Chapter 9

An Ochmanski-type theorem

Kleene’s Theorem on recognizable languages of finite words has been generalized
in several directions, e.g. to formal power series [Sch61] and to infinite words
[Biic60]. More recently, rational monoids were investigated [Sak87], in which the
recognizable languages coincide with the rational ones. Building on results from
[CP85, CM88, Mét86], a complete characterization of the recognizable languages
in a trace monoid by c-rational sets was obtained in [Och85]. A further gener-
alization of Kleene’s and Ochmarski’s results to concurrency monoids was given
in [Dro95]. In this chapter, we derive such a result for divisibility monoids. The
proofs by Ochmanski [Och85] and by Droste [Dro95] rely on the internal structure
of the elements of the monoids. Here, we do not use the internal representation
of the monoid elements, but algebraic properties of the monoid itself. The results
presented in this chapter were obtained together with Manfred Droste. They
appeared in [DK99] and the presentation follows [DKO00].

9.1 Complete grids and the rank

In trace theory, the generalized Levi Lemma (cf. [DM97]) plays an important
role. It was extended to concurrency monoids in [Dro95]. Here, we develop a
further generalization to divisibility monoids using complete grids. This enables
us to obtain the concept of the “rank” of a language for these monoids, similar to
the one given by Hashigushi [Has91] for trace monoids. Let M be a divisibility
monoid and z,y € M. Recall that r,(y) = y T 2. Sometimes (for instance in the
following definition), it is more convenient to use this notation for the functions
res,, too. Therefore, we define v 1 u := res,(v) whenever the latter is defined for
u,v € T™.

Definition 9.1.1 For 0 < i < j < n let a%,y/ € M (€ T*, respectively). The
tuple (ac;,yzj Jo<i<j<n is @ complete grid in M (in T*, respectively) provided the
following holds for any 0 <7 < j < n:

i Jj—1 i J—1 _ i+l Jj—1 |
% Y; ,ijyZ- =1 , and y; T:L'j—yi.
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A complete grid can be depicted as in Figure 9.1. There, edges depict elements
from M (T*, resp.) and an angle denotes that the two edges correspond to
complementary elements. Note that in any of the small squares in Figure 9.1,

the lower left corner is marked by an angle. This indicates that a* yZ = yf lx;H

because of zly! = at(y! " tal) =2l vyl =y~ 1( Ayl =yl lx;“. By
Lemma 7.2.5 (1)- (3), for any rectangle in the grid (27, yz)OS’LSJSN the bottom and
the left side are complementary and their residuum is the top (the right) side,

respectively. By induction, it is easy to show that

(z929 ... 22) - (yout .. yn) = (agus) (z1yy) (z33) - - . (zhym).

The right hand side of this equation is the diagonal border of the grid in Fig-
ure 9.1. .
Let (M,-,1) be a divisibility monoid and (z%,y] )0<Z<J<n a complete grid in

M or in T*. For a sequence 0 = i < 41 < - < zm+1 = n, we construct
. - i

a subgrid (af,b})o<k<i<m as follows: Define af := afal,  al,,.. Lat .y and
% 1 3 1 tr1—1 - .

Ve =yt Yitn - Yy (form =4 and 7= (0,1,5,7,9), this grid is marked

by thick lines in Figure 9.1). Then (af, b} )o<x<i<m is a complete grid in M or T*.
We call it the subgrid generated by the sequence (ix)o<k<m-

Let (z ]',yz)0<i§j§n be a complete grid in 7*. Then it is immediate that
(nat(zt), nat(y!))o<icj<n is a complete grid in M. The following lemma deals
with the converse implication. More precisely, let a complete grid in M be given
and suppose that u?, v} € T* are representatives of monoid elements at the left
and the upper border of the complete grid. Then the lemma states that this tuple
of words can be extended to a complete grid in 7™* that is compatible with the
complete grid in M we started with.

Lemma 9.1.2 Let (z}, Y2 )o<i<j<n be a complete grid in M and let ug, v} be words
from T* that satisfy nat(u 0) =z and nat(v}) =yl for 0 < j < n. Then there
exists a complete grid (uj, f)0<z<]<n with nat(u}) = 2% and nat(v!) = y! for
0<i<j<n.

Proof. Forl <i<j<nlet u = res i1 ( =1). Using Lemma 7.2.7, one can
check that nat( ') =« and that therefore u’ ' € dom(res ,i-)- To construct the
elements v], we use Lemma 7.2.9: Let vj be the unique word over 7" such that
o] tuby, = v]+ . Then nat(v/) = ¢/ is immediate since y! € M is the unique
complement of z%,, in the distributive lattice [27,, 2%, V yl]. Tt is clear that

(ul, v))o<icj<n is a complete grid because of nat(ul) = % and nat(v}) = y/ for

0<i1 <5< n. O
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9 9 9 9 9 9 9 9 9 9
Yo Y1 Y5 Y3 Ya Ys Yg Yz Yg Yg
0 1 2 3 4 5 6 7 8 9
T 83:9 8:59 8.T9 83:9 8:59 8.T9 83:9 ng 8.T9
~NY Y ~NYs ~NY3s ~NYs BRNYs NYs BN Yr N Yg
0 1 2 3 4 5 6 7 8
Tg 7x8 7$8 7568 7x8 7$8 7568 7x8 7x8
NYo BRY1 Y Y3 nNYs RNYs NYs KUYz
0 1 2 3 4 5 6 7
i 6x7 63:7 6x7 6x7 63:7 6x7 6x7
N Y B YT Y ~NYs NUs BYs N Vs
0 1 2 3 4 5 6
T . T . T 5 Tg . Tg . Tg 5 Tg
~NY% Y1 O RNY NY3 O NYs BYS
0 1 2 3 4 5
Ty 4x5 4$5 4565 4x5 4x5
N Y BV NYs NY3s N Ys
0 1 2 3 4
Ty 3534 3354 3554 3534 hi 1 i hit1,5+1
NY Y1 nNY2 nNYs Y;
0 1 2 3 i i+1
T3 ) T3 , T3 , Ty T T
hNY% bhY Y% N
-1
0 1 2 J
Ty . Ty . Ty hi Yi Pt
hY Y1
1
N Yo
9

Figure 9.1: A complete grid

The elements h; ; from M marking the corners of the small square in Figure 9.1
are defined by

i1 -1 i1
hij = (xga? .. .x?_l) Wy YD),

Then hi,j—|—1 = hi,j . 1‘; and hi+1,j = ]’Li,j . yljfl. Hence by Lemma, 711, hi,j =
hij1 A hip1j and hipq 5401 = hijg1 V hiprj. These relations will be used in
the proof of the following lemma. It can be read as the converse of the equality
(2028 .. 20) (Yo yt - - - yn) = (26¥0) (21y1)(2342) - . . (27yn): Whenever the product
of two elements of M equals the product of finitely many elements, there exists
a corresponding complete grid. This lemma is the announced extension of Levi’s

Lemma from trace theory into our setting of divisibility monoids.
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Lemma 9.1.3 Let 29,21, --,2p, %,y € M withx -y = 29+ 21 -+ 2,. Then there
exists a complete grid (x;, Y )o<i<j<n in M such that

o v =x)z)... 1Y,

o y=ylyr...yn, and

g -
o 2, =xay; fori=0,1,....,n

Proof. Let hy,; ;=2 A%z ...2j-1 and hjj = 25+ 21...2j1 (for 0 < j <n+1).
Note that hO,j S hO,j—i—l and hj,j S hj—|—1,j—|—1- Furthermore, let hi,j = h(),j \% hi,i
for 0 < i < j < n+1 (this supremum exists since {hg ;, h;;} is bounded by zy).
Then hiy1 501 = hojr1V hitriv1 = hojs1 V hoi V hivriv1 V hig = hijoa V iy

Now let 0 S 1< j S n—+1. Then hO,j+1/\hz’+1,z’+1 = .I'/\Z()Zl s Zj/\Zozl et 2y =
ho,i+1 < ho,j, and so

hijr1 ANhivr; = (hojt1V hig) A(hog V hiyiit)
= (hoj+1 Ahoj) V (hojt1 Ahitiivr)
V(hii Ahoj) V (Rii A Rit1,i41)
= ho; Vhoit1V (hiz Ahoj)V hi;
= ho;V hi, (since hg;41 < ho; and hi; A ho; < hij)
= hiy.

Now the elements :c; and yf for 0 <1 < j < n of the complete grid are the
monoid elements uniquely determined by h; j11 = hi xi and hit1 41 = hijq1- yf

Since h; j11 A h,+1] = h;; and hita ]H = hij1V hz+1], Lemma 7.1.1 implies
iy /\yj =1 and z} vyl Tt =l "yl =y x““ Hence 2} oy, o} 4y =zt
and yl ! Tw] = Thus, we showed that (w], Y )OSzSJSn is a complete grid in M.

Note that z3z9...29 = hopt1 = ¥ A 2021...2, = z A xy = x. Furthermore,
hjj+2; = hjr1je1 = hjj- -y implies z; = o} - yJ since M is cancellative. Hence
we have

c(ygyr ---yn) = (agx . a)(Weut - um)
(zgye) (z1y1 ) (23y3) - - - (22yl)
= 20R1.-.-2p =Y.

This equality implies y = ygy7 ... y.- O

It is reasonable that the elements yf in a complete grid do not completely
determine the elements 3:; The following lemma describes the freedom we have
in choosing these elements: as long as we keep the residuum functions of the
elements in the first column, we can complete the complete grid.
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Lemma 9.1.4 Let (xj-,yf)oggjgn be a complete grid in M, and, for 0 < j <mn,

let wj € M with T = Ty Then there exists a complete grid (w},y])o<i<j<n

m M.

1...y§:i for any 0 < j < n. Since
1 j—1

> PR y’t*l

...y)7)) is defined. Using

Proof. By Lemma 7.2.5(1), mgmygfly{;

. . .. .. . i—1 j—
the residuum functions of x? and w;-) coincide, this implies w? ©y Yyl
i—1

for 0 < i < j < n. Hence w} := w1 ("]

Lemma 7.2.5(1), we get wi @y . By Lemma 7.2.5(2), w!*" = wi 1 ™", Since
ah =21 Wyl oyl and ry0 = Ty9, Lemma 7.2.5(4) implies Toi = Tuis
Hence y! = i (") = Tt () =9y T wl. O

Recall that nat(res,(u)) = rnat(v)(nat(u)) for any words u, v by Lemma 7.2.7.
Using Lemma 9.1.2, one gets as a direct consequence

Corollary 9.1.5 Let (u;, vf)oSiSan be a complete grid in T*, and, for0 < j <mn,
let w? e T* with res,o = Tesy0. Then there exists a complete grid (w;,vg)ogigjgn
wmn T™.

Similarly as above, a direct consequence of Lemma 9.1.3 is the existence of
complete grids in 7™:

Corollary 9.1.6 Let 2y, z1,...,2p,u,v € T* with nat(uv) = nat(z12s...2,).
Then there exists a complete grid (U;,/U'Z)()Sigjgn in T such that

1. nat(u) = nat(ufu? ... u?),

2. nat(v) = nat(vfv}...v"), and

3. nat(z;) = nat(uiv?) fori=0,1,...,n.

Note that the equations in the corollary above do not hold in the free monoid
T* but only in the divisibility monoid M. But if the words z; are actually from
T U{e} (i-e. their length is at most 1), we can replace the third statement by

’ — a0t :
3.z =uw fori=0,1,...,n.

Now we can introduce the notion of rank in the present context. For traces, it
was defined and shown to be very useful by Hashigushi [Has91], cf. [DR95, Ch. 6]
and [DM97]. Recall that nat(X) = {nat(w) | w € X} for any set X C T* of
words over 7.
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Definition 9.1.7 Let u,v € T* and X C T* such that nat(uv) € nat(X). Let
rk(u,v, X), the rank of u and v relative to X, denote the minimal integer n such
that there exists a complete grid (u},v])o<i<j<n in T* with

1. nat(u) = nat(udu? ... u?),

2. nat(v) = nat(vfv}...v"),

3. uduguivi .. ut € X.

Let u,v € T* and X C T™* such that nat(uv) € nat(X). Then there exists
z € X with nat(z) = nat(uv). Let z = 2125 ... 2, with z; € T". Then n = |uv| and
by Corollary 9.1.6 (with 3’ instead of 3) we find an appropriate complete grid.
Hence rk(u,v, X) < |uv|. If not only nat(uv) € nat(X) but even uv € X we can
choose n =0, u) = v and v) = v and obtain rk(u,v, X) = 0. We define the rank
rk(X) of X by

rk(X) := sup{rk(u,v, X) | u,v € T*,nat(uv) € nat(X)} € NU {oo}.

A word language X C T* is closed if nat(u) € nat(X) implies u € X for any
u € T*. Since rk(u,v, X) = 0 whenever uv € X, the rank of a closed language
equals 0.

Theorem 9.1.8 Let (M, -, 1) be a divisibility monoid with finitely many residuum
functions (i.e. the monoid Ry, is finite). Let X C T* be a recognizable language
of finite rank. Then nat(X) is recognizable in M.

Proof. Let n = rk(X) € N be the rank of X. Since X is recognizable, there
is a finite monoid S and a homomorphism 7 : 7% — S that recognizes X. Since
the mapping u + res, is an antihomomorphism from 7™ into the finite monoid
(Dys, o, res. ), we may assume that n(u) = n(v) implies res, = res,.

For x € M, let R(z) denote the set

{(nd(ug),nd(u1) ...nd(up))aeny, | Vo, U1, ..., u, € T and & = nat(uous ... upy) }-

Then R(z) is a subset of (S™*!)Pm|  Since D), and S are finite, there are only
finitely many sets R(z). Once we will have shown

R(z) = R(2) = 2 'nat(X) = z ' nat(X),

we thus have that {z7! nat(X) |z € M} is finite. Hence nat(X) is recognizable.
So let R(z) = R(z) and let y € " nat(X), i.e. zy € nat(X). Since rk(X) =
n, there exists a complete grid (u;, v])o<i<j<n in T* such that

e x = nat(udu?...u?),
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e y =nat(vjvy...v)), and

o ugvdujvi ... ul? € X.
Then (nd(u),nd(u?)...nd(ul))aen,, € R(z) = R(z). Hence there exist words
w® € T* with

1) nd(w?) = nd(u?) for each 0 < j < n and d € Dy, and
j j

(2) z = nat(wdw?...w?).

In (1), consider d = res. which equals the identity on T*. Then n(wj) = n(uj)
and therefore (by our assumption on 7) res,o = res,o. Hence we can apply

Corollary 9.1.5 and obtain a complete grid (wj-, vf Jo<i<j<n in T*. Now consider

— o . J — .0 Jj—1,3-1 J=1y _ 0
d = R T Dy Note that w} = w) 1t (vg~ v ...vj7)) = d(wj).

Hence n(w}) = nd(w9) = nd(u9) = n(u%). Now we can conclude

n(wovdwivy ... wv")

'fL/U’fL

33
SN—r
3
—
4
33
SN~—

= n(wg)n(ve)n(wi)n(vy) ... n(w
= n(ug)n(vg)n(uy)n(vy) ... n(u
= n(ugviuivs ... u"") € n(X).

33
N
3
—~
]
33
SN—r

Hence wlvdwlvi ... wiv? € X. Since (nat(w}), nat(v!))o<i<j<n is a complete grid
in M, we obtain zy = nat(wjvdwiv; ... w'") € nat(X). Hence y € 27! nat(X)

and therefore 27! nat(X) = 27! nat(X) as claimed above. O

9.2 From c-rational to recognizable languages

In this section, we prove closure properties of the set of recognizable languages in
a divisibility monoid. These closure properties correspond to c-rational languages
that we introduce first:

Let (M,-,1) be a divisibility monoid. An element x € M is connected if the
distributive lattice | does not contain any pair of complementary elements. In
other words, there are no complementary y,z € M \ {1} such that x = yV 2z =
yry(2). A set L C M is connected if all of its elements are connected; a language
X C T* is connected if nat(X) C M is connected.

Let t be a trace over the dependence alphabet (X, D). In trace theory, this
trace is called “connected” if the letters occurring in it induce a connected sub-
graph of (¥, D). One can easily check that this is the case iff ¢ is not the supremum
of two complementary traces, i.e. iff ¢ is connected in the sense defined above.
For rational trace languages, to be recognizable it suffices that the iteration is ap-
plied to connected languages, only. In other words, there is a subset of the trace



CHAPTER 9. AN OCHMANSKI-TYPE THEOREM 113

monoid C' (the connected traces) such that the iteration is applied to languages
included in C, only. Already for concurrency monoids (cf. [Dro95, Dro96)), it is
not sufficient to restrict to connected languages. But there, one still has finitely
many pairwise disjoint sets C, such that the iteration can be restricted to subsets
of C,. For divisibility monoids, we did not find such sets in general (for labeled
divisibility monoids, they exist — see below). Therefore, we impose an internal
condition on those languages that we want to iterate:

A language X C T* is residually closed if for any v € X and v € T* with
u v the following holds:

vE X < res,(v) € X.

Thus X is residually closed if it is closed under the application of res, and res;*

for elements u of X. Note that this need not hold for all u € T*. A language
L C M is residually closed iff {w € T* | nat(w) € L} is residually closed.

Now we define c-rational languages: The set of c-rational sets in a divisibility
monoid M is the least class € C 2™ such that

e all finite subsets of M belong to €,
e X -Y and X UY belong to € whenever X, Y € €, and
e (X) belongs to € whenever X € € is connected and residually closed.

Now we are going to show that the set of recognizable languages is closed
under multiplication.

Lemma 9.2.1 Let (M,-,1) be a divisibility monoid and X, Y C T* be closed.
Then rk(XY) < 1.

Proof. Let u,v € T* with nat(uv) € nat(XY'). Then there exist zp € X and
z1 € Y such that nat(uv) = nat(zo21). By Corollary 9.1.6, there exists a complete
grid (uj, v!)o<icj<1 in T* such that
nat(u) = nat(uju?), nat(v) = nat(vjvy),
(

nat(zg) = nat(udvg), and nat(z;) = nat(u vp).
Since X and Y are closed, this implies udvd € X and ujv]{ € Y. Hence
rk(u,v, XY) < 1. O

Corollary 9.2.2 Let (M, -, 1) be a divisibility monoid with finitely many residuum
functions. Let K, L C M be recognizable. Then K - L is recognizable.
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S|

cl ctTa

a1 a2 b

Figure 9.2: The elements from Lemma 9.2.3

Proof. Let X := {u € T* | nat(u) € K} and Y := {u € T* | nat(u) € L}.
Then K - L = nat(XY), and X and Y are closed and recognizable in 7*. Hence,
by Kleene’s Theorem, XY is recognizable in 7*. By Lemma 9.2.1, the rank of
XY is finite. Hence Theorem 9.1.8 ensures that nat(XY') is recognizable in M.

O

The rest of this section is devoted to the proof that (L) is recognizable for
any recognizable language L C M that is connected and residually closed. But
first, we prove some technical lemmas that will be used later on.

Lemma 9.2.3 Let (M,-,1) be a divisibility monoid with finitely many residuum
functions. Let ay,as,b,c,7 € T* such that res,,,, = res, C idy«, cway, (¢
a1)T @ ash and a; # € #v. Then nat((ay T ¢)v) is not connected.

Proof. Throughout this proof, we make extensive use of the equations given in
Lemma 7.2.7 without mentioning it again.

By (¢ 1 a1)7 @ash, we get in particular (¢ 1 a;)Tmas, and (¢ 1T a1)v T as €
dom(resy). Furthermore, it implies ¢Ta; @ ay and therefore (together with c ay)
cwajay and ¢ T ajay = c. Now we can conclude (with ¥ :=71 (az 1 (¢ 1 a4)))

bo(cta)vtas = ((cTar)Taz) (V1 (axt(cta)))
(¢t ara2)v

= cu.
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Thus we get ¢t = (¢ T a1)T T as € dom(res,,q,) and therefore ¢ 1 ajas = cv. In
particular, we have a; @ cv implying (a; 1 ¢) © .

Hence we have (c¢ta1)vTas = c0 = (c0tar)Tay. This implies (¢1a1)v = c0Tay
since res,, is injective. Note that cita; = (cTa;)(91(a11c)). Hence by cancellation
we get U = 71 (a1 T ¢). This implies nat(?) V nat(ay 1 ¢) = nat((a1 1 ¢)v).

Since a; # ¢ and res,. is length preserving, we have a;,T¢ # ¢, i.e. nat(a;1c) # 1.
Similarly, ¥ # ¢ implies nat(?) # 1. Finally (a; 1T ¢) 0@ proves that nat((a; 1T ¢)v)
is not, connected. 0

Next, we use Ramsey’s Theorem (page 61) to show that in a divisibility
monoid with finitely many residuum functions, for any sufficiently long sequence
Uy, Usg, - . . U, of elements of T*, there is a nonempty fragment of this sequence
such that the residuum function of u;u;41 ... u; is contained in the identity.

Lemma 9.2.4 Let M be a divisibility monoid with finitely many residuum func-
tions and let u; € T* for 1 < i < R3(|Das|). Then there exist 1 < i < j < k <
R3(|Das|) such that res,, = res,, C idps.

Uj41---Uj—1 jUj+1--- Uk —1

Proof. For simplicity, let n = R3(|Dy|). Consider the mapping d’ from the
2-element subsets of [n] into Dy, with d'({,j}) = resy;u;;,..u;_, Where i < j. By
Ramsey’s Theorem, there are 1 < i < j < k < n with d'({i,j}) = d'({i,k}) =
d'({j,k}) =: f. Note that f is an idempotent partial function since d'({i, k})
d'({j,k}) od ({i,7}). In addition, f is injective on its domain by Lemma 7.2.
implying f C idp».

\]

b

O

Lemma 9.2.5 Let M be a divisibility monoid with finitely many residuum func-
tions, (u},v})1<icj<n a complete grid in T* with n > R3(|Dy|) and u} # € # v}.
Then there erists 1 < i < n such that nat(uiv?) is not connected.

Proof. By Lemma 9.2.4, there are 1 <1 < j < j <n with

res“?“iﬁo“-“?fl = res“?“j+10-“ug—1 = res“?“i+10---“2—1'

: — 0 4 — 0 0 0 — .0 0 _ i1l i—1
With a1 = 7, a2 = ujp Uiy Uj_y, @ = UjUjpr0. . Uy, Y = V5 V] ..U
and v = v}, the assumptions of Lemma 9.2.3 are satisfied. Hence nat(u}v}) is not
connected. m

Theorem 9.2.6 Let (M, -, 1) be a divisibility monoid with finitely many residuum
functions. Let X C T* be closed, connected, and residually closed. Then the rank
rk((X)) of X is at most Rs(|Dy|) + 1 and therefore finite.
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Proof. Let u,v € T* with nat(uv) € nat({(X)) = (nat(X)). Then there ex-
ist n € N and zg,21,...,2, € X such that nat(uv) = nat(zozy...z,). By
Corollary 9.1.6, there exists a complete grid (ué,vf)ogigs” in T* such that
nat(u) = nat(udu?...u?), nat(v) = nat(vfv}...v?) and nat(z;) = nat(uivl).
Since X is closed and connected, the latter implies that u‘v! € X is connected.
There exist m < n and —1 =iy < i3 < ig - <1l < tme1 = n + 1 such that

° u:: and vf: are nonempty for 0 < k < m + 1,

e u! or v! is empty for 0 < i <n with ¢ & {ip, 41, im+1}-
Consider the subgrid (aé-, b)) o<i<e<m induced by the sequence (0, i1, %g, - - ., im, ).
k — %k, % i ko k1=l dggp1—1 ig41—1
Then ay = wiru; .- ug, —y and by = v iot1 -+ Vii,—1 are not empty.

Hence, by Lemma 9.2.5, m < R3(|Dy|).

Let 0 < k <m and i <% < igy;. Then uﬁvf € X. Since one of uﬁ and vf is
empty, the other belongs to X, i.e. ut, vl € X U{e}.

Now we show uf,v] € X U{e} by induction on j for i < i < j < iy

Assume i +1 = j. Then the claim is trivial since i = j follows. Now assume
that for any i < i < [ < 43,y with [ < j we have u},v} € X U {e}. Then

u?T (vfflvzﬁf ... vj:%) = u; € X U{e}. Note that the upper index j'— 1 of the v’s
is properly between 7;, and 7. Hence by the induction hypothesis Uf,_l € XU{e}
for 7 =4,i+1,...,7 — 1. Since X and therefore X U {e} is residually closed, we

get uf € XU{e}. On the other hand, v} = Uf_lTu;'-. By the induction hypothesis,
v!7" € X U {e}. Hence v/ € X U {e} since u} is an element of this residually

closed language.
Now consider the subgrid (a}, b;)OSiSjS2m+]_ that is generated by the sequence
(il, il =+ 1, ig, ig + 1, ceey im; Zm =+ 1) Then

2k __ tp+1 g+l i+l uik+1

Qo = Uy U 40Uy 3 U 15
p2k tpt1—1 tgp1—1 ipp1—1 tpt1—1
2k = Uig+1 Y42 Y43 oo Uip-1
2k+1 ik
Uopi] = U, and
2k+1  __ ik
bypt1 = Vi, -

Note that all the factors of a3; and of b3} belong to X U {e}. This implies
azib3y € (X). Thus, the complete grid (a%, b )o<i<j<om+1 satisfies

e nat(u) = nat(ujul...ud) = nat(adal...ad, ),
e nat(v) = nat(vfo...v7) = nat(bg" 6™ . b5 TT) and
[ agbg S <X>

Therefore rk(u, v, (X)) <2m+ 1 < 2R;3(|Dy|) + 1. O
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Corollary 9.2.7 Let (M, -,1) be a divisibility monoid with finitely many residuum
functions. Let L C M be connected, recognizable, and residually closed. Then the
iteration (L) of L is recognizable.

Proof. Let X := {w € T* | nat(w) € L}. Note that M and X satisfy the
assumptions of Theorem 9.2.6. Hence the rank rk(X) is finite. By the theorem
of Kleene, (X) is recognizable in 7*. By Theorem 9.1.8, (L) = nat((X)) is
recognizable in M. O

Summarizing the results for obtained so far, we can show that any c-rational
language is recognizable.

Theorem 9.2.8 Let (M, -, 1) be a divisibility monoid with finitely many residuum
functions. Let L C M be c-rational. Then L is recognizable.

Proof. By Lemma 7.2.3, |z is finite for any x € M. Hence finite languages in M
are recognizable. By Corollary 9.2.2 and 9.2.7, the set of recognizable languages
in M is closed under products and the operation (.) applied to connected and
residually closed languages. g

9.3 From recognizable to c-rational languages

In this section, we will derive conditions on divisibility monoids M which are
sufficient to ensure that all recognizable languages in M are c-rational. Let
(M,-,1) be a divisibility monoid. Recall that an equation nat(ab) = nat(cd)
where a, b, ¢, d are irreducible generators of M states that the different sequential
executions ab and cd give rise to the same effect. If now a # ¢, the effect of a in
the execution cd has to be resumed by that of d. Therefore, we consider the least
equivalence = on the irreducible generators of M identifying a and d that occur
in an equation ab = cd with a # c¢. To show that any recognizable language is
c-rational, we need the property that nat(ab) = nat(cd) and a = ¢ imply a = ¢ for
any irreducible elements a,b,c,d € T. It is immediate that this is equivalent to
the existence of a function p : T'— E into some set E satisfying p(s) = p(s1t) and
p(s) # p(t) for any s,t € T with s t. Such a function is called labeling function.
Since T is finite, we can assume F to be finite, too. A divisibility monoid M
together with a labeling function p is a labeled divisibility monoid (M, p). The
label sequence of a word ugu; . ..u, € T* is the word p(ug)p(u1) ... p(u,) € E*.
We extend the mapping p to words over T by p(tw) = {p(t)} U p(w). Hence
p is a monoid morphism into the finite monoid (2¥,U, (). By Lemma 8.2.1,
nat(u) = nat(v) implies p(u) = p(v) for any u,v € T*. Therefore, it is reasonable
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to define p(nat(u)) := p(u), i.e. to extend p to a monoid morphism from (M, -, 1)
to (2%,U,0).

A language L C M is monoalphabetic if p(x) = p(y) for any z,y € L. The
class of mc-rational languages in the labeled divisibility monoid M is the smallest
class € C 2M satisfying

e any finite subset of M is in €,
e whenever L, K € €then LUK € €and L-K € €, and
e whenever L € € is connected and monoalphabetic then (L) € €.

Note that differently from c-rational languages, here the iteration is restricted to
connected and monoalphabetic languages that are not explicitly required to be
residually closed. Nonetheless, any mc-rational language is c-rational as Corollary
9.3.2 states.

Lemma 9.3.1 Let (M, p) be a labeled divisibility monoid and z,y € M with
r@y. Then p(z) N py) =0, p(y) = p(y T z), and p(z) U p(y) = p(z V y).

Proof. By contradiction, assume p(z) N p(y) # 0. Then there exist monoid
elements x1,%2,y1,y2 € M and s,t € T such that x = zys75, y = y1ty, and
p(s) = p(t). Clearly, z1s @y,t. By Lemma 7.2.5(1) and (3), we have s @ (yit 1
x1) = (y1 T@1)(t 1 (21 T y1)). Hence s' := st (y1 T @1) ot T (z1 Ty1)) =t ¢ by
Lemma 7.2.5(1). Furthermore, p(s) = p(s’) and p(t) = p(t'). But this contradicts
the definition of a labeling function. Hence the first statement is shown.

By a simple induction on the length of x and y we get p(y1z) = p(y), i.e. the
second statement. Now the last assertion follows since p(x V y) = p(x(y T x)) =

p(x)Up(ytz) = p(r)Up(y)- O

Corollary 9.3.2 Let (M,-,1,p) be a labeled divisibility monoid. Then any mc-
rational language 1 M 1s c-rational.

Proof. Let 2,y € M with p(z) = p(y) and x ©y. Then Lemma 9.3.1 ensures
x =y = 1. Hence any monoalphabetic language is residually closed. This implies
that mc-rational languages are c-rational. O

Now let < be a linear order on the set F and let u € T*. We say that the
word u is in lezicographical normal form if nat(u) = nat(v) implies that the label
sequence of v is lexicographically larger than or equal to that of u. Let LNF be
the set of all words in lexicographic normal form.
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Note that so far there may exist different words v and v in LNF with nat(u) =
nat(v). We show that this is impossible: So assume that u,v € T* have the same
label sequence and satisfy nat(u) = nat(v). Let s (¢) be the first letter of u (of v,
respectively) and suppose s # t. Then nat(s) and nat(¢) are incomparable since
they have the same length. Thus the infimum of them is properly smaller than
nat(s). Since 1 is the only element which is properly smaller than the irreducible
element nat(s), we get nat(s) Anat(t) = 1. Since nat(s) and nat(¢) are bounded
above by nat(u) = nat(v), we have st. Hence p(s) # p(t), contradicting the
fact that the label sequences of v and v coincide. Hence s = t. Cancelling s
and t from the left of u and v, respectively, we can proceed by induction. At the
end, we obtain u = v. Hence, for any © € M there exists at most one u € LNF
such that z = nat(u). Since, on the other hand, the lexicographical order on
E* is a well-order, the set of label sequences of words v with nat(u) = x has a
least element. Hence, for any © € M there exists a unique word v € LNF with
x = nat(u). This word is called the lexicographic normal form of x. We denote
it by lexNF(z).

Next, we characterize the set of words in lexicographic normal form. This
result generalizes the characterization of lexicographic normal forms for trace
monoids given in [AK79).

Lemma 9.3.3 Let (M, p) be a labeled divisibility monoid and let < be a linear
order onT'. Let u; € T for 0 <1 <mn. Then uyu; ...u, € LNF ff

uj € resuiui+1---uj—1 (T) = p(uz) < p(”]) (*)
for0<i<j<n.

Proof. For simplicity, let u := uguy ... u,. First let v € LNF and assume there
are 7, j with 0 < ¢ < j < n such that u; € resyu,,,..u;_, (1) and p(u;) = p(u;).
Then there is ¢t € T with u; = res,, (t). Hence

Uj41---Uj—1
nat(u) = nat(ug ... wi—1tress(u; ... uj—1) Ujs1 ... Up).

Since p(u;) = p(u;) = p(t), the label sequence of u is larger than or equals that of
Ug ... Ui—1tresy(Us . .. Uj—1) Ujtq - .. Up. Since w is in lexicographical normal form,
this implies in particular p(u;) = p(t), contradicting ¢t € dom(res,,). Thus, u
satisfies the property (x).

Conversely, let the word u satisfies the property (x). Let v € nat(u) with
u # v. We claim that u is lexicographically smaller than v. Note that any suffix
of u satisfies (x). Hence we may assume that the first letter ¢ of v is different from
up. Then nat(¢) and nat(ug) are bounded above by nat(u). Since they are dif-
ferent irreducible elements in M, their infimum is trivial. Hence nat(t) conat(ug)
implying p(t) # p(uo). Let j be the least integer such that p(t) € p(uou; ... u; ).
By Lemma 9.3.1, nat(¢) and nat(ugu; ... u;) are not complementary. Since they
are bounded by nat(u), the infimum cannot be 1. Hence nat(t) < nat(uou; ... u;).



CHAPTER 9. AN OCHMANSKI-TYPE THEOREM 120

Since on the other hand the infimum of nat(¢) and nat(ugu; ...u;_1) is trivial,
the supremum of these two equals nat(uou; ... u;). Hence u; = resygu,..u;_, (t)-
Since u satisfies (x), this implies p(ug) < p(u;) = p(t) and hence our claim. Thus
u € LNF. g

Using the lemma above, we show that the set of words in lexicographic normal
form is recognizable:

Lemma 9.3.4 Let (M, p) be a labeled divisibility monoid. Then LNF is recog-
nizable in the free monoid T™.

Proof. Recall that Dy, = {res, | v € T*} is a monoid consisting of partial
functions from 7™ to 7™. These functions are length preserving. In particular,
they map elements of 7" to elements of 7. Hence Dy, [ T := {res, [ T | u € T*}
is a monoid. It is finite since 7T is finite. Recall furthermore, that the mapping
T* — Dy defined by u +— res, is a monoid antihomomorphism. Hence the
mapping from 7™* to Dy, [ T with u + res, [ T is a monoid antihomomorphism,
too. This implies that the sets Xy := {u € T* |res, | T = d} for d € Dy, [ T are
recognizable in T*. Hence they are rational by Kleene’s Theorem.

For SCT,deDyordeDy [T,letdS):={d(s)| s e Sndom(d)}
which is a finite set. Now by Lemma 9.3.3 the set of words over T" that are not
in lexicographical normal form equals the rational language

T*\LNF = | ] T*{s}Xy (ves,od)({t € T | p(t) < p(s)}) T*.

seT
deDy I T

Hence LNF is recognizable. 0

The crucial point in Ochmanski’s proof of the c-rationality of recognizable
languages in trace monoids is that whenever a square of a word is in lexicographic
normal form, it is actually connected. This does not hold any more for labeled
divisibility monoids. But we can show that whenever a product of |E|+ 2 words
having the same set of labels is in lexicographic normal form, it is connected
(cf. Corollary 9.3.6). This enables us to show that recognizable languages are
mc-rational.

For a set A C E and u € T* let na(u) denote the number of maximal factors
w of u with p(w) C A or p(w)NA = (. The number n4(u) is the number of blocks
of elements of A and of E'\ A in the label sequence of u. For example, let u =
ULy . . . Uy € T* with u; # €, p(ug;) C A and p(ugi41) C E \ A for all suitable i.
Then n = ng(u) = ngpa(u). Furthermore, we put ny(z) := ns(lexNF(x)) for
x e M.
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Lemma 9.3.5 Let (M,-,1,p) be a labeled divisibility monoid, z,y € M and
zy. Then nyg(zVy) < |E|+1.

Proof. If n,g)(rVy) =1, the statement is trivial. So let n,,)(zVy) > 2. Since
na(zVy) =nma(z Vy) for any A C E, we may assume that the label sequence
of lexNF(z V y) starts with a letter from A := p(z).

Hence there exist words u,v € T and u’' € T* with p(u) C A, p(v) C E\ A
and lexNF(z V y) = uvu’. Now let a be the first letter of v and b the first one
of v.

First we show p(nat(ub) A y) = p(b): Let h := nat(ub) A y. Then there exist
uniquely determined k,! € M with nat(ub) = h-k and y = h-I. By Lemma 7.1.1,
kwl. Hence p(k) N p(l) = O by Lemma 9.3.1. We write #.h for the number
of occurrences of the letter ¢ € E in the label sequence of any representative of
h € M, which is well-defined by Lemma 8.2.1 and the requirements on p. So
we get on the other hand, #.nat(ub) = #.h + #.k and #.y = #.h + #l for
any e € E. Hence #.h = min(#.nat(ub), #.y). Note that p(b) € p(y). Hence
p(b) € p(h). Now let e € p(y) \ p(b). Then e & p(x) and therefore #.h = 0. Thus
p(nat(ub) Ay) = p(b).

Hence there exists a word w € T* with  V y = nat(w) such that the label
sequence of w starts with p(b). Since the label sequence of the lexicographical
normal form of x V y starts with p(a), we get p(a) < p(b).

So let 1exNF(z V y) = ugvouqvy . . . upv, with u; # € for all ¢ < n, v; # ¢ for
i <mn, p(u;) C Aand p(v;) C E\ A. Let a; (b;) be the first letter of u; for i < n (v;
for i < n, resp.). Using Lemma 7.1.1, we can apply the above result inductively
and obtain p(a;) < p(b;) < p(a;y1) for each i < n. Hence 2n+1 < |E|. O

Corollary 9.3.6 Let (M,-,1,p) be a labeled divisibility monoid and let X C
T* be a monoalphabetic language. Then nat(w) is connected for any word w €

XIE+2 A LNF.

Proof. Letn = |E|+1. Then there exist z; € nat(X) with nat(w) = zozy ... z,.
Now let z,y € M with x oy and x V y = nat(w). Then p(z) N p(y) = O by
Lemma 9.3.1. If p(x;) N p(z) # O and p(z;) N (E\ p(z)) # 0 for all 0 < i < n,
we would obtain n,,)(nat(w)) > n = |E|+ 1, contradicting Lemma 9.3.5. Hence
there exists i € {0,1,...,n} such that p(z;) C p(z) or p(x;) C E\ p(z).

First consider the case p(x;) C p(z). Since X is monoalphabetic, this implies
p(z;) = p(z;) C p(z) for all 0 < j < n. Now p(y) = 0 follows from the inclusions
p(y) C p(w) C p(z) and from p(x) N p(y) = 0. Hence y = 1.

Now consider the case p(z;) C E \ p(z). From Lemma 9.3.1, we obtain
p(x)Up(y) = p(nat(w)) D p(x;) and this implies p(z;) C p(y). Now we can argue
as above (with z and y interchanged) and obtain z = 1. O
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Corollary 9.3.7 Let (M,-,1,p) be a labeled divisibility monoid. Let L C M be
recognizable. Then L is mc-rational.

Proof. Let X :={u € T* | nat(u) € L} NLNF. Since any x € M has a unique
lexicographical normal form, we have nat(X) = L. Then X is recognizable in T*
and therefore rational. By Lemma 7.1.2, it can be constructed from finite lan-
guages in T* by the operation -, U and (.) applied to monoalphabetic languages,
only. Since X C LNF, any intermediate language in the construction of X is
contained in LNF, too. Let Y be such an intermediate language and suppose
that the iteration (.) is applied to Y. Hence Y is monoalphabetic. Then (V') is
another intermediate language and therefore contained in LNF. Hence by Corol-
lary 9.3.6, nat(Y)/#'*2 is connected. Note that (V) = (Uo<icpi Y (YIEIF2),
Therefore, we can construct nat(X) = L as required. O

We can summarize our results on recognizable, c-rational and mc-rational
languages as follows.

Theorem 9.3.8 Let (M, -, 1, p) be a labeled divisibility monoid with finitely many
restduum functions. Let L C M. Then the following are equivalent:
1. L is recognizable

2. L s c-rational
8. L is mc-rational.

Proof. The implications 2 —+ 1 — 3 — 2 are Theorem 9.2.8, Corollary 9.3.7
and 9.3.2, respectively. 0

Let T be a finite set and p : T" — T the identity on 7. Then p is a labeling
function on the free monoid T*. Since free monoids are divisibility monoids,
the theorem above generalizes Kleene’s Theorem - but our proof used Kleene’s
Theorem as well. The situation regarding trace monoids is different: Any trace
monoid can be considered as a labeled divisibility monoid with finitely many
residuum functions. Hence Theorem 9.3.8 generalizes Ochmanski’s Theorem (and
extends it slightly by the consideration on mec-rational languages). In [DKO00],
we showed that Theorem 9.3.8 also generalizes the main result from [Dro95] on
concurrency monoids. Even more, we could show that Droste’s result holds for
all stably concurrent automata and not only, as shown in [Dro95|, for a certain
subclass.



