Chapter 8

A finite representation

By definition, trace monoids M are finitely presented, i.e. there exists a finite set
E of equations of the form ab = ba with a,b € ¥ such that M is isomorphic to
¥*/E. Later, an algebraic characterization of trace monoids was found [Dub86].
Differently, divisibility monoids are defined by their algebraic properties. In this
chapter, we show that they can be finitely presented (cf. Theorem 8.2.10). Not
only will we show that this is possible in general, but we will give a concrete
representation for any divisibility monoid (cf. Lemma 8.2.1). Finally, we give a
decidable class of finite presentations that give rise to all divisibility monoids.
But first, we prove two order-theoretic results that we will need in this context.

8.1 Order-theoretic preliminaries
Lemma 8.1.1 Let (M, <) be a partially ordered set with least element such that
1. |z 1s finite for any x € M, and

2. for any x,y1, Y2, 2 with x —< y1,y2 and {y1,y2} < z, the least upper bound
y1 Vyo in (M, <) ezists.

Then any two elements of M that are bounded above have a least upper bound in
(M, <).

Proof. Let y1,ys,2 € M with y,y> < z. We have to show that y; and y, admit
a supremum. It can be assumed that y; and y, are incomparable for otherwise
we were done. Since (M, <) has a least element there is x € M with x < y;, yo.
Since |z is finite, the size of the chains in [z, z] is bounded. We will prove the
existence of y; V y» by induction on the size of these chains.

If any chain in [z, 2] has size at most 2, we have x —< yy, 4. Hence y; V 9o
exists. Now assume that any chain in [z, z] has at most n + 1 elements. Let
C; for ¢ = 1,2 be maximal chains in [z, 2] containing y;. Since C; is maximal,
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it contains z. Let z; be the least element of C; \ {z}. Since y; and y, are
incomparable, this implies + —< x; < y; for = 1,2. Hence the supremum
x1 V x9 =: a exists. Note that z; is a lower bound of y; and a. Since x —<
x; < z, the chains in the interval [z;, z] contain at most n elements. Hence by
the induction hypothesis y, := y; V a exist for i = 1,2. Since x —< x; < a, the
size of the chains in the interval [a, z] is bounded by n. Hence we can apply the
induction hypothesis to y{ and y, and obtain the existence of their supremum
Y1V Y-

We show that b := y| V ¥} is the supremum of y; and y,: Since y; < vy, we
obtain y; < b for ¢ = 1,2. Now let ¢ be an upper bound of y; and y,. Then it is
an upper bound of z; and z, and therefore of a, too. Hence y, < ¢ for i = 1,2
and therefore b < c. Il

By the Vilhelm-Sik-Jakubik Theorem (cf. [Ste91, Theorem 4.14]), any finite
semimodular lattice that is not modular contains a non-modular interval of length
3. Next, we prove a similar result that distinguishes modular from distributive
lattices!

Lemma 8.1.2 Let (L, <) be a finite modular but non-distributive lattice. Then
it contains a non-distributive interval of length 2.

Proof. Let [a,b] be a minimal non-distributive interval. Since [a, b] is modular
and non-distributive, there are mutually distinct elements yi, 42, y3 € [a, b] with
yiNy; =aand y; Vy; =bfor 1 <i < j <3 by [Bir73, Theorem II.13]. Hence
the intervals [a, y;] and [y;, b] are transposed for ¢ # j. Since the lattice (L, <) is
modular, all these intervals are mutually isomorphic [Bir73, Theorem 1.13].

Let a —< o’ < y;. Let 9 := 1y, V ' and yj := y3 V a'. Then y}, and y} belong
to the interval [a’, b] which is distributive since it is a proper subinterval of [a, b]
(cf. Figure 8.1). Hence we have

b = bAD
= (V) A(yaVyy) sincey; <y; <b
= (1 AUV i since y1, Yy, Y3 € [d', 0]

and this interval is distributive
= (A V) Vy
((pn ANy2) Va') Vy, since o’ <y and [a, b] is modular
= since (11 Ay2) =a < ad <y

'We give the proof although, by [FGL90, p. 270], it “is a well known result in the folklore
of lattice theory”.
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Figure 8.1: The elements from the proof of Lemma 8.1.2

Since a = a’ Ays and b = y4 = d' V y3, the intervals [a,a’] and [ys,b] are
transposed and therefore isomorphic. Hence y3 —< b. Since the intervals [a, y;]
and [y;,b] are mutually isomorphic, we therefore get a —< y; —< b, i.e. the
interval [a, b] has length 2. O

8.2 The finite presentation

Since a divisibility monoid M is generated by the set T' of its irreducible elements,
there is a congruence ~ on the free monoid 7* such that the quotient 7%/~ is
isomorphic to M. The following result that was shown in [DK00] states that this
congruence is quite natural and that the monoid M is finitely presentable.

Lemma 8.2.1 Let M be a divisibility monoid and T the set of its irreducible
elements. Let ~ denote the least congruence on the free monoid T* containing
{(ab,cd) | a,b,c,d € T anda-b = c-d}. Then ~ is the kernel of the natural
epimorphism nat : T* — M. In particular, M =2 T*/~.

Proof. Throughout this proof, we denote the product of a,b € T in the monoid
M by a - b, while the word is denoted by ab. Thus, a -b = nat(ab) € M and
ab e T™.

Note that u ~ v implies that v and v have the same length.

Clearly, the kernel of nat contains ~ since a-b = c¢-d implies nat(ab) = nat(c
for a,b,c,d € T. For the converse, let u,v € T* with nat(u) = nat(v). W h
u ~ v by induction on the length of u: If |u| = 0, clearly, nat(u) = nat(v) =
sou=v=c. If|luj=1thenu=veT.

d)
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Now let u = ujuy...u, and v = v1vy...v, with u;,v; € T and n > 2. If
uy = vy, we get nat(usus . .. u,) = nat(vevs...v,) by cancellation. By the induc-
tion hypothesis, this implies usus ... u, ~ vov3...v, and therefore uius. .. u, ~
V1V3 . ..V,. Thus assume uy # v;. Then wuy, v, are elements of the finite distribu-
tive lattice | nat(u). Hence there exist b,d € M such that uy-b=v-d = u; V.
One even has b,d € T since the distributive lattice | nat(u) is semimodular
[Bir73]. Note that u;b ~ v1d by the definition of ~. Since u;Vv; < nat(u), we find
y € T* such that (u; V v1) - nat(y) = nat(u). Hence nat(ujus . .. u,) = nat(u;by)
and therefore nat(us ... u,) = nat(by) by cancellation. The induction hypothesis
ensures us...u, ~ by. Now we have nat(v;dy) = (u; V v1) - nat(y) = nat(u) =
nat(v) implying nat(dy) = nat(vevs ... v,). Now dy ~ vv3. .. v, follows from the
induction hypothesis since the length of vyvs...v, equals n — 1. Thus, we have
ULUS - - - Uy ~ ULDY ~ v1dy ~ V1V . .. Up. O

In particular, Lemma 8.2.1 states that any divisibility monoid is (up to iso-
morphism) given by the equations a - b = ¢ - d for irreducible elements a, b, ¢, d
that hold in M. Next, we want to characterize which sets of equations of this
form give rise to divisibility monoids.

For the rest of this section, let T be a finite set and E a set of word equations
over T of the form ab = cd for a,b,c,d € T. Let ~ denote the least congruence on
the free monoid T* that contains F. In addition, let M := T*/~ be the quotient
of the free monoid with respect to ~. Furthermore, we require that the following
hold in the monoid M for any a,b,c,a’',b',c € T:

(i) (J(a-b-c),<) is a distributive lattice,
(i) a-b-c=a-b-cdorb-c-a="b-c-aimpliesb-c="¥-¢, and
(iii) a-b=d -V,a-c=d - and a # o imply b = c.
We will show that M is a divisibility monoid.

Remark 8.2.2 Let (M, -, 1) be a divisibility monoid. Let T be the set of irre-
ducible generators of M and let E consist of all equations of the form a-b=c-d
with a, b, ¢,d € T that hold in M. Then by Lemma 8.2.1, M = T/ <E> Further-
more, the distributivity in (i) is trivial since it holds for any 2 € M. Similarly,
(ii) is a special instance of the cancellation property in M. To show (iii) assume
a-b=dad-b,a-c=d-c and a # oa'. Then ab A ac exists. Note that a and o
are distinct lower bounds of {ab, ac}. Hence the infimum of ab and ac lies above
a and o' and below ab. But since a and o' are direct predecessors of ab, this
implies ab A ac = ab. Hence ab = ac implying b = ¢ by cancellation. Thus, any
divisibility monoid can be obtained this way.
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Example 8.2.3 Asan example, consider the monoid M = T*/ ((ab, cd), (de, ed))
where a, b, c,d, e are mutually different elements of the finite set T. Properties
(i) and (ii) are easily checked by considering all possible situations. The third
property is trivially satisfied. Let n: (Nx N, +,(0,0)) — (M, -, 1) be the monoid
homomorphism defined by 7(1,0) = d and n(0,1) = e. Then the preimage of the
rational language L = ((d-e)) C M in Nx N is {(n,n) | n € N}. Since this set is
not recognizable, L is not recognizable in M. Hence Kleene’s Theorem does not
hold in M. Furthermore, in any trace monoid ab = cd for irreducible elements
a,b,c and d implies {a,b} = {c,d}. Since this is not satisfied by (M, -, 1), this
monoid is not free partially commutative.

Next, consider M; = T*/{(ab,cc)) and My = T*/ ((aa,bb)) where a,b, c are
pairwise different elements of the finite set 7. Again, these two monoids satisfy
the conditions (i),(ii) and (iii). They are no trace monoids by the same argument
as above. We only mention for the sake of completeness that these two are nei-
ther concurrency monoids as considered in [Dro95, Dro96, DK96, DK98] (where
we extend the multiplication freely whenever it was the null element), since in
concurrency monoids ab = cc implies a = b = c.

Lemma 8.2.4 Let a,b,c € T. Then ab ~ ac or ba ~ ca implies b = c.

Proof. First let ab ~ ac. Then abb ~ acb and abc ~ acc. By (ii), this implies
bb ~ cb and bc ~ cc. Now (iii) ensures b = ¢. Now let ba ~ ca. Then bba ~ bea
implying by (ii) bb ~ bc. By what we saw before, this implies b = c. d

If v and w are words over T satisfying v ~ w, then w is obtained from v by
a finite sequence of transformations according to the set of equations E. We call
two words strongly equivalent if this sequence has length 1. More formally, v and
w are strongly equivalent (v = w) if there are words z,y € T* and an equation
ab = c¢d in E such that v = zaby and w = zcdy. Thus, w can be obtained
from v by replacing two consecutive letters by equivalent ones (according to the
set of equations E). To recall the position where this change has been made, we
sometimes write it as an index to =, i.e. with the symbols from above, v &5 41 w.
In the same spirit, let ~5;= Uj>z. ~j. Then v ~-; w denotes that one change
has been made to obtain w from v and that this change occurred at a position
behind 2. Then ~ is the least equivalence on the set 7™ that contains the relation

~
~.

For a word w # ¢, let w” denote the first letter (the “head”) and w’ the remain-
ing word (the “tail”), i.e. w"* € T and w = w™w’. For a sequence (wg, w1, ... w;)
of nonempty words, we will consider the number of changes in the first position,
ie.

changes(wp, wy, ... wy) := [{i | 0 < i < k and w)" # w)',}|.
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Figure 8.2: Condition (2) and (3) from Lemma 8.2.5

Let v, w € T* with v ~ w. The distance d(v,w) denotes the minimal number
of changes at the first position in a sequence that transforms v to w. More
formally, it is the minimum over all integers changes(wg, ws, ..., wy) where w;
are words over 1" with v = wy, w; &= w;41 and wy, = w.

Before showing that the distance is bounded, we give an alternative definition:

Lemma 8.2.5 Let v,w € T* with v ~ w. Then d(v,w) is the least integer m
such that there exist t; € T and v;,w; € T™ for 0 < j < m with

(1) v = tyvo,

(2) vj ~w; for 0 <j<m,

(3) tywh m tjvl, wh=vt,,, t; #tjy for 0 < j <m, and
(4) tmwm, = w.

The second and third statement are visualized by Figure 8.2.

Proof. By the definition of d(v,w), it is sufficient to prove that the existence

of x; € T* with v = x, x; & Tiy1, T, = w and m = changes(xg, ..., z,) is
equivalent to the existence of ¢; € T and v;, w; € T™* satisfying (1)-(4).

First, let z; € T* (0 < ¢ < n) with v = zy, 2; & 441, T, = w, and
changes(zg, ..., 2,) = m. There exist 0 = iy < i1 < -+ < i < Gppy1 =N+ 1
with

(a) :Uf-‘rl;éa:?j for 0 < 7 < m and

(b) xg,:x’,;for()gjgmandijgk<ij+1.
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Let t; := x?j, v = xﬁj and w; = x?ﬁﬁl for 0 < 7 < m. Then v =
o = whal = tyvy ensures property (1). Since i, < imi1 = n + 1, we get
im < n < ipy1. Now (b) with j = m and k£ = n implies t,, = xz’-”m = zh.

h.t

This implies t,,w,, = xtzt = x, = w which in turn proves property (4). To
show (2), let 0 < j < m. Then 2! =t; for i; < k < ij4; and tju; = T A
Tijp1 R Tijpg - R Ty, 1 = 2@ = tjw;. Hence, by Lemma 8.2.4, the
strong equivalence z; ~ zy,1 is induced by some change at a higher position,
i.e. Tk As1 Tpy1. But this implies xf, ~ },, and therefore v; ~ w;. To show
(3), note that ¢; # t;41 holds by (a). By (b) and the definition of w;, we have
tjw; = @l b = @y, 1. Similarly, ¢0v540 = o 2] = i, by the
definition of tj_|_1 and Vj41- Since l‘ij+1_1 =~ ‘rij+1 we therefore get tjwj ~ tj—l—lvj—l—l-
From (a), we obtain t; = «, _; # a].,, = t;j;1. Hence tjw; =1 tj110;41 and
therefore (3).

Conversely, let ¢;,v; and w; satisfy (1)-(4) and consider the sequence
(tovo, towo, t1vo, t1W1, - - -, tpVp, try).

Since v; ~ w;, we can put additional words between t;v; and ?;w; all of which
start with ¢; such that the resulting sequence has the desired form. (Il

Now we can show that the distance is bounded by 1.

Lemma 8.2.6 Let v,w € T* with v ~w. Then
(1) d(v,w) <1 and

(2) if vh = wh, then v* ~ w'.
Proof. First of all suppose d(v,w) < 1 and v"* = w". Since v and w have
the same first letter, d(v,w) # 1, i.e. d(v,w) = 0. Hence there is a sequence of
words transforming v to w that leaves the first letter unchanged. This implies
vt ~ w'. Thus, (1) implies (2) and we have to show the first statement, only.
This is done by induction on the length of v which equals that of w. If |v] < 1,
we get d(v,w) = 0. Next we consider the case |v| = 2. Then (}[v"v'v!],<) is a
distributive lattice by (i). Using (ii), one gets that (}[v], <) is a sublattice. Since
it is of length 2, it contains at most 2 elements different from 1 and from [v].
Hence d(v,w) < 1.
By induction, we assume that (1) and (2) hold for any v/, w’ € T* with v' ~ w’
and |[v'] < |vl.
Assume n := d(v,w) > 1. By Lemma 8.2.5, there are ¢; € T and v;, w; € T*
for 0 <i < n such that
v = oo,
Vi ~ W for 0 <7< n,
twl &t vl wi =l ti # iy for 0 <1 < n, and
tywy, = w.
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We prove that there exist words z,y € T* satisfying wy ~ x, y ~ v, and
tox" a2 tyy" or tgz" = tyy". Once we will have found them, we can conclude
towy ~s1 tox(R1 U =)ty ~~1 tovy which decreases the number of changes at the
first position, contradicting n = d(v, w).

First we consider the case tg = t, and show that x = wy and y = vy are the
desired elements: By tow} ~ t;v and tovll = tyvll =~ 1w, (iii) implies v} = wf
since ty # t;. Thus we have tyz" = towl ~ t;vl = tywl ~ t,v8 = tey". Applying
Lemma, 8.2.4 to toz" and toy”, we get 2 =y, i.e. tya” = tyy” as required.

Now let ty # to. If v} = wi, we had towl ~ t,vf = tiywl ~ tyul. As we
saw above, |[tow{!] contains at most 2 elements different from 1 and from [tyw}].
Since tg,t; and ty are three elements of this set, we derived a contradiction.
Hence we showed v # w?. By the induction hypothesis for v; and w;, we get
d(vi,wy) < 1. Since they start with different letters, their distance is 1, i.e. there
are in particular a,b € T and z € T™ such that vy ~<4 v{‘az 2 w{bbz ~s1 Wi-
This ensures

tow(’)‘a R tlv?a Ry tlw{bb R tgvgb.

Hence ty and t, are different elements of the distributive lattice ({[towfa], <).
Therefore, there are c,d,e € T with toc ~ tod and toce ~ towla. The latter in
particular implies ce ~ wfa by (ii). Thus we have

tzvgb ~ towga ~ toce 21 tode

which implies v2b ~ de by (ii) again. From the induction hypothesis (2), applied
to the equivalence v!az ~ v; = vl the equivalence az ~ v! = w} follows.
Similarly, bz ~ w! = v} follows from wibz ~ w; = wiwt. Hence we have

o wy = whwh ~ whaz =~ cez =: x,
o vy = vivl ~ vlbz ~ dez =: y, and
[ ] to.fCh == t()C ~ tgd = tzyh.

This proves that x = cez and y = dez satisfy the desired properties. 0

Corollary 8.2.7 (M, -, 1) is left cancellative and hence the left divisor relation <
15 a partial order on M.

Proof. Cancellation is immediate by Lemma 8.2.6 (2). To prove the antisym-
metry of <, one uses the simple observation that 1 = [¢] has no left divisor. O

Recall that any equivalence class [v]. is finite since all its elements have the
same length. Hence |[v]. is finite as well since prefixes of [v]. correspond to
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prefixes of words equivalent to v. Hence the partially ordered set (M, <) satisfies
the first condition in Lemma 8.1.1. The following lemma shows that the second
condition is satisfied as well:

Lemma 8.2.8 Let x € M and s,t € T with s # t such that {xs,zt} is bounded
above in (M, <). Then there exists a € T such that xsa is the least upper bound
of xs and xt in (M, <).

Proof. Since by Lemma 7.1.1 the function y — zy is an order isomorphism, it is
sufficient to consider the case x = 1. Let y € M with s, < y. By Lemma 8.2.6,
there are a,,b, € T with sa, ~ ta, and [sa,] < y. Now let z € M be some
upper bound of s and t. Then, as for y, we obtain a,,b, € T with sa, ~ ta, and
[sa,] < z. Now (iii) implies a, = a,. Hence xsa, is the supremum of zs and xt
in the partially ordered set (M, <). O

By Lemma 8.1.1, the partially ordered set I[v]~ is alattice. Using the Vilhelm-
Sik-Jakubik Theorem and Lemma 8.1.2, we show that it is distributive:

Lemma 8.2.9 Forz,y € M, (lz, <) is a distributive lattice and x Ny exists.

Proof. The set |o C {[v] | v € T*,|v| < |z|} is finite. By Lemma 8.2.8, we
can apply Lemma 8.1.1. Hence (Jx, <) is a lattice since any two elements of |x
are bounded above. It is even semimodular by Lemma 8.2.8. To show that it
is modular, consider some interval [y, yabc| of |z with y € M and a,b,c € T.
By left-cancellation (Corollary 8.2.7), it is sufficient to deal with the case y = 1.
But then [1, abc] = | (abc) which is distributive by (i) and therefore in particular
modular. Hence by the Vilhelm-Sik-Jakubik Theorem [Ste91, Theorem 4.14], |
is modular. To show distributivity, we consider some interval of length 2 and
argue similarly using Lemma 8.1.2.

The set Jo N ]y is finite and bounded. Hence, by Lemma 8.1.1, it has a least
upper bound which is the maximal lower bound of x and y, i.e. x Ay exists. [

Now we can prove the main theorem of this chapter.

Theorem 8.2.10 Let T be a finite set and E a set of equations of the form
ab = cd with a,b,c,d € T. Let ~ be the least congruence on T* containing E.
Then M := T*/~ is a divisibility monoid if and only if (i)-(iii) hold for any
a,be, b, €T:

(i)  (a-b-¢),<) is a distributive lattice,

(1)) a-b-c=a-b-corb-c-a=V-c-aimpliesb-c="b-c, and

(7)) a-b=d -V,a-c=d-c anda+#ad implyb=c.
Furthermore, each divisibility monoid arises this way.
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Proof. By Remark 8.2.2, it remains to show that 7" and E satisfying (i)-(iii)
define a divisibility monoid. By Corollary 8.2.7 and Lemma 8.2.9, it remains to
prove that (M, -, 1) is right cancellative. For this, it suffices to show that za = ya
with z,y € M and a € T implies © = y. By contradiction, assume that x # y.
Since the lattice Jxa is distributive, z := x Ay —< x, ¥, i.e. there are b, c € T with
x = zb and y = zc. Hence zba = zca. Now ba = ca follows from Corollary 8.2.7.
Lemma 8.2.4 ensures b = ¢ and therefore z = y. O

Let (3, D) be a dependence alphabet. Let E denote the set of all equations
ab = ba for (a,b) € ¥\ D. Then M(X, D) = ¥*/(E). One can easily check
that the three properties (i), (ii) and (iii) of the theorem above hold. Hence
a trace monoid is indeed a divisibility monoid. On the other hand, there are
many divisibility monoids that are not trace monoids as the following corollary
exemplifies. The list of divisibility monoids with three generators was determined
(by hand) together with Manfred Droste, and Christian Pech (Dresden) went on
to compute all divisibility monoids with up to five generators using the GAP4-
system [GAP99:

Corollary 8.2.11 There are precisely 15 divisibility monoids with 3 generators,
namely the free monoid and those defined by the following sets of equations:

{ab=ba} {ab=ba,bc = cb} {ab = ba,bc = cb,ac = ca}

{aa = bb} {aa =0bb,ac = be,ca =bc} {aa = bb,bc = cb,ac = ca}

{ab=bc} {ab=bc,ba = cb} {ab = be,ba = cb, ac = ca}
{ab = bc, ac = cb} {ab = bc, ac = ca}

{aa = bc} {aa = be,cc = ba} {aa = be,bb = ca, cc = ab}

Furthermore, there are 219 divisibility monoids with 4 generators and 8371 divis-
wbility monoids with 5 generators.

Note that only the monoids described in the first line (and the free monoid)
are trace monoids with three generators. Also, up to isomorphism, there are only
10 trace monoids with 4, and 34 trace monoids with 5 generators.



