Chapter 10

Kleene’s Theorem

Theorem 9.3.8 characterizes the recognizable languages in a divisibility monoid
with finitely many residuum functions using the concept of c-rationality which is a
more restrictive notion than rationality. The aim of this section is to characterize
those divisibility monoids that satisfy Kleene’s Theorem: A divisibility monoid
(M,-,1) is width-bounded provided there exists n € N with w(|x, <) < n for any
x € M. Thus, a divisibility monoid is width-bounded if there is a uniform bound
for the width of the lattices Jx. Hence in the partial order (M, <), bounded
antichains have a uniformly bounded size. Note that a free monoid is width-
bounded with n = 1 and that a direct product of two free monoids is not width-
bounded. Hence a trace monoid is width-bounded iff it is free.

10.1 Rational monoids

Rational monoids are the main tool in our proof that any width-bounded di-
visibility monoid satisfies Kleene’s Theorem. This concept was introduced by
Sakarovitch [Sak87]. He showed that rational monoids satisfy Kleene’s Theorem
and considered closure properties of this class of monoids (cf. also [PS90] where
the latter topic was extended). In this section, we recall some definitions and
results from [Sak87] and prove a first statement concerning divisibility monoids.

Let (M,-,1) be a monoid. A generating system of M is a pair (X, a) where
X is aset and o : X* — M is a surjective homomorphism. Then the kernel of a,
i.e. the binary relation ker o = {(v,w) € X* x X* | a(z) = a(y)}, is a congruence
relation on the free monoid X™*.

An idempotent function g : X* — X* with ker § = ker « is a description of
(X, ). We can think of 3(v) as a normal form of the word v. Note that (X, «)
might have several descriptions. But for any such description 3, M £ T*/ker 3
since ker 8 = ker a.

Let (M,-,1) be a divisibility monoid. In Section 7.3, we defined the set (¥
to consist of all nonempty subsets of T of pairwise complementary elements that
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are bounded in (M, <). Furthermore, o was defined to be the extension of the
function A — sup(A) to a homomorphism from C/* onto M. Hence the tuple
(C, o) is a generating system of the divisibility monoid (M, -,1). Furthermore,
we constructed an automaton A on the monoid T* x Cf* that computes the
function fnf o nat : 7% — Cf* by Theorem 7.3.6. The following proof uses this
function to show that 3 := fnfoo is a description of the generating system (C/, a):

Lemma 10.1.1 Let (M,-,1) be a divisibility monoid. Then fnfoa : C0* — Cl* is
a description of (C/, ).

Proof. Forany A € (!, choose some word wy € T* with nat(wy) = a(A). Then
there exists a homomorphism 1) : (f* — T™* that extends the mapping A +— w4.
In addition, nat o) : (/* — M satisfies

nato)(A1 Ay ... A,) = nat(wa,wa,...wa,)
= nat(wa,) - nat(wa,) - --nat(wa,)
= «a(4))-a(As)---a(A,)
= a(A14,... Ay),

i.e. & = nat o). Hence 3 = fnf o nat ot.

It remains to show that f is idempotent and that ker 5 = ker a: Since fnf(x)
is the unique word in FNF with a(fnf(x)) = z, we have a o fnf = id;;. Hence
Bopf =tnfoaofnfoa = fnfoidy oaw = 3, i.e. B is idempotent. Now let v, w € C*
with a(v) = a(w). Then, clearly, S(v) = fuf o a(v) = fuf o a(w) = B(w), i.e.
ker(a)) C ker(f). Conversely, B(v) = f(w) implies o fnf o a(v) = a o fuf o a(w)
and therefore ker 5 C ker a by « o fnf = id,,. O

A function S : M — N mapping one monoid into another can be seen as a
subset of M x N. Since this direct product is a monoid, we can speak of rational
sets in M x N. In this spirit, a function 5 : M — N is a rational function if it
is a rational set in M x N.

A monoid (M, -, 1) is a rational monoid if there exists a generating system
(X,a) of M that has a rational description. Loosely speaking, a monoid is
rational if there is a rational normal form function S that determines M. Let
B . X* — X* be a rational description of the rational monoid M. Since the
image of a rational set under a rational function is a rational set, the set 5(X*)
is rational in the free monoid X*. Hence M = a o §(X*) is rational in M. Since
any rational set in M is contained in a finitely generated submonoid of M, this
implies that a rational monoid is finitely generated.

The key property of rational monoids that will be used in our considerations
is that they satisfy Kleene’s Theorem:
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Theorem 10.1.2 ([Sak87, Theorem 4.1]) Let M be a rational monoid and
L C M. Then L is rational iff it is recognizable.

Suppose the trace monoid M(X, D) is rational. Then it satisfies Kleene’s
Theorem implying that it is free. Since, conversely, any free monoid is rational,
a trace monoid is rational iff it is free.

10.2 Width-bounded divisibility monoids

10.2.1 Width-bounded divisibility monoids are rational

In this section, we will show that the description fnf o o of the generating system
(¢, ) for a width-bounded divisibility monoid is a rational function. To this
purpose, we first show that the function fnf o nat is rational. This is based on
the following theorem that characterizes rational subsets in a monoid.

Theorem 10.2.1 ([EM65]) Let M be a monoid. A set L C M is rational iff it
15 the behavior of a finite automaton over M.

Recall that an automaton is finite whenever its set of transitions is finite.
Since the transitions of the automaton A from Theorem 7.3.6 are elements of the
set @ x (T x Cl.) x @, and since the set T x (/. is finite, it suffices to show that
there are only finitely many reachable states. To this purpose, we show that the
length of the monoid elements in reachable states is bounded. But first, we need
the following lemma on the lattices |x for x € M. As known from traces, the
width of these lattices is in general unbounded. Here we show that nevertheless
the width of the join-irreducible elements is bounded by 7

Lemma 10.2.2 Let (M, -, 1) be a divisibility monoid and x € M. Then the width
of (J(x), <) is at most |T|.

Proof. Let A C J(x) be an antichain. Define
b:=sup{y € J(z) | ~Fa € A:a <y}

Since }bN J(x) equals {y € J(x) | 7Ja € A: a < y} and since A is an antichain,
1N J(z) is the set of minimal elements of the partially ordered set J(z) \ 1b. By
Lemma 7.3.1, |A| equals the number of minimal elements of J([b, z]). Since [b, z]
and |b~'x are order isomorphic by Lemma 7.1.1, |A| is the number of minimal
elements of J(b~'z), i.e. of elements ¢ € T with ¢ < b~'z. Hence [A| < |T|. O

Now we can bound the number of reachable states in the automaton .A.
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Lemma 10.2.3 Let (M,-,1) be a width-bounded divisibility monoid such that
wlz,<) < n for any x € M. Let x,y € M with |fnf(zy)| = |f(x)|. Then
ly| <2(n+1)|T].

Proof. By contradiction, assume |y| > 2(n+1)|T|. Since x < zy, the set J(z) is
an ideal in (J(zy), <). Hence, for v € J(z) and w € J(zy), it holds w £ v. The size
of J(x) equals the length of (|z, <) and therefore of x and similarly for xy. Hence
J(zy) \J(z) contains at least 2(n+1)|T| elements. By Lemma 10.2.2, J(zy) \ J(x)
has width at most |7'|. Hence the elements of J(zy)\ J(z) occupy at least 2(n+1)
different heights, i.e. there are natural numbers 0 < n; < ny--- < ng(m41) such
that there exists w; € J(zy) \ J(z) with A(w;, J(zy)) = n; for 1 <i < 2(n+1).
Since |fnf(zy)| = |[fnf(z)|, the partially ordered sets J(xy) and J(x) have the same
length by Lemma 7.3.2. Hence, for 1 < i < 2(n + 1) there exists v; € J(x) with
h(vi, J(zy)) = n;. Since h(w;, J(zy)) < h(v;,J(zy)) for 1 <i<n <j<2(n+1),
the elements from {w; | 1 < ¢ <n+1}and {v; | n+1<j <2(n+1)} are
mutually incomparable. Then I(7,j) := J{wi, wa, ..., Wi, Vnt1, Vnt2, -\ Unt14s}
is a finitely generated ideal in (J(zy), <). Note that w; € w; for1 <i < j <n+1
and similarly v; £ v; for n+1 < i < j < 2(n+1). Hence the ideals I(i,n — 1)
for 1 < i < n+1 are pairwise incomparable, i.e. (H(J(zy), <), C) contains an
antichain of n + 1 elements. Since (lzy, <) = (H(J(zy), <), C), this contradicts
our assumption. O

The proof of the following theorem is based on the fact that the description
fnf o « of the generating system (C/, «) for a width-bounded divisibility monoid
is rational:

Theorem 10.2.4 Any width-bounded divisibility monoid is a rational monoid.

Proof. Let M be a width-bounded divisibility monoid. By Theorem 7.3.6,
the automaton A computes the function fnf o nat : 7% — (¢*. To show that
this is rational, it remains to prove that the number of reachable states in A
is finite (since the transitions are labeled by the finite set 7" x (/). Let (z,C)
be a reachable state of A. Then, by Lemma 7.3.5, there exists x € M with
Ifnf(z)| = |fnf(xz)|. Hence, by Lemma 10.2.3, the length of z is bounded by
2(n + 1)|T| where n is the global bound for the size of bounded antichains in
(M, <). Since (¥ is finite, this implies that there are only finitely many reachable
states in A.

Recall that (C/, o) is a generating system of M. By Lemma 10.1.1, the function
fnf o o : C* — CF* is a description of (C/,«). To show that this description
is rational, consider the homomorphism v : C/* — T* defined in the proof of
Lemma 10.1.1, where we also showed o = nat oy and therefore 5 = fnf o nat o).
Since 1 is a homomorphism, it is a rational relation from C/* into T, i.e. 3 splits
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into two rational relations C/* — T* and T* — C/*. Since T™ is a free monoid, by
[EM65] (cf. [Sak87, Proposition A.16]), § is rational. O

Remark. By [Sak87, Theorem 4.1], Kleene’s Theorem holds in any rational
monoid. Thus, the theorem above implies that in a width-bounded divisibility
monoid the rational and the recognizable sets coincide. There is an alternative
proof of this weaker result that follows the line of the proof of Theorem 9.3.8: Let
(M,-,1) be a width-bounded divisibility monoid (M, -,1) with w(lz, <) < n for
any x € M. Then one shows that its monoid of residuum functions R,, has at
most | Tt — 1+ [T|("+DUITI" ™ =1) elements. Hence any such monoid has finitely
many residuum functions. The crucial point then is to show that the rank of X
is bounded by 2n for any X C T™.

10.2.2 Rational divisibility monoids are width-bounded

Our next goal is to show that the width-boundedness is not only sufficient but
also necessary for Kleene’s Theorem to hold. We start with two lattice-theoretic
lemmata.

Lemma 10.2.5 Let (P, <) be a partially ordered set, M, N C P sets with n — 1
elements each such that any m € M is incomparable with anyn € N. Then there
exists a semilattice embedding of [n — 1] x [n — 1] into (H(P),C). If (P, <) is
finite, this embedding can be chosen to preserve infima, too.

Proof. Let M = {my,ms...,mp_1} and N = {ny,ns...,n,_1} be linear ex-
tensions of (M, <) and (N, <), i.e. m; < m; or n; < n; implies ¢ < j. Then
I(3,7) == {m1,...,mi,nq,...,n;} is a finitely generated ideal and therefore an
element of H(P, <). Furthermore, ({I(¢,j) |1<i<n—-11<j<n-1}Q)
is the desired subposet of Hy (P, <). 4

Next, we want to prove that any distributive lattice of sufficient width contains
a large grid. Recall that R, ;(6") is a Ramsey number (cf. Ramsey’s Theorem
on page 61).

Theorem 10.2.6 Let (L, <) be a finite distributive lattice with w(L) > R, 11(6™).
Then there ezists a lattice embedding of [n — 1] x [n — 1] into (L, <).

Proof. First we consider the case w(J(L)) > 2n. Then there exists an antichain
A C J(L) containing 2n elements. Let M and N be disjoint subsets of A of size n.
Then Lemma 10.2.5 implies the statement.
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Now assume w(J(L)) = k£ < 2n. By Dilworth’s Theorem [Dil50], there are
chains C1,Cs,...,Cy C J(L) with J(L) =J,_; ,Ci. Forz € Land1 </{¢ <k
let 9(z) denote the maximal element of C; below z if it exists, and L otherwise.
To ease the notations in this proof, we will consider 1 as an additional element
of J(L) which is minimal. Since L is distributive, z =/, .., 0i(z) for any x € L.

Since w(L) > R,,+1(6"), there is an antichain A = {z1,xs,...,2y,} in L with
m > R,+1(6"). Now we define a mapping g¢;; : {1,2,...,k} — {<,=,>} for
1 <i<j<mby g,;l)=0iff 0,(x;)00,(z;) (with 6 € {<,=,>}). For z; # z;,
we define g(7;,7;) = Gmin{i,j},max{ij}- LNus, g maps the two-element subsets of
Ainto {<,=,>}{2%k} Since this set contains at most 32" = 6" elements and
since m > R,11(6"), we can assume g(x;,x;) = g(xp,x;) =: f for i,j,i,5" €
{1,2,...,n+ 1} with ¢ # j and ' # j'. Then f(¢;) #“=" for some 1 < ¢; < k
since otherwise x1 = wo. Similarly, there is an index 1 < ¢y < k with f({s) &
{=, f(£1)} since otherwise x; and x, are comparable. Without loss of generality,
we assume f(1) =“<” and f(2) =“>". Then 0,(x;) < 01(x2) < ...01(xp41) and
02(z1) > Oa(x2) > ... 02(@ny1). Thus, Cj :={0j(x;) |1 <i<n+1}forj=1,2
is a chain in J(L) containing n — 1 elements.

Let 1 < i < n+1 with 61(33,) > 82(31'1) Then Tig1 > 81(3:,-“) > 81(.’11'2) >
02(2;) > 02(i41) and Ox(z;), Oa(xit1) € Co. But this contradicts the definition
of 0y(x;11) as the maximal element of Cy below z;41. Symmetrically, we can
argue if 01(x;) < Os(x;) (with x;_; in place of x;11). Thus, 0;(x;) and dy(x;) are
incomparable for 1 <i <n+ 1.

Now let 1 < i < j <mn+1 with 0;(z;) > 02(z;). Then Ox(x;) > 0x(x;) since
i < j,ie. 01(xj) > 0(x;), a contradiction to what we showed above. Similarly,
we can argue in the cases 0;(z;) < 0a(x;), 01(x;) > 02(x;) and 01 (x;) < Oa(x;).

Thus, we found two chains C; and Cs in J(L) of size n — 1 whose elements
are mutually incomparable. Now Lemma 10.2.5 implies that [n — 1] x [n — 1] can
be lattice embedded into (H(J(L)),C) = L. O

The following lemma implies that the free commutative monoid with two
generators can be embedded into a divisibility monoid if the size of bounded
antichains is unbounded.

Lemma 10.2.7 Let (M, -, 1) be a divisibility monoid with finitely many residuum
functions. Let z € M with w({z) > R,2(6™) where n = R3(|Ry|) + 1. Then
there exist x,y € M \ {1} such that x 0y, ry(z) =z and r,(y) = y.

Proof. By Theorem 10.2.6, there is a lattice embedding 7 : [n — 1]> — |z. By
cancellation, we may assume 7(0,0) = 1. For 0 <7 < n—2 thereis z; € M \ {1}
with 7(4,0) - z; = n(i + 1,0). By Lemma 9.2.4, there are 0 < i < j < n — 1 with
Teizipiw;—1 < idy. Furthermore, there are y, € M\ {1} with n(i, ¢) -y, = n(i, { +
1). Using Lemma 9.2.4 again, there are 0 < k < £ < n—1withry,, .., Cidy.
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Let z := n(i,k)"'n(j, k) and y := n(i,k)"'n(i, ) = yrYsr1---ye_1- Then

To show r, C idy, note that n(i,0) = n(i, k) A n(j,0) since i < j. Hence
by Lemma 7.1.1, 1 = n5(:,0)"*n(i,0) = n(:,0) 'n(i, k) A n(i,0)"tn(4,0), i
n(i,0)"'n(i, k) and n(:,0)7'n(s,0) are complementary.

Similarly, we get n(i, k) V n(4,0) = n(j, k) since i < j and therefore

n(i,0) " 'n(i, k) vV n(i,0)"'n(5,0) = n(E0) 'n(j, k)
= n(i’ 0)_177(ia k) 77<7'.7 k)_lﬂ(ja k)

(i, k) = n(i,k)~*n(j, k) = x. Since the residuum

Thus 7(4,0)~'n(j, ) n(i, 0)”
_1 =n(%,0)"*n(4,0) is contained in the identity, Lemma 7.2.6

function of z;x; 41 -
indeed implies 7, g 1dM
It remains to show z o y: Since (4, k), n(i,£) < n(j,¢), the elements x and y
are bounded in (M, <). Furthermore, (i, £) An(j,¢) = n(i, k) implies z Ay = 1.
O

Now we can characterize the divisibility monoids that satisfy Kleene’s Theo-
rem.

Theorem 10.2.8 Let (M, -,1) be a divisibility monoid with finitely many residuum

functions. Then the following are equivalent
1. M 1is width-bounded,

2. M s rational, and
3. any set L C M 1s rational iff it is recognizable.

Proof. Theimplication 1 = 2 follows from Theorem 10.2.4, and the implication
2 = 3 from [Sak87, Theorem 4.1]. Now assume M not to be width-bounded.
Then, by Lemma 10.2.7, there are x,y € M \ {1} such that z 0y, r,(y) = y and
ry(x) = x. Hence we can embed the monoid (N x N, +, (1,1)) into M (extending
the mapping (1,0) — z and (0, 1) — y to a homomorphism). Since {(,4) | i € N}
is rational but not recognizable in (N x N, +,(0,0)), its image is so in M. Hence
M does not satisfy Kleene’s Theorem, i.e. the implication 3 = 1 is shown. Il

Remark. Note that the assumption on M to have finitely many residuum func-
tions is necessary for the implication 3 = 1, only. On the other hand, the
implications 1 = 2 = 3 can be shown without this assumption. It is not clear
whether the other implications, in particular that any rational divisibility monoid
is width-bounded can be shown without this assumption.

Above, we used Sakarovitch’s result that rational monoids are Kleene monoids.
Together with Peletier, he showed that the converse is false, i.e., that there are
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Kleene monoids that are not rational [PS90]. Rupert showed that any commu-
tative Kleene monoid is rational [Rup91]. Similarly, we showed above that any
Kleene divisibility monoid is rational.



