hence x Ay = 1 and {z,y}
is bounded above since y < yz, i.e. zy. To show that r,(z)w z, note that
ry(x) is defined since x and y are complementary. Then yr,(z) = x V y by the
definition of r,. Note that {z,yz} and therefore {x,y,yz} is bounded above.
Hence {z V y, yz} is bounded above. Now the boundedness of {r,(x), 2z} follows
by x Vy = yry(z) and Lemma 7.1.1. Furthermore,

y-(ry(x)Nz) = yry(x) ANyz by Lemma 7.1.1
= (zVy)Ayz
= (xAz)V(yAyz) by distributivity
= 1Vy=y since x @wyz and y < yz

Since M is cancellative, we showed r,(z) Az = 1.

To show the inverse implication, let z @y and r,(z)@z. Then z A yz <
(x Vy) ANyz = yry(z) Ayz. By Lemma 7.1.1 this equals y(ry(z) A 2z). Since
ry(x)(oz we get t Ayz <y. Hence x Ayz =2 ANyAyz=1Ayz =1 since x my.
To show that {z,yz} is bounded, note that {yr,(z),yz} is bounded by r,(x) 0 2
and Lemma 7.1.1. Hence {z V y,yz} and therefore {x,yz} are bounded which
finishes the proof of the first statement.
2. Since M is cancellative, the following equation implies 7y, (z) = 7,(ry(z)):

yery:(z) = zVyz by the definition of the function r,,
= (zVy)Vyz sincey < yz
= yry(z) Vyz
= y(ry(z)Vz) by Lemma 7.1.1
= yzra(ry(x))-

3. Similarly, r,(yz) = r.(y)7r,()(2) follows from the following equation since we
can cancel z from the left:

xry(yz) = xVyz=zxVyVyz since y < yz
= yry(z) Vyz since x V y = yry(z)
y(ry(z) V 2) by Lemma 7.1.1

yry@)rry(x)(z) =(zV y)rry(a:)(z)
= 2rp(Y)rr, (2)(2)-

4. Let z € dom(r,, (). By the second statement and 7, = 7y, we obtain

To(Y)rry(2)(2) = T2(y2) = 10 (y2) = 1o (Y)1r, @) (2) = 12(yY) 77, @) (2). Now we can
conclude 7, (z)(2) = 7r,(r)(2) by cancelling 7,(y) from the left. O

Note that the second statement implies r, o r, = r,, where o is the usual
concatenation of partial functions. Hence the set Ry, = {r, | x € M} is closed
under concatenation. Since 7 is the identity function on M, (Ry,0,77) is a



CHAPTER 7. PRELIMINARIES 88

monoid, the monoid of residuum functions of M. The function r : M — Ry
with r(z) := r, is a monoid antihomomorphism. We say that M has finitely
many residuum functions if Ry, is finite, i.e. there are only finitely many different
functions r,, (x € M). Actually, it is not clear whether this is a definite restriction
since we do not know any divisibility monoid with infinitely many residuum
functions. But, on the other hand, we did not succeed in proving that any
divisibility monoid has finitely many residuum functions.
Later, we will need the following

Lemma 7.2.6 Let M be a divisibility monoid and x,y € M with x oy and
re Cidy. Then 1,5y C iday.

Proof. Let z € dom(r,,(s)), i.e. z@ry(x). Then (by Lemma 7.2.5(1)) z @yz
implying r,(yz) = yz. But 7,(yz) =yztax=(ytz) - 2T (@ Ty) =y 1) (2)
by Lemma 7.2.5(3). Since we can cancel y from the left, we get z =7, (,)(2), i.e.
’f‘ry(w) g idM. O

Recall that nat : 7% — M is a homomorphism. Thus, one can easily define
functions res, : 7% — T* for + € M such that natores, = r, onat. E.g. one
could choose any normal form function NF: M — T* with nat oNF(z) = x for
x € M and then define res,(w) :=NFor, o nat(w). But then im(res,) consists of
normal forms, only. Thus, this partial function was not injective on its domain.
In addition, an equation similar to Lemma 7.2.5(3) was very unlikely to hold.
Therefore, we follow another way: Recall that for ¢t € T and x € M with z ot we
have |t| = |r;(¢)| by Lemma 7.2.4 and therefore r,(t) € T. Hence res,(t) := r,(t)
(if t © x) is a partial function mapping 7' to T. We extend it to a partial function
from T* to T* by res,(tu) := res,(t)res,,»)(u). Then one can easily check that

res, (tity .. . t,) = resx(tl)resrnat(tl)(w) (tg)resTnat(t1t2)(w) (t3) - T€Sr iyt (®) (tn)

and therefore

resy (uv) = resg (u)res, . . (V). (7.1)
Now let z,y € M, t € T and u € T*. We get immediately res,,(t) = ryy(t) =
Ty(rz(t)) = resy(res,(t)) since r, and r, are length preserving. Now we can
conclude

resy(resy(tu)) = resy(resy(t)res,,)(u)) by (7.1)

= ros, (resi (1)) - 165, ) (105, (1)) by (7.1)

= reswy(t) *TeSr ()1 res,, (1) (¥) (u)

= TeSyy(t) - resy,(ay) (u)

= resy,(tu).
Now let v € T be a word over T. Then we define res, := respa(,). Thus,
dom(res,) = {u € T* | nat(u) onat(v)}. We write uwv for u € dom(res,).
Note that, similarly to r,, we have the following
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Lemma 7.2.7 Let (M,-,1) be a divisibility monoid and u,v,w € T*.

resyy(U) = resy(res,(u)),
res,(Vw) = 1esy, (V) TeSres, (u) (W), and
nat(res,(u)) = Tnat)(nat(u)).

Furthermore, res, 1s injective on its domain and length preserving.

Proof. Immediate by Lemmas 7.2.4 and 7.2.5. 4

Let Dy = {res, | u € T*} be the set of all residuum functions of words
over T. Then (Dyy, o, res.) is a monoid and res : T* — Dy, : u > res, is a monoid
antihomomorphism by Lemma 7.2.7. Since nat(t) =t for ¢t € T, in this case the
third equation can be written as res,(t) = rpas(v)(t). Using the first and the third
equation from Lemma 7.2.7, the mapping res, = rnat(u) turns out to be a monoid
homomorphism from (Dys, o, res.) onto (Rys,o0,71). The following lemma shows
that it is injective, i.e. that it is even an isomorphism.

Lemma 7.2.8 Let u,v € T*. Then res, = res, iff Tat(u) = Tnat(v)-

Proof. The implication = is immediate by the third equation from Lemma
7.2.7. Now let That(u) = Tnat(v)- If t € T and res,(t) is defined, then ryaq) () =
That(v)(t) and therefore res,(t) is defined. Furthermore, res,(t) = Tnat(u)(t) =
res, (t) proving the claim for arguments from 7. Now let w € T*. Then res, (tw) =
resy(t) resy,mat(u))(w). By the above argument, res,(t) = res,(¢). Furthermore,
by Lemma 7.2.5(4), Tri(nat(u)) = Try(nat(v)- NOW I"esrt(nat(u))<w) = resrt(nat(v))<w)
follows from the induction hypothesis. Hence res,(tw) = res,(t) res,,matw)) (W) =
res, (tw). O

Let u,u’,v,w € T*. If resy(u) = v and nat(u) = nat(v), by the third
equation in Lemma 7.2.7, it holds nat(res,(u’)) = nat(v). Conversely, assume
nat(res,(u')) = nat(v). Then the following lemma shows that there exists v € T*
with res, (u) = v (by the injectivity of rya¢(,) in addition nat(u) = nat(u')).

Lemma 7.2.9 Let z,y € M and t; € T for 1 < i < n such that r,(y) =
nat(tity...t,). Then there exist s; € T for1 < i < n such that res,(s152...5,) =
tity...t,. These elements s; of T are unique.

Proof. Since z Ay = 1, the intervals [1,y] and [z, V y] are transposed and
therefore isomorphic by [Bir73, Theorem 1.13] and an isomorphism is given by
a+— aV x for a € ly. Inductively, define s; to be the unique element in M with
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nat(s;ss...8;) Vo = x-nat(tity...t;). Then one can easily show that s; does not
have a proper divisor. In addition, #; 11 = s;31 T (x Tnat(syss...s;)) and therefore
res,;(s18o...8,) = tity ... t,. The uniqueness is immediate by the proof. O

7.3 A Foata Normal Form

Throughout this section, let (M,-,1) be a fixed divisibility monoid and let 7'
denote the set of its irreducible elements. For simplicity, let J(z) denote the
join-irreducible elements of the distributive lattice |z for any x € M. We define
the set of cliques Cf to consist of all nonempty subsets of T that are bounded
above. Since any subset of M that is bounded above has a supremum, we have
A ={ACT|D+# Aand sup(A) exists}. Let A € C/. Then any two distinct
elements s,t € A are bounded above. Furthermore, since s is an atom in the
partially ordered set (M, <), the infimum of s and ¢ belongs to {1, s}. But s and
t are incomparable. Hence we showed that any two distinct elements of A are
complementary. But this property does not characterize the cliques. The reason
is that even if any two elements of A C T are bounded above, the set A need not
be bounded.
Next we define the set FNF consisting of words over (¥ as

{A1Ay. . A, € 0" |Vt € A VB €l :sup B # (sup A;) - t for 1 <i < n}.

Since the condition that constitutes membership in FNF is local, FNF is a rational
language in Cf*. In addition, FNF is closed under cancellation from the left and
from the right, i.e. U, V,W € C¢* with UV W € FNF implies V € FNF. Let o' :
C¢! — M denote the mapping that associates with any clique A € (¥ its supremum
sup A in M. This mapping can be extended uniquely to a monoid homomorphism
a from C* to M. Then a(A;A;... A,) = (sup A;) - (sup Ag) - - - (sup A,). This
mapping is surjective since a({t;}{to}...{tn}) =t1-t2---t, for any t;, € T and
T generates M. On the other hand, it is easily seen not to be injective. The set
FNF is particularly useful since it provides normal forms for the elements of M,
i.e. since the restriction of o to FNF is a bijection (cf. Lemma 7.3.3). But before
we can prove this lemma, we need some more order theory:

Let (L, <) be a distributive lattice and x € L. Then the set fz together
with the partial order < N (f x 1) is a distributive lattice with join-irreducible
elements J(1x). Note that in general J(1z) # J(L) N tx. The following lemma
relates the join-irreducible elements of L and those of (1, <).

Lemma 7.3.1 Let (L, <) be a finite distributive lattice and x € J(L). The map-
ping f:J(L) \ o — J(tx) with f(y) = x V y is an order isomorphism.
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Proof. Let y € J(L)\ Jz. First we show that f(y) € J(1z): Let a,b € L with
x < {a,b} and aVb = a2 Vy. Then we have y = yA(zVy) =yA(aVb) =
(y ANa)V (y Ab). Since y is join-irreducible in (L, <), this implies (without loss
of generality) y = y A a, i.e. y < a. Thus, we have {z,y} < a < z V y. Hence,
a = x V y proving that x V y is join-irreducible in the distributive lattice (27, <).

To show that f is order preserving and reflecting, let y;,y2 € J(L). Clearly,
y1 < yo implies z V y; < x V yy. Suppose conversely x V y; < z V y3. Then
Y1 < x V yp. Since y; £ x, we obtain y; < ys from the fact that y; is prime in
(L,<). 0

Lemma 7.3.2 Let W = AjAs... A, € FNF and © := o(W) € M. Then we
have Ay ={t € T |t <z}, and a(A1 Ay ... A;) = sup{y € J(z) | h(y,J(x)) < i}
for1 <i<n.

Proof. Sincet < a(A4;) < a(W) =z fort € Ay, the inclusion “C” is immediate.
For simplicity, let A = {t € T | t < z}. Then A € (! and (}(supA),<) is
isomorphic to the power set of A, ordered by inclusion. If A; # A, thereist € T
with sup(A4;) -t < a(A) < 2z = a(A;)a(AsA43 ... A,). By cancellation, we get
t < a(AzA;3... A,). Inductively, this implies ¢t € Ay since AA;... A, € FNF.
Hence we found ¢t € A, and a clique A € (¢ such that sup(4;) -t < sup(A).
Since (}sup(A), <) is isomorphic to the powerset of A, there is B C A with
sup(A;) - t = sup(B), contradicting A; Ay € FNF.

Note that {y € J(z) | h(y,J(z)) <1} ={t € T | t < 2}. Hence the second
statement holds for i = 1. Now assume

a:=a(A1Ay... A1) =sup{y € J(z) | h(y,J(z)) <i—1}.

Then a-z = z with 2 = a(A4; A1 ... Ap). Since A;A;41 ... A, € FNF, by the first
statement, A; = {t € T | t < z} follows. Thus a(A;A4y... 4;) = a(A1Ay... A;4)-
a(A;) =a-sup{t € T |t < z}. Then a(A;Ay... A;) =aVsup{at |t € T,t < z}
by Lemma 7.1.1. Note that {at | t € T,t < z} is the set of elements of the
distributive lattice ([a,az], <) of height 1 in this lattice. Hence it is the set of
elements of height 0 in the set (J([a,az]), <) of join-irreducibles. Now Lemma
7.3.1 implies

{at |[te Tt <z} = {y€I(a,az]) | h(y,I([a,az])) = 0}
= {aVy' |y €J(az)\ la and h(y',J(az) \ La) = 0}.

Since laNJ(az) ={y" € J(az) | h(y',J(az)) < i— 1}, we get

{at [t eT,t <z} ={aVy |y €J(az) and h(y', J(az)) =i — 1}
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and therefore

a(A1Ay.. A;) = avsup{aVy' |y € J(az) and h(y',J(az)) =i — 1}
= aVsup(y € J(az) | h(y,J(az) =i —1}
= sup{y’ € J(az) | h(y' I(az)) <1}

Now the bijectivity of o [ FNF follows:

Lemma 7.3.3 The mapping o | FNF : FNF — M 1s bijective.

Proof. The injectivity follows inductively from the first statement of Lemma
7.3.2. To show surjectivity, let z,y € M\ {1}, A={te T |t <z}, a=sup(A),
a-y=xand B={te T |t<y} Itissufficient to show that AB € FNF,
i.e. that A, B € (/ and that sup(C) # sup(A) - t for any t € B and C € (/. But
A and B are nonempty since x # 1 # y, and A and B have suprema since they
are bounded by x and y, respectively. Thus, A, B € {. Now assume t € B and
C € (¢ with sup(C) = sup(A) - t. Then, for any s € C: s < sup(A)-t < x implies
s € A, ie. C C A. But this contradicts sup(C) > sup(A). O

Thus, for any x € M, the set a~'(z) N FNF is a singleton. We denote the
unique preimage of z in FNF by fnf(x) and call it the Foata Normal Form of x.
An immediate consequence of the second statement of Lemma 7.3.2 is

Corollary 7.3.4 Let v € M. Then |fnf(z)| exceeds the length of the partially
ordered set (J(x),<) by 1.

Next we show that the Foata Normal Form of nat(w) can be computed from
the word w € T™ by an automaton. In general, this automaton has infinitely
many states. But for “width-bounded divisibility monoids” (cf. Section 10.2) it
will be shown to be finite. This finiteness will be the basis for our proof that
“width-bounded divisibility monoids” are rational and therefore satisfy Kleene’s
Theorem.

An automaton over a monoid M is a quintuple A = (Q, M, E, I, F) where

1. @ is a set of states,
2. FECQ x M xQ is a set of transitions, and

3. I, F C Q are the sets of initial and final states, respectively.
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The automaton A is finite if E is. We will write p = ¢ for (p,a,q) € E. A
computation in A is a finite sequence of transitions:

Po gpl gPQ"‘%Pn-

It is successful if py € I and p, € F. The label of the computation is the element
ai - as- - - ay of the monoid M. For a computation with first state pg, last state p,
and label a, we will usually write py — p, without mentioning the intermediate
states. The behavior of A is the subset |A| of M consisting of labels of successful
computations in A.

If the monoid M is a direct product M; x My of two monoids, it is convenient
to think of M; as the input and of M, as the output of the automaton. Then the
automaton computes from an input in M; an output from Ms. In our context,
the input will be in the free monoid 7* and the output in the free monoid Cf*
(actually, in the recognizable language FNF C C/*). Therefore, we will construct
an automaton A,; over the monoid T* x C¢* as follows. The state set is the direct
product of M and (/. := C{ U {}, the only initial state is (1,£) and the set of
final states is {1} x Cl.. Now let (x, A),(z,C) € M x Cl. and (t,B) € T x (L.

Then (z, A) iy (z,0) iff
1. t<z,B=¢,t-z=xzand C = A, or
2. tox, B=C#¢, AB€FNF,and t-z =z - (sup B).

Since the transition relation is defined for labels from 7" x /., only, the length of a
computation equals that of the input word from 7*. Furthermore, the transition
relation E in this automaton is deterministic since, for any state (x, A) and any
(t, B) € T x (L. at most one of the conditions ¢t < x or t @z can be satisfied.
Thus, the starting state and the label of a computation determine its last state
completely. This final state is described in the following lemma.

Lemma 7.3.5 Let we T*, BiBy...B,, € C{*, z€ M and C € (/..
Then in the automaton Au, (1,€) (w51 Bay-Bm) (z,C) iff

(i) |fof o nat(w)| = m,

(ii) fnf(nat(w) - 2) = B1By... By, and

(iii) C = B,,.

Proof. We prove the lemma by induction on the length of the input word w.

Since the only computation with input word € € T*, starting in (1, ¢), is (1, ¢) ()
(1,¢), the statement is obvious for |w| = 0. Now assume that the statement holds
whenever |w| < n.
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Now, let v E T* and t € T with vt = w and |w| = n and assume that
(1,¢) (. B1Bay-Bm (z C) holds. First, consider the case that the last transition in

this computation is of the first kind, i.e. that (1,¢) (051 B2 B (t 2 C) ( ,O).

Then fnf(nat(w)z) = fnf(nat(v) - tz) which equals B;Bs...B,, by the induc-
tion hypothesis. Thus, (i) holds. To show (i), note that m = |fnf(nat(v))| <
|fnf(nat(vt) - 2)| = m, i.e. [fnf(nat(vt))| = m. Finally, (iii) holds since by the in-
duction hypothesis C' = B,,,. Now assume that the last transition is of the second

kind, i.e. there is a state (z, A) such that (1,¢) (v BBz fmo) (x,A) (t:2p) (z,C)
withtwz, B, = C # ¢, AB,, € FNF, and tz = x(sup B,;,). By the induction hy-
pothesis, |fnf(nat(v))| = m — 1, fnf(nat(v) - ) = B1By ... Byy—1 and A = B,,_;.
Then nat(vt) - z = nat(v) - « - sup(By,) = «(B1Bs...By,). Since the words
BB, ...B,, 1 and B,,_1B,, = AB,, belong to FNF, we have BB, ... B,, € FNF,
i.e. we showed (ii). It remains to show that m is the length of fnf(vt). Clearly,

—1 = |fnf(nat(v))| < |[fnf(nat(vt)-z)| = m. Now assume |[fnf(nat(vt))| = m—1.
Then, by Corollary 7.3.4, the partially ordered set (J(nat(vt)),<) has length
m — 2, i.e. J(nat(vt)) C {y € J(nat(w)z) | h(y,J(nat(w)z)) < m — 2}. Hence
from Lemma 7.3.2 we get

nat(vt) = sup J(nat(vt))
< sup{y € J(nat(w)z) | h(y, J(nat(w)z)) < m — 2}
= «a(B1By...By 1) =nat(v)z

by the induction hypothesis. Hence ¢ < x by cancellation, contradicting ¢ x.
Thus, we showed |fnf(nat(vt))| = m, i.e. (iii).
Conversely, let |fnf(nat(vt))| = m fof(nat(vt)-z) = B1By ... By, and C = B,,.

We want to show (1,¢) (v6.B1 By B (z C). First, assume |fnf(nat(v))| = m. Then
(t-z C) (z (). Since |fnf(nat(v))| = m, fnf(nat(v)-t-z) = B1B;... B, and

C = By, we can apply the induction hypothesis and get (1, ¢) (182 Bm (t -z, C).

Thus, (1,¢) P25 (o).

Now consider the case |fnf(nat(v))| < m. Since nat(v) —< nat(vt) in the
partially ordered set (M, <), there is y € J(nat(vt)) with J(nat(v))U{y} =
J(nat(vt)). Hence the length of (J(nat(v)), <) and that of (J(nat(vt)), <) dif-
fer at most by one, i.e. |[fnf(nat(v))| = m — 1 by Corollary 7.3.4. Therefore,
nat(v) < a(B1Bs... B, 1) by Corollary 7.3.4. Since the length of the partially
ordered set (J(a(B1Bs...By 1),<))is m — 2 and that of (J(nat(vt)), <) equals
m — 1, we get nat(vt) £ a(B1Bs ... Bp_1).

From nat(v) < «a(B1Bs...By_1), we deduce the existence of x € M such
that nat(v) - = a(B1Bs...By—1). This implies in particular fnf(nat(v) - x) =
B1Bs...By_1. In addition, nat(v)-z-a(Bp) = a(B1Bsy . .. By,_1Bp,) = nat(vt)-z

Bm . .
Hence za(B,,) = t-z. To show (z, B;,—1)  — (4 ) (z, Bp,), it remains to prove t o x.
Since {t,z} < t-zand t € T, it is sufficient to ensure ¢ £ x. So assume t < x.
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Then J(nat(vt)) C J(nat(v) - ). Hence the length of J(nat(vt)) is bounded by
that of (J(nat(v)-x), <) which equals m —2 since fnf(nat(v)-x) = B1Bs ... B, 1.

But this contradicts |fnf(nat(vt))| = m. Hence indeed (x, By, 1) (4 Bp) (z, Bn)-

Recall that |fnf(nat(v))| = m —1 and fnf(nat(v)-x) = B1Bs... B,,_1. Hence,

we can use the induction hypothesis and obtain (1,¢) (vB1 B2 1) (, Bip—1)-

But this implies (1,¢) (v1,B1 Bz Bm) (2, By) since (x, By, 1) t:B) (2, Bi)- O

Now we can show that the automaton A;; computes for any input word w € T*
the Foata Normal Form fnf o nat(w) of the associated element of the divisibility
monoid M:

Theorem 7.3.6 Let M be a divisibility monoid. Then the behavior | Ay of the
automaton Ay is the relation {(w,fnf(nat(w)) | w € T*} in T* x Cl*, i.e. the
automaton computes the function fnf o nat : T — Cl*.

Proof. By Lemma 7.3.5, an element (w, W) of T*xl* is the label of a successful
computation, i.e. of a computation that starts in (1,¢) and ends in {1} x C/,, if
and only if fnf(nat(w) - 1) = W. O



