Chapter 11

Monadic second order logic

11.1 Two Biichi-type theorems

Biichi showed that the monadic second order theory of the linearly ordered set
(w, <) is decidable. To achieve this goal, he used automata. In the course of these
considerations it was shown that a language in a free finitely generated monoid is
recognizable iff it is monadically axiomatizable. In computer science, this latter
result and its extension to infinite words are often referred to as “Biichi’s Theo-
rem” while in logic it denotes the decidability of the monadic theory of w. Here, I
understand it in this second meaning, i.e. it is the aim of this section to show that
certain monadic theories associated to a divisibility monoid are decidable. In par-
ticular, it will be shown that the monadic theory MTh({(J({m), <) | m € M})
is decidable for any divisibility monoid with finitely many residuum functions.

Let (L, <) be a finite distributive lattice. Let x,y € L with x —< y. Then
there exists a uniquely determined join-irreducible element z € J(L) such that
z < y and z is incomparable with z. We denote this element by prim(zx,y). Then
x Vprim(z,y) = y.

Lemma 11.1.1 Let (M,-,1) be a divisibility monoid. Furthermore, let s,t € T
and u,v € M. Then prim(u,us) and prim(usv, usvt) are incomparable iff there
exist x1,x9 € M and s’ € T such that

sV =187, 8" =714,(s) and t € Im(ryy,).

The situation of the lemma is depicted by Figure 11.1.

Proof. First, assume prim(u, us) and prim(usv, usvt) =: b to be incomparable.
Since b is join-irreducible, there is a uniquely determined element a € M with
a —< b. Assume us < wva. Then prim(u,us) < u V prim(u,us) = us < a < b,
contradicting prim(u, us) || b. Hence us € u Vv a. Furthermore, uVa < usV a
for otherwise us < usV a = u V a contradicting what we just showed. Hence
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Figure 11.1: cf. Lemma 11.1.1

uVa —< usVa, i.e. there exists s’ € T' with (uVa)-s' = usVa. Let 2, := v *(uVa),
ie. uVa=ux. Then uris’ = sup(u,us,a) = ux; V us implying ' = x; Vs. On
the other hand, us £ vV a = axy, i.e. s £ x; implies s Ax; = 1 since s € 7.
Hence z; 0 s and therefore s’ = s 1 21 = 1., (s).

Next we show uVa —< uVb. Clearly, a < bimplies uVa < uVb. Assume them
to be equal. Since b is join-irreducible and above a, this implies b < u < usv.
But this contradicts bV usv = prim(usv, usvt) Vusv = usvt > usv. Since a —< b
we get vV a —< u V b. Hence there exists t' € T with u Va -t =uVb.

Let xo € M be given by (usV a) - o = usv. It remains to show that we have
t =t 1 s'wy: First note that uzt’ = u Vv b and

ur18'Te = (uVa)s'zs = (usV a)ry = usv.

Hence uxt'Vuxis'xe = uVbVusv = usvt = ux,s'xot. This implies ¢'Vs'wy = s'xot
and therefore in particular s'zo —< t' V 'z, Since t' € T, this implies ' @ s’z
and t =t' 1 s'z,.

Conversely, let s',t' € T and x1,x9 € M such that we have sv = x5,
s=sTxyandt =t 1 sxy. Then sV, = 2,8 implying us V uxr; = ux;s’. Now
uxy V prim(u, us) = vz V u V prim(u, us) = uxy V us = uxs’ follows.

Similarly, ¢’ V s'xy = s'xot and therefore ux 1t V uxis'vy = uxis'xst or, since
uzr1t'zy = usv, uxt’ V usv = usvt. On the other hand, we have usv V uxt’' =
uwy 8’ woAuz it = uzy(s'zoAt') = uzy since s’z @ t'. Hence the two prime intervals
(uxy,uxqt’) and (usv, usvt) are transposed. Thus we get ux; V prim(usv, usvt) =
uxy V prim(uzy, vz t') = uxyt'.
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Since t’ and s'xy are complementary, ¢ and s’ are in particular incomparable.
Hence so are uz;s’ and uxit’. Since, as we saw above, uz; V prim(u,us) =
ur1s’ and wxy V prim(usv, usvt) = wuxqt’, prim(u,us) and prim(usv,usvt) are
incomparable. Il

Let w € T* be a word. Then w determines the monoid element x = nat(w) €
M and therefore the partial order (J(x),<). At the same time, w “is” a T-
labeled linear order. The next lemma implies that the theory of (J(z), <) can be
interpreted in the theory of the linear order w:

Lemma 11.1.2 Let M be a divisibility monoid with finitely many residuum func-
tions Ryy. Then there exists a monadic formula less over the signature {<, A}
with two free elementary variables such that for any w € T*:

(J(Hw]), <) = (dom(w), {(z,y) € (dom(w))” | w = less(z,y)}).

Proof. For ¢ € Ry, let L, denote the set of all x € M with r, = ¢. Then, for
s, t € T, we have

My, = {x18'z9 | 21,22 € M, s" € T such that s’ = r,, (s) and t € im(ry,,)}
= ULl ceRy,e(s) =s}-s"- | J{Lr, | 2 € Mt €im(ry,)}).
s'eT

Since M has finitely many residuum functions and x + r, is a monoid antiho-
momorphism, this set is recognizable by Corollary 9.2.2. Hence {w € T* | [w] €
M.} is recognizable in T* and therefore axiomatizable by a monadic sentence
s+ Now we define

less(z,y) := /\ A=) =sAXy) =tAz <yA-yp,,)

s,teT

where ¢f , is the restriction of ¢, to the positions between z and y, i.e. to the
set {z € dom(w) | + < z < y}. Now the lemma follows easily by the preceding
lemma. U

Thus, indeed, the monadic theory of (J(nat(w)), <) can be interpreted in the
monadic theory of the linear order w. In addition, the monadic theory of all linear
orders in T™* is decidable. Hence the monadic theory of {(J(z),<) | z € M} is
decidabe:

Theorem 11.1.3 Let (M, -, 1) be a divisibility monoid with finitely many residuum
functions Ry;. Then the monadic theory MTh({(J({m), <) | m € M}) is decid-
able.
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Proof. Let ¢ be a monadic sentence over the signature {<}. In ¢, replace any
subformula of the form = < y by less(z,y) and denote the resulting sentence by
. Then, for any w € T*, we have w = @ iff (J(}[w]), <) E ¢. Since the monadic
theory of the words over T' is decidable, the result follows. O

By the theorem above, the monadic theory of {(J({m),<) | m € M} is
decidable. The union of all these sets is J(M), the set of join-irreducibles in
(M, <). The following theorem shows that the monadic theory of this set is not
decidable in general:

Theorem 11.1.4 Let (X, D) be a finite dependence alphabet. Then the monadic
theory of (JM(X, D)), <) is decidable iff D is transitive.

Proof. Let D be transitive. Then J(M(3, D), <) is the disjoint union of trees of
the form ({1,2,...,k}*, <). Since the monadic theory of these uniformly branch-
ing trees is decidable [Rab69], so is the monadic theory of their disjoint union
[SheT75].

On the other hand, suppose D not to be transitive. Then there are a,b,c €
with (a,b), (b,¢) € D and (a,c) ¢ D. We show how to encode an undirected graph
(V, E) into two antichains A and B of J(M(X, D)): Suppose V = {1,2,...,n}.
The vertices are represented by the elements of the set A := {a*c*b |1 < k < n}.
Furthermore, the edges of the graph (V, E) correspond to the elements of the
antichain B := {a’c’b | (i,j) € E}. Then, for any “vertices” z,y € A, there is
an edge in the graph (V) E) iff there exist 2’,y' € J(M(X, D)) and z € B such
that ©' —< x,z and 3y’ —< v, z. Since this can be expressed by an elementary
formula, we can reduce the elementary theory of graphs to the monadic antichain
theory of (M(X, D), <). O

Again, by Theorem 11.1.3, the monadic theory MTh{J({z,<) | = € M} is
decidable for any divisibility monoid with finitely many residuum functions. This
does not imply that the monadic theory MTh{(lz, <) | € M} is decidable. A
counterexample is provided by the free commutative monoid with two generators
since this monoid contains, for any n € N, an element z such that (Jz, <) is
the grid ([n]?, <). We will show that these grids are the only reason for the
undecidability.

To this aim, we first show that for a given divisibility monoid (M, -,1) with
finitely many residuum functions, the set of lattices ({m, <) for m € M is finitely
axiomatizable in monadic second order logic (Corollary 11.1.7).

Let X be a finite alphabet and consider the elementary logic that is appropriate
to reason on X-labeled partially ordered sets. Furthermore, we deal with pomsets
without autoconcurrency, only, i.e. we consider structures t = (V, <, \) where
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(V,<) is a finite partially ordered set and A : V — ¥ is a mapping such that
A7 (a) is linearly ordered in (V, <). In this setting, one can write down a formula
@ with two free variables x and y such that

o' ={(z,y) € B | t = o(z,y)}

is a linear extension of <. For traces over (X, D) this was shown in [EM96].
For ¥-labeled partially ordered sets that are associated to the computations of
stably concurrent automata, it has been observed independently in [DK96]. The
most compact formula that defines a linear order in pomsets without autoconcur-
rency can be found in [DM97]. They consider traces only. Nonetheless, following
their argumentation verbatim, one can easily see that their formula defines a lin-
ear order extension of the partial order of any pomset without autoconcurrency.
Knowing this, the following lemma is an immediate reformulation:

Lemma 11.1.5 There exists a monadic formula lin(z,y,Cy,...,Cy,) satisfying:
For any finite partial order (P, <) of with at most n and any chains C; C P for
1 <4 < m such that P = J,c;.,,Ci and C;NC; =0 for 1 <i < j < m, the
relation o

lin*<CCn) = {(2,) € P? | (P,<) E lin(z,y,Ch, ..., Co)}
1S a linear order extending <.

Theorem 11.1.6 Let (M, -,1) be a divisibility monoid with finitely many residuum
functions. There exists a monadic sentence © such that for any finite partial order
(P, <):

(P,<) E® <= there ezxists x € M with J(lz, <) = (P, <).

Proof. Let m = |T| denote the number of irreducible elements of the monoid
(M,-,1). By Lemma 11.1.2, there exists a formula less that defines the partially
ordered set J({[w], <) inside the word w € T*. In this formula, replace any
subformula of the form A(z) = ¢ by z € M, and any subformula of the form
z < 2 by lin(z,2',C1,Cs,...,Cp). The result is denoted by less’. Now let
o(Cy,Cy, ..., Cy) denote the following formula

Fer My ( U M; = everything A
teT
M,N M, =0 for s #t A

Va,y(x < y < less'(z,y,Cy,...,Cn))

).

Let x € M and (C;)i<i<m be a tuple of mutually disjoint chains whose union
equals J(lx,<). For simplicity, let (P,<) := J({z,<). Then lin"<C1--Crm)
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defines a linear order that extends <. This linear order defines a maximal chain
in the lattice ({z, <) which corresponds naturally to a word w € T* with nat(w) =
x. Now let M; be the set of positions in w that are labeled by the irreducible
element t € T'. Then the sets M, satisfy the first two conditions of the formula
. Furthermore, by Lemma 11.1.2, the last statement holds as well. Hence
(P, <) = ¢(C4,...,Cp). On the contrary, let (P,<) be a finite partial order,
C; mutually disjoint chains whose union is P such that (P, <) = ¢(Cy,...,Cp).
Let P = (x1,29,...,x)) be the enumeration of P that is completely defined by
(P, <) E lin(zy, 2441,Ch, ..., Cp). Now consider the word w = tits. ..t with
x; € My, for all . Due to the construction of less’ from less and Lemma 11.1.2,
(P, <) = (J({(nat(w)), <)). Hence we found a monoid element x = nat(w) such
that (P, <) 2 (J({m, <).
Finally, let ¥ denote the formula

Ji<i<mCi  ( U C; = everything A
1<i<m
CiﬁCj=®f0r1§i<j§m/\

¥
).

By Lemma 10.2.2, any partially ordered set J(|z, <) for + € M has width at
most m. Hence by Dilworth’ Theorem, there are mutually disjoint chains C; that

cover P. Now the statement of the theorem follows by the consideration above.
|

Since the set of join-irreducible elements of a distributive lattice is definable
inside the lattice, we obtain as a direct consequence of the theorem above the
following

Corollary 11.1.7 Let (M,-,1) be a divisibility monoid with finitely many residuum
functions. There exists a monadic sentence 1 such that for any finite partial order
(P, <) it holds:

(P,<)=v « JreM:(la,<) = (P,<).

Let (M,-,1) be a width-bounded divisibility monoid. To show that in this
case the monadic theory MTh({({z,<) | * € M}) is decidable, we now show
that the set of lattices {({x, <) | z € M} is contained in a set of lattices whose
monadic theory is decidable. Then, by the corollary above, the decidability of
MTh({({z, <) | z € M}) follows easily:

An undirected graph (T, K) is a tree if for any s,t € T, there is a unique
path connecting s and ¢t. Now let (V| E) be a finite directed graph and n € N.
Then (V, E) has tree-width at most n if there exists a tree (T, K) and a mapping
Y : T — 2 such that
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1. for any (z,y) € E, there is t € T with x,y € ¥(T),

2. for any s,t,u € T such that t is on the path connecting s and u, we have

¥(s) NY(u) CP(d),
3. User¥(i) =V, and
4. |(t)] < n for any t € T.

Lemma 11.1.8 Let n € N and (L, <) a finite distributive lattice of width at
most n. Then the graph (L,—<) has tree width at most 2n.

Proof. Let m denote the length of L. The tree (T, K) that we construct is (the
Hasse diagram of) the linear order on {1,2,...,m}. Let ¢(i) be the set of all
vertices in (L, <) of height i — 1 or 1.

Now let ,y € L with + —< y. Then, since L is distributive, h(y) — h(x) =1,
ie. z,y € ¢¥(h(y)). Hence the first property is satisfied. For the second note
that ¥ (i) N (k) = O whenever there is i < j < k. Hence it is trivially satisfied.
Similarly, the third requirement holds trivially. Finally, (i) consists of two
antichains. Since the size of these antichains is bounded by n, the last requirement
[ (7)| < 2n follows. O

Theorem 11.1.9 Let (M, -,1) be a divisibility monoid with finitely many residuum
functions. Then the monadic theory MTh{({m, <) | m € M} is decidable iff M
15 width-bounded.

Proof. First, let (M,-,1) be width-bounded by n. Then any lattice (Jz, <)
has tree-width at most 2n by the preceding lemma. Now let ;1 be a monadic
sentence. Then, by Corollary 11.1.7, u belongs to MTh({({z,<) | z € M}) iff
1 — u is satisfied by all finite distributive lattices of tree width at most 2n. But
this question is decidable by [Cou90)].

If, on the other hand, (M,-,1) is not width-bounded, by Theorem 10.2.6,
any grid ([n]?, <) can be embedded into some lattice ({x, <). Since the monadic
theory of these grids is undecidable, the monadic theory of all lattices (Jz, <)
with x € M is undecidable. 0

Let (M, -, 1) be a divisibility monoid and let £ denote the set of all distributive
lattices (lx, <) for x € M. Then, by Theorem 11.1.3, the monadic theory of
J() = {J(L,<) | (L,<) € £} is decidable. By the theorem above, MTh(£) is
decidable iff the width of the elements of £ is uniformly bounded. As an encore
which is not directly related to divisibility monoids, we show in the following
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two sections that this last connection between the bounded width of a class of
distributive lattices £ and the decidability of MTh(J(£)) holds in general and is
not a particular feature of divisibility monoids.

11.2 The semilattice of finitely generated ideals

It is the aim of this section to relate the monadic theory of a set of partially
ordered sets to the monadic theory of the semilattices of finitely generated ide-
als that are associated with these partially ordered sets. In particular, we are
interested in the relation between the decidabilities of these theories.

Remark 11.2.1 Let P be a set of partially ordered sets. Then MTh(3) can be
reduced in linear time to MTh(H(‘B)).

Proof. Recall that a partially ordered set (P, <) is isomorphic to JH;/(P, <).
Hence, a sentence is satisfied by (P, <) iff its restriction to the join-irreducible
elements is valid in Hy(P, <). Since this restriction can be computed in linear
time, the statement follows. 1

Theorem 11.2.2 Let P be a set of partially ordered sets and n € N such that
w(P, <) < n for any (P, <) € P. Then Th(H(P)) can be reduced to Th(P) in
linear time.

Proof. The idea of the proof is that any finitely generated ideal in (P, <), i.e.
any element of Hy(P, <) is generated by at most n elements of P. Therefore, the
reduction r is defined by

r(Jra) = (Bxidzy. .. Jz,r(a)),
re<y) = (N V z<y),

rlaVvp) = (rza_) \/_r(_ﬁ)), and

r(-a) = —-r(a).

Identifying a tuple (x1,2,...,x,) in P with its ideal 1 | Uzy L U--- U x,],
one eagsily verifies that

Hi(P, <) E ¢ <= (P,<) Er(p)

for any elementary sentence ¢ and any (P, <) € . Hence, in particular, r
reduces Th(H;(*B)) to Th(P) in linear time. O

As an immediate consequence of the above, we obtain
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Corollary 11.2.3 Let B be a set of partially ordered sets and n € N such that
w(P, <) < n for any (P,<) € P. Then Th(H;(P)) is decidable iff Th(P) is
decidable.

11.2.1 From MTh(H;(B)) to MTh(*B)

Our next aim is to show a similar result for the monadic theory MTh(H/(‘B)).
Note that the basic idea of the reduction of Th(H(*B)) to Th(*B) is the replace-
ment of an element of Hy(P, <) by a finite antichain in (P, <). If we want to
extend this to sets of elements in H(P, <), it would be natural to consider sets
of finite antichains in (P,<). But this is not possible in monadic second order
logic. To make this possible at least in full second order logic, the size of an-
tichains in (P, <) should by bounded, i.e., the width of the elements of B has to
be bounded. Then, a set in H(P, <) could be represented by an n-ary relation
in (P, <). But in monadic second order logic, we cannot quantify over relations,
but only over sets. Therefore, it does not suffice to restrict attention to sets P
of bounded width, but we have in addition to assume that the diabolo width of
the elements of 3 is bounded:

Definition 11.2.4 The partial order (P, <) has diabolo width at most m if, for
any X,Y C P such that X x Y C ||, we have | X| <m or |Y] <m.

Figure 11.2 depicts this notion: Let (P, <) be a partially ordered set of diabolo
width at most m and let X C P be a set with more than m elements. Then the
set Y := P\ (X TUX]) is incomparable with X. Hence it contains at most m
elements.!

Note that the width is at most double the diabolo width of a partially ordered
set.

In this section, we will show that for any set 3 of partial orders of bounded
diabolo width, the monadic theory of H;(3) can be reduced to the monadic
theory of ‘PB. In particular, we have to ensure that any n-ary relation in ‘3 that
contains only antichains can be encoded by a bounded number of sets.

We start with two technical lemmas.

Lemma 11.2.5 Let (C, <) be a linearly ordered set and let k € N. Then C splits

into 2k mutually disjoint subsets C'(j) (1 < j < 2k) satisfying

(x) For any 1 < j < 2k and for any x,y € C(j) with x < y, the interval
x TNyl C C contains at least k elements.

Proof. Let o be an ordinal and let C = {z3 | § < a} be an enumeration of C.
By transfinite induction, we construct the subsets C'(j) as follows: Let 8 < « and

! The name “diabolo width” was chosen since in this picture the set X 1+ UX]| looks like a
diabolo — a juggling prop that the author hopes to master eventually.
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Figure 11.2: Diabolo width

assume that we constructed a partition (C?(j))1<j<or of {2, | ¥ < B} satisfying
(x). Consider the sets

M = {zeClz<azs|ztnNzz || <k} and
N = {zeC|z>uap|zgtNz ]| <k}

Since they are linearly ordered, M and N both contain at most £ — 1 elements.
Hence there is 1 < j < 2k with C?(j) N (M U N) = (). Now define CA*1(j) :=
CP(j)U{zp} and CPH1(i) := CP(i) for i # j. Then (CP1(5))1<j<ok is a partition
of {z, | v < B+ 1} satisfying (x). For a limit ordinal 3, we set C?(j) :=
U, C7(j) for 1 < j < 2k. Now C(j) := C*(j) finishes the construction. O

Let (P,<) be a partial order and let C;,Cy C P be chains in (P, <). We
define an equivalence relation ~ on Cy by = ~ y iff Cy N2l = CiNyl, ie. iff z
and y are comparable with the same elements of the first chain C'.

Note that except C7 N Cy all equivalence classes of ~ are intervals in Cj.
But since C; N Cs is an equivalence class, in the following lemma we might have
x; ~ x; for some ¢ < j.

Lemma 11.2.6 Let (P, <) be a partial order of diabolo width at most m. Let
C1,Cy C P be chains in (P,<) and let k = (2m+3)%. Let x; € Cy with z; % T4,
and x; < x;4q for 1 < i < k. Then Cy C x1 TUxil, i.e. there is no element in Cy
that s tncomparable with both x1 and xy,.
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Proof. Forl<i<kletlz;,={re€C) |z <z;}andffz; ={z e C, |z >}
Then {z; U ffz; consists of those elements from Cy \ {z;} that are comparable
with z;. Hence {z; C {x;41 and ftx; O ffa;11. Since x; ¢ x;4q and x; < w41, we
have {z; C Jx;41 or ffz; 2 iy for 1 <7 < k. First we show (z; C J2itom+s
for1<i<k-—2m-—3:

By contradiction, assume 1 < i < k — 2m — 3 with {x; = {zi10me3- Let
x € X :=N2; \ M irmy1 and let m+1 < £ < 2m + 3. If 2 is comparable with
Tire, Wwe get © < x4 for otherwise ;11 < ¢ < . Thus x € Jx;0 = Yy,
ie. x € |x; N {x;, a contradiction since this set is empty. Thus, any element
of X is incomparable with z;,, for m +1 < £ < 2m + 3, ie. X and Y =
{Titm+2, Tivms3 - - - Tiromy3} are incomparable sets. Since Y contains more than
m elements and since the diabolo width of (P, <) is m, X contains at most m
elements implying that there is 0 < j < m with ff@;y; \ f12i+j41 = 0. But this
contradicts our assumption that x;4; # x;1;+1. Thus, we proved Jz; C Jxitoms.

Now let y; := T(amy3) for 1 <4 < 0= 2nf+3 =2m+3,ie. Yy <Y < --- <Yy
is a subsequence of r; < x5 < --- < xj such that {y; C Jy;yq for 1 <i < L.

To prove the final goal C; C T2, U |xg, assume by contradiction that x is an
element of C7 \ (z1 TUzxl) and let 1 <i<m+1and z € Z := Jyamass \ ¥mao-
Since z and z belong to the chain C4, they are comparable. Then z < x for
otherwise x < z < yommys < x would contradict our assumption on x. In case
2>y (z<wy),wehad > 2z > y; > 21 (2 < y; < Ymyo), contradicting our
assumption on z (on z, respectively). Hence z and y; are incomparable, i.e. the
sets {y1,Y2,--.,Yms1} and Z are incomparable. Since they both contain more
than m elements, the diabolo width of (P, <) is larger than m, a contradiction.[]

Let (P, <) be a partially ordered set. By a slight abuse of notation, we call
an n-tuple (z1,22,...,2,) € P™ an antichain if the set {xi,z9,...,2,} is an
antichain. Note that in particular the tuple (a,a,...,a) is an antichain for any
a € P. By Antichains, we denote the set of all tuples that are antichains.

Recall that our aim was to encode an n-ary relation whose elements form
antichains by subsets of P. With the following lemma, we reach this aim for the
restricted case where (P, <) has width at most 2.

Lemma 11.2.7 Let (P, <) be a partial order of diabolo width at most m. Let
C1,Cy C P be chains in (P,<). For any M C Cy x Cy N Antichains, there ezist
sets M; ; C C; fori=1,2 and 0 < j < 4m(2m + 3)? such that

4m(2m+3)?
M = U M, ; x M, ; | N Antichains.

J=0

Proof. Similarly to the preceding lemma, let k = (2m + 3)2. First, we split the
chain () into the set C3 of those elements that belong to a small ~-equivalence
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class and its complement, i.e.

C; = {yeCy:|[y]l <m}, and
Cy = G\Cs={yeCy:|ly]l>m}

where [y] denotes the ~-equivalence class containing y. Using Lemma 11.2.5, next
we split C; and Cf into 2-k-m disjoint subchains C}(j) and C3(j) for 1 < j < 2km
such that, for any x,y € Ci(j) (€ C5(j), respectively) with x < y the interval
TN ]y contains at least km elements from C;(j) (from C3(j), respectively). This
ensures that between any two elements of C'(j), there are more than m elements
of C;. Similarly, we will use that between two elements of C3(j) there are at least
k - m elements of Cj. To finish the construction, let

M'(j) = MNCyj) x Cj, and
M*(j) = MnCxC5(j)

for 1 < j < 2km. We establish the lemma showing that M equals the set of
antichains that occur in

H= |J [mM () x m(M'()) Um(M*(5)) x m(M°(5))] -

1<j<2km

Let (z,y) € M. In case y € C}, there is 1 < j < 2km with x € C;(j). Hence
(z,y) € M NCi(j) x C3 = M'(j). Now (z,y) € m(M'(j)) x m(M'(j)) € H
follows immediately. In case y € Cj, we find 1 < j < 2km with y € C5(j). Now
(x,y) € m(M*(j)) xma(M?*(j)) C H follows, i.e. we showed M C H N Antichains.

Conversely, we have to show that antichains from m(M!(j)) x m(M!(j)) or
from m (M*(j)) x mo(M?(j)) belong to M for any 1 < j < 2km. So let 1 <
J < 2km and (z1,3), (y1,y2) € M'(j) with z; || yo. We want to show z; = y
implying (x1,%2) = (y1,¥2) € M. By contradiction assume x; # y;. Since
x1,y1 € C1(j), they are comparable. We assume z; < y; (the case y; < x7 is
dual). As remarked earlier, there are more than m elements of C; between x; and
y1, in particular |x1 T Ny; J | > m. All elements of this interval are incomparable
with y» since its endpoints x; and y; are. Thus we found incomparable sets
x1 T Ny1d and [yo] both larger than m. Since this contradicts the assumption on
the diabolo width of (P, <), we obtain x; = y; and therefore

71 (M'(5)) x mo(M'(5)) N Antichains C M for any 1 < j < 2km.

Finally, let 1 < j < 2km and (21, 22), (y1,y2) € M*(j) with 21 || yo. To show
To = Y2, We now assume by contradiction xo < y,. Similarly to above, there are at
least km elements of C3 in the interval x5 1 Nys2l. Since |[x]| < m for any z € C5,
the chain C§ N a2 1 Nyl contains £ mutually not ~-equivalent elements. Hence,
by Lemma 11.2.6, C; \ (z2 T Ny2l) = 0, contradicting x, € C; and x5 || 21 || 2.0

Next, we extend the lemma above to relations of larger arity.
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Theorem 11.2.8 Let (P, <) be a partial order of diabolo width at most m and let
n > 1. Let C; C P be chains for 1 <1 <n and let M C H1<i<n C; N Antichains.
Then M is the intersection of Antichains with (2m + 2)" sets of the form
4m(2m+3)?2
N U [P M PP Nt Pt (%)
1<a<b<n

where be, Nfb - P for all suitable a,b and (.

Proof. By Lemma 11.2.5, we split the chains C; into 2m + 2 disjoint subchains
C;(j) for 1 < j < 2m such that for any =,y € C;(j) with x < y the interval
12 N ]y contains at least m + 1 elements from P. For 7€ {1,2,...,2m + 2}"
let My = M N[ e, Ci(ji). Then M is the union of the sets M. Since there
are (2m + 2)" sets Mj, it suffices to show that any such set is the intersection of
Antichains with a set of the form (x). Let 1 < a < b < n. Applying Lemma 11.2.7
to the set m,;(M;) and the chains C,(j,) and Cy(js), we obtain the existence of
sets M"" C Co(ja) and N;»* C Cy(jp) for 1 < £ < 4m(2m + 3)? such that

4m(2m+3)2
Tap(M7) = U M x N* 0 Antichains.
=1

Let Hy denote the set of all antichains in

m(2m+3)2
N U [P M P2 Nt Pt

1<a<b<n

Note that Hj; equals the set of all antichains (z,s,...,2,) € P"™ such that
(24, 2p) € map(Mjz) for any 1 < a < b < n. Thus, in particular, Hy is a subset
of HKK” 3(ji) since mo5(M7) C Co(ja) % Cy(Jp)- Since Hy is of the form (%), it
remains to show that M; = Hj.

The inclusion Mj; C H; is immediate for any element (zi,xs,...,2,) of M;is
an antichain satisfying (z,,xs) € m,(Mj) for all suitable a, b.

We show by induction on the size of I C {1,2,...,n} that =;(H;) C m;(Mj5)
which, for I = {1,2,...,n} establishes the claim and therefore the theorem. If
I contains precisely two elements, the inclusion 7;(Hj;) C m;(Mj) is immediate
by what we said above. Now let I contain at least three elements and assume
that 7;(H;) C m;(M;) for any proper subset J of I. For notational simplicity,
we assume [ = {1,2,...,c} for some 3 < ¢ < n. Let (x1,22,...,2.) € m1(Hj).
Then, by the induction hypothesis, there are elements x! € C;(j;) such that

<~T17 s 1xi717x§7xi+17 .- 'axc) € 7TI<Mj')

for any i € I. If for some 1 < 7 < ¢ we even have x; = !, we thus get
immediately (z1,...,2.) € m7(M;). Now assume z; # ! for all 1 <4 < ¢. Since
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z;, b € Ci(j;), they are comparable. Since I contains at least three elements,
there are 1 < a < b < ¢ with z, < 2% and 7, < 2% or with z, > 2% and
xp > 28, By symmetry, it suffices to deal with the first case. Recall that z, % x;
since (1, ..., %) (as an element of 7;(Hj)) is an antichain. Similarly, 2¢ £ 3, and
2% & x, since (T1, ..., Tao1, 8%, Tay1, - Te) and (T1, ..., Ty_1, 20, Tyy1, ..., T.) are
antichains as elements of 77(Mj;). Thus 22 and ¥ are incomparable for otherwise
r¢ < zb implied z, < x8. Since {z,, 2%} and {z;, 2!} are incomparable sets, so
are the intervals x, 1 Nz%] and z;, t Nx?]. Recall that x, < 2 are both elements
of C,(ja)- Thus, the interval z, T Nx%| consists of at least m + 1 elements, and
similarly the interval @, 1 Nz?|. This contradicts the assumption that (P, <) has
diabolo width at most m. Therefore, it is impossible that z; # x¢ forall 1 < i < c.
This finishes the induction step, i.e. we have indeed 7;(Hj) C 77 (Mj). O

The following corollary shows that we can indeed represent any set of an-
tichains in (P, <) by some subsets of P. The number of subsets necessary is
effectively bounded by the diabolo width of (P, <).

Corollary 11.2.9 Let m € N andn = 2m. Then there exists a natural number £
and a monadic formula o(xq, ..., Ty, X1, Xo, ..., X¢) such that, for any partially
ordered set (P, <) of diabolo width at most m and any set R of antichains in P,
there are sets M, ..., M, C P with

R={{z1,29,...,2,} CP|(P,<) Ep(r1,...,20, Mq,... M}

Proof. We explain the idea of the formula and leave the technicalities to the in-
terested reader: We are concerned with partially ordered sets of width at most n,
only. Hence any element of R contains at most n elements. By Dilworth’ Theo-
rem [Dil50], the partially ordered set (P, <) can be covered by n disjoint chains
Cy,...,Cy. For I C{1,2,...,n}, let Ry denote the set of all antichains in R that
meet a chain C; iff i € I. In particular, the set R; contains sets of size |I|, only.
Thus, we can identify it with an |I|-ary relation on P such that R; C [],., Ci.
Now, applying Theorem 11.2.8, we easily construct a formula ¢; with |I] free
elementary variables and (2m + 2)‘In(n — 1)4m(2m + 3) - 2 free set variables
such that there exist sets M; with

Ry ={(y1,---»yn) | (P, <) = or(yi, Mi)}

The formula ¢ is a simple Boolean combination of the formulas ¢;. 0

Theorem 11.2.10 Let B be a set of partially ordered sets and m € N such that
any (P, <) in P has diabolo width at most m. Then MTh(H;(B)) can be reduced
to MTh(*R) in linear time.
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Proof. Let ¢ and ¢ denote the formula and the natural number from Corol-
lary 11.2.9. The reduction r is defined by

r(Fra) = (Bxi3zy ... Jz,r(a)),
re<y) = (N V wi<y)

1<i<n 1<5<n
) = (Mi3My...3Mr(a)),
) = 80(331;552,---,$n,M1,M2a---,M£)a
rlavp) = (r(a)Vvr(B)), and
)

= —r(a).

Differently from the proof of Theorem 11.2.2, we spell out the equivalence
Hi(P, <) E¢ < (P,<) =7r(yp) in some more detail:

Let V' be a countable set of individual variables and W that of set variables.
We use these variables in monadic formulas that are interpreted over Hy(P, <).
By V':=V x{1,2,...,n} and W':= W x {1,2,...,¢} we denote the individual
and set variables when speaking on the partial orders in P. For simplicity, we
abbreviate (z,7) by x; and similarly (4, j) by A; forz € V and A € W.

Let (P, <) be a partially ordered set in B. With any a € H(P, <), we
associate an n-tuple f'(a) in P with {f'(a)1, f'(a)a,- .., f'(a)n} = max(a). Such
an n-tuple exists since a is a finitely generated ideal in (P, <) implying that it
has at most n maximal elements. Furthermore, a = |J,.,., f'(a);}. Note that
the coordinates of the tuple f’(a) are incomparable if not equal.

Similarly, we find a function ¢’ that maps subsets of H;(P, <) to ¢(-tuples of
subsets of P as follows: Let M C H(P, <) be a set of finitely generated ideals
in (P,<). By R, we denote the set of all (< n)-subsets max(a) of P for some
a € M,ie R={max(a) |a € M}. Then R is a set of antichains in the partially
ordered set (P, <) of diabolo width at most m. Hence, by Corollary 11.2.9 there
exist sets My, M, ..., M, C P with

R={{z1,29,...,2,} CP|(P,<) Ep(r1,...,20, Mq,... M}

For 1 < j </, let ¢'(M); := M;. Then we obtain for any M C H;(P, <) and
any a € Hy(P, <):

a € Miff (P, <) = o(f'(a),g'(M)).

Now let (f,g) be an interpretation of the elementary variables V' and the set
variables W in H;(P, <), i.e. f : V — Hf(P,<) and g : W — 2H(P<) By
(@) == (f' o f(x)); and ¢g*(M;) := (¢’ 0 g(M)); for x; € V' and M; € W', we
define an interpretation (f*,¢*) of V' and W' in (P, <) from (f, g).

To finish the proof, one shows by induction on the monadic formula ¢ that
Hy (P, <) (1) @ iff (P, <) =(+,g4) r(¢). This is an easy exercise which is left to
the reader. O
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Since undecidable theories cannot be reduced to decidable theories, we obtain
as a direct consequence

Corollary 11.2.11 Let *B be a set of partially ordered sets whose diabolo width
is bounded such that the monadic theory MTh(*B) is decidable. Then the monadic
theory MTh(H;(*B)) is decidable as well.

Recall that the elements of (P, <) correspond to the join irreducible elements
of Hy(P, <). Hence it is easily seen that the decidability of MTh(H(*B)) implies
that of MTh(3). To obtain the inverse implication of the corollary above, it
remains to show that the monadic theory of Hy(3) can be decidable only in case
P has bounded diabolo width.

11.2.2 Decidable monadic theory implies bounded
diabolo width

By contraposition, we will actually show that the monadic theory of H(*B) is
undecidable whenever the diabolo width of 3 is unbounded. This will be achieved
by reducing the monadic theory of the set of finite two-dimensional grids G to
MTh(). We are even a bit more ambitious and will also consider the monadic
antichain and monadic chain theory.

It will be convenient to use the notation m for the set {0,1,...,m — 1} of
nonnegative integers properly smaller than m. Let G denote the set of all finite
grids, seen as distributive lattices, i.e. the set of all partial orders (m, <) x (n, <)
for m,n > 1. We will show that

(a) the monadic theory of G is undecidable,

(b) the monadic theory of G can be reduced to the monadic antichain theory
of G, and this monadic antichain theory can be reduced to the monadic
chain theory of G, and

(¢) the monadic chain (antichain, resp.) theory of G can be reduced to the
monadic chain (antichain, resp.) theory of H(B).

Given a Turing machine M, one can effectively formulate a monadic sentence p
which is satisfied by the partially ordered set L = (m x n, <) iff the machine stops
after m steps using n cells of the tape. Hence u € MTh(G) iff M does not stop,
i.e. the monadic theory of G is indeed undecidable which establishes (a). For this
encoding, one has to quantify over arbitrary subsets of the grid. Therefore, the
undecidability of the monadic chain and antichain theory of G is not immediate.

Figure 11.3 indicates an outline of the remainder of this section. In this figure,
arrows denote reductions.

We start with the reductions in the first row, i.e., we first consider the different
monadic theories of the set of grids.
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Lemma 11.2.13 Lemma 11.2.14

MTh(G) MCTh(G)
lLemma 11.2.16 Lemma 11.2.18l

MATh(H,(PB)) MCTh(H; (B))

MATh(G)

Figure 11.3: Outline of Section 11.2.2

The set of grids

The grid graph of dimension (m,n) is the Hasse diagram (m x n, E,,,) of the
grid (m x n, <). Hence ((i,7), (¢, j')) € Empn iffi=4d and j+1=jori+1 =1
and j = j' for any (4,7), (', j') € m x n. Let GG denote the set of all structures
isomorphic to some grid graph. We first show how a grid graph can be encoded
by antichains in a large grid:

Lemma 11.2.12 Let m,n € N. Then there exist antichains X, F1, Ey and an
element e in the grid L = ((mn + 1)°, <) such that

(X, {(z,y) € X? | sup(z,y) € E1 U By Ainf(z,e) < inf(y,e)} & (m X n, Eyp).

Proof. First, we define the following sets:

X :={(i,mn —1i) | 0<i<mn},

Ey :={(i;mn—i—1)|0<i<mn,i mod n#n—1}, and

Ey :={(i,(m—1)n—1i) |0 <i< (m—1)n}. Note that these sets are antichains
for increasing ¢ increases the first and decreases the second component of any of
their elements. Finally, let e := (mn,1) € J(L). For notational simplicity, let F
denote the binary relation

{(z,y) € X? | sup(x,y) € By U Ey Ainf(z,e) < inf(y,e)}.

We show that (X, E) and (m X n,E,,,) are isomorphic: Define the bijection
f:mxn— X by f(a,a2) := (a1n+ az, mn —a;n — ay). The following sequence
of equivalences establishes that f is a graph isomorphism:

((al,ag), (bl, bg)) € E’m,n

<= a1+ 1=0b; and ay = by, or
alzblanda2+1:b2

<= a1 < b; and either
(a1n + az,mn — byn — by) € Ey, or
(aln + ag, mn — byn — bz) € FEy
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< inf(f(a1,as),e) = a; < by =inf(f(by1,be),e) and
sup(f(al, (12), f(bl, bg)) S E1 U EQ

< (f(ar,a2), f(b1,b2)) € E.
Hence (X, E) = (m X n, Epn). 0

Lemma 11.2.13 The monadic theory of G can be reduced to the monadic an-
tichain theory of G in linear time.

Proof. Since the grid graph of dimension (m,n) is the Hasse diagram of the
grid (m x n, <), it suffices to reduce the monadic theory of the set of all grid
graphs to the monadic antichain theory of G.

For a monadic sentence ¢ over the binary relation symbol E, we construct a
monadic formula over the vocabulary < as follows: First, we restrict the quan-
tification in ¢ to the new set variable X. Afterwards, any subformula of the form
(x,y) € E is replaced by

sup(z,y) € By U Ey Ainf(z,e) < inf(y, e).

Let ¢’ denote the result of this procedure. Then ¢’ is a monadic formula with
free variables contained in {X, E;, Es, e}.

Now we describe the reduction of MTh(GG) to MATh(G): It is easily seen
that there is a monadic sentence v such that a graph (X, F) satisfies v iff it
belongs to GG. Let ¢ be a monadic sentence over the binary relation symbol E.
Then define

Y= VXVE1VEQVG((€ € J/\’)/I) — QDI)

We show that ¢ belongs to MTh(GG) iff $ belongs to MATh(G):

First let ¢ € MTh(GG). Furthermore, let m,n > 1 and L := (m x n,<).
Let X, Ey, E; C L be antichains and e € J(L) with (L, <) =4 7(X, Ey, Es, €).
We have to show that (L, <) = ¢'(X, Ey, Ey,e). First, define a binary relation
E C X? by (z,y) € E iff sup(z,y) € Fy U Ey and inf(z,e) < inf(y,e). By the
construction of 4" and the fact that (L, <) =4 7/ (X, E1, Es, ), the graph (X, E)
satisfies v, i.e. it is isomorphic to a grid graph. Hence (X, F) = ¢ implying
(L, <) Ea ¢ (X, E1, Es, €) as required.

Conversely, let € MATh(G) and let m,n € N. To show (m x n, E, ) = ¢,
we consider the grid L = ((mn+1)>,<). By Lemma 11.2.12, there exist an-
tichains X, E4, Ey and a join irreducible element e such that (X, E') is isomorphic
to (m x n, E, ) (where E is defined as above). Hence (X, FE) = 7. By the
construction of E and of 7/, this implies L =4 v'(X, E1, F2,e) and therefore
L =4 ¢'(X, By, By, e). By the same argument, (X, E) = ¢. a
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Next, we reduce the monadic antichain theory of G to the monadic chain
theory of G. The basic idea is depicted in Figure 11.4: It shows the set 3 x 4. On
this set, we consider two orders: first the natural order <, i.e., the componentwise
order. The second order C in consideration is obtained by inverting the order on
4 and then considering the componentwise order. Then elements incomparable
w.r.t. C are comparable w.r.t. < which is the basis for our transformation of
antichains into chains. Unfortunately, the inverse does not hold (consider, e.g.,
(0,0) and (1,0)). Hence, we do not have (m x n, <) ¢ ¢ iff (m xn,C) E4 ¢.
Therefore, we have to invest slightly more work to reduce the monadic antichain
theory to the monadic chain theory.

IN

Figure 11.4: The set 3 x 4

More formally, our reduction rests on the following definition: Let n,m > 1
and L := (mxn, <). Thene := (1,m) and € := (n, 1) are maximal join irreducible
and incomparable elements of L. We define a partial order C on L by x C y iff
inf(z,e) < inf(y, e) and inf(x,€) > inf(y,€). For z = (21, 22) and y = (y1, y2), it
holds inf(z,e) = 25 and inf(x,€) = x;. Hence z C y iff x5 < y5 and z; > ;. In
other words, (m x n, C) equals (m, >) X (n, <) and is therefore isomorphic to L.
Now let  and y be incomparable with respect to C. Then z; < y; and xo < ¥
or vice versa. In particular x < y or y < z. Hence antichains in (m x n, C) are
chains in (m X n, <) (the converse implication does not hold).

Lemma 11.2.14 The monadic antichain theory MATh(G) can be reduced in lin-
ear time to the monadic chain theory MCTh(G).

Proof. Let ¢ be a monadic formula not containing the variables e and e. In ¢,
replace any atomic formula x < y by

inf(x, e) <inf(y,e) Ainf(z,€) > inf(y,e)
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and replace any subformula of the form 93X by 3X (antichain:(X) A ¢) where
antichaing (X)) denotes the formula

Vo, y((z,y € X Ainf(z, e) < inf(y,e)) — inf(z,€) < inf(y,e)).

The subformula antichaing (X) is satisfied by a set X iff its elements are mutually
incomparable with respect to C. Denote the result of these replacements by ¢'.

Let myn > 1, e = (1,m) and € = (n,1). As a prerequisite, we show that
(mxn,C) =4 piff (mxn, <) Ec ¢ by induction: Clearly, (mxn,C) =ax <y
iff z C yiff (m xn, <) =¢ inf(x,e) <inf(y,e) Ainf(x,€) > inf(y, €) which equals
(x <y)'. Now let ¢; (i =1,2) be monadic formulas such that for any antichains
X; w.r.t. C and elements x;:

(mxn,C) Ea@i(X1,..., Xp, 21, ..., 2)
<~
(mxn,<)Ecei(X1,y o, Xp, T1y- .0, 20).

It is straightforward to check that this equivalence holds for —¢1, 1 A 2 and for
Jxep1, too. The only nontrivial case in the induction is the formula ¢ = 34X ;:
So let X; € m x n be antichains w.r.t. C for 1 < ¢ < k and let z; € m x n.
Then (m x n,C) =4 ©(X1, ..., Xk_1,21,--.,2¢) iff there exists an antichain X
w.r.t. C such that (m x n,C) =4 ¢1(Xy,..., Xk, 21,-..,2¢). By the induction
hypothesis, this is equivalent to (mxn, <) E¢ ¢} (X1, ..., Xk, 21, -.,2¢). By the
remarks preceding this lemma, X} is a chain w.r.t. <. Hence the last statement is
equivalent to (mxn, <) E¢ (IXg(antichaing (Xg)A@)))(Xq, .., Xe—1, 21, -+, 20)
which equals ¢'.

Now it is straightforward to show that for a monadic sentence ¢ it holds
(mxn,<) =4 @iff (mxn,<) e Jde,éle,e € max(J) Ae # €A ¢') (where J
denotes the set of join irreducible elements) which is the desired reduction. [

So far, we showed that the monadic theory of G can be reduced to its monadic
chain and antichain theory. Hence these two theories are undeciable.

Sets of unbounded diabolo width

Next, we show the reductions from MATh(G) and MCTh(G) to MATh(H(*B))
and MCTh(H;(*B)), resp., for P a set of partial orders of unbounded diabolo
width. Let (P, <) be a finite partial order of diabolo width exceeding m. Then,
by Lemma 10.2.5, there exists a lattice embedding of m x m into (H;(P), C).
The following lemma shows that such a grid can be defined in monadic antichain
logic:
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Lemma 11.2.15 There exists a monadic formula y(A,b,x) such that for any
partially ordered set (P, <) the following hold:

1. for any antichain A C Hy(P, <) and any b € A, the set {x € Hy(P, <) |
Hy(P, <) Fa (A, b,x)} is a grid, and

2. for any n € N and any semilattice-embedding f : (2n+1)* — H;(P, <),
there exist an antichain A C H(P,<) and an element b € A such that
{r e Hy(P, <) |H (P, <) Fav(Ab,2)} = {f(n+i,n+7) | i,j €n}.

Proof. Let (P,<) be a partially ordered set, A C P an antichain and a € A.
On A, we define a binary relation R, by (z,y) € R, iff  Va < yV a. There is a
monadic formula ¢ with free variables A and a such that (P, <) =4 ¢(A, a) iff

(A) (A, R,) is a finite linear order, and
(B) for any z,y,2',y' € A with (z,vy), (2/,y') € R, we have

zVy<aVvy <= (x,2),(,y) € R,.

Now let v be the formula
Y(A,b,x) =b=2Vda € A(p(A,a) AJai,as € A(b < x =sup(ay, az)).

We show the first statement: Let G = {z € H;(P,<) | Hf(P,<) Ea
v(A,b,z)}. If there is no a € A satisfying ¢, G = {b} which is clearly a grid.
So assume a € A satisfies ¢. Let {ag, a1, ...,ar} be the enumeration of A with
(a;,ai1) € Ry. Furthermore, let b = a,,. Now define f(4, j) = sup(am—1, @m+;)
for (i,7) € m+1xk —m + 1. We show that this function an order isomorphism
from (m+1xk —m+1,<) onto G: Let (i,7),(i',5') € m+1xk —m+1. Then
(¢,7) < (¢, 5") Mt @it Ry@p—i and Qpyyj RoQpnyjr. Since m —i < m+ j, we have in
addition a,,—; Ryam+;. Hence we can apply (B) and obtain that the last statement
is equivalent to sup(am—i, @m+;) < suUp(Gm—s,am+j7), €., to f(i,7) < f(@,j').
Thus, f is an order embedding into H(P, <). Next, we show that its image is
G: For (i,5) € m+1 x k—m+1, we have a,,—;Ryb = 4, Roap+j implying (by
(B)) b < sup(am—i, @m+;) = f(4,7) which therefore belongs to G. Converselly, let
x = sup(as, a;) € G. Then (B) implies s < m <t ensuring = f(m — s,t — m).
Thus, f is indeed an order isomorphism onto G, i.e., G is a grid.

Next, we prove the second statement: Let A = {f(i,2n — i) | i € 2n}, a =
f(0,2n), and b = f(n,n). Then f(i,2n) = sup(a, f(i,2n — 7)) < sup(a, f(j,2n —
J)) = f(j,2n) iff © < j. Hence the finite antichain (A, <) is linearly ordered
by the relation R,, i.e., (A) holds. Next, let i,7j,7,j" € 2n with i < j and
# < 7. Then sup(f(i,2n — 1), £, 2n — 1)) < sup(f (7,20 — ), £ (7,2 — 7)) i
max (i, j) < max(¢,j') and min(s,j) > min(é’,j"). Since i < j and i’ < j’, this
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is equivalent to ¢/ < i and j < j', i.e., we showed (B). Since ¢(A,a) is satisfied,
sup(ay, az) = x satisfies v(A, b, x) iff x > b for a;,as € A. Since b = f(n,n), this
is equivalent to x € {f(n+i,n+j) | i,j € n}. O

This lemma enables us to show that indeed the monadic antichain theory of
the grids G can be reduced to the monadic antichain theory of Hy(J3) whenever
P has unbounded diabolo width.

Lemma 11.2.16 Let P be a set of partially ordered sets such that the diabolo
width of its members is not bounded above. Then the monadic antichain theory
MATh(G) can be reduced to the monadic antichain theory MATh(H(R)).

Proof. For a monadic sentence 1), let r(¢) denote the sentence VAVb(b € A —
Y') where 1)’ is the restriction of ¢ to those elements x that satatisfy v(A, b, x) (cf.
Lemma 11.2.15). By the preceding lemma, these elements form a grid, i.e., ¥ €
MATh(G) implies r()) € MATh(H(B)). Converselly, let r(¢)) € MATh(H;(*B))
and let n € N. Then there exists (P, <) € P such that the grid (2n? <) can
be embedded into H;(P, <). Hence Hy(P, <) contains an antichain A and an
element b such that {z € H/(P, <) | Hy(P, <) = v(4,b,x)} is isomorphic to
(n*, <). Since r(¢) € MATh(H;(PB)), we get Hf(P, <) E4 ¢’ and therefore
i € MATh(G). O

To show that also the monadic chain theory of the set of grids can be reduced
to the monadic chain theory of H(J3), we proceed similarly to above: First, it
is shown that large grids can be defined in the monadic chain logic, and then we
prove that this yields the desired reduction:

Lemma 11.2.17 There exists a monadic formula v(Cy,Cs) such that for any
partially ordered set (P, <) the following hold:

1. for any chains Cy,Cy C Hy(P, <) such that Hy (P, <) E=c v(C1, Cy), the set
{sup(z,y) | x € C1,y € Cy} is a grid, and

2. for any grid G C Hy(P,le), there exist chains C1,Cy € Hy(P, <) such
that Hy(P, <) ¢ 7(Ci,Cs) and the set {sup(x,y) | « € Ci,y € Ca} is
1somorphic to G.

Proof. The formula v asserts that C; and C5 are finite chains, min(C;) =
min(Cy), the elements from Cy \ {min(C})} are incomparable with the elements
from C5 \ {min(C5)}, and sup(z1,x2) < sup(y1,y2) iff 21 < y; and xo < yo for
any ¥, Y; € C,
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Let f : (m x n,<) — Hy(P,<) be a semilattice embedding. Then define
Cy = {f(i,0) | 0 < i < m} and Cy = {f(0,7) |) < i < n}. Then Cy and C;
are finite chains, min(C;) = min(Cs), and the elements from C; \ {min(C})} are
incomparable with the elements from Cs \ {min(C5)}. To see that sup(zy,z2) <
sup(y1, y2) iff 21 < y1 and w2 < gy, note that sup(f(i1,0), f(0,i2)) = f(41,1%2)-
Hence sup(f(i1,0), £(0,42)) < sup(f(j1,0), f(0,72)) iff iy < ji and iz < jo, ice., iff
f(i1,0) < f(j1,0) and f(0,i2) < (0, jo). Hence the chains C; and Cs satisfy .
Furthermore, the set {sup(z,y) | x € C1,y € Cs} is the image of f and therefore
isomorphic to the grid of dimension (m,n). This proves the second statement.

To prove the first statement, let C; = {f(0,0), f(1,0),..., f(m,0)}) and Cy =
{f(0,0), f(0,1) ..., f(0,n)} be finite chains satisfying 7. We can assume f(0,7) <
f(0,2+ 1) and f(5,0) < f(j + 1,0) for all suitable : and j. We show that
f:mxn — Hp(P,<) defined by f(4,j) = sup(f(¢,0), £(0,7)) is a semilattice
embedding; for this it actually suffices to show that it is an order embedding:
Note that f(i,7) < f(¢',7") iff f(4,0) < f(¢/,0) and f(0,7) < f(0,4') by the last
requirement, expressed by . Hence, indeed, f is an order embedding. ]

Lemma 11.2.18 Let P be a set of partially ordered sets such that the diabolo
width of its members is not bounded above. Then the monadic chain theory
MCTh(G) can be reduced to the monadic chain theory MCTh(H(B)).

Proof. The reduction is given by r(¢) = VC, Co(y(C1, C2) — ¢') where ' is
the reduction of ¢ to the set of suprema of elements of C; and C5. The proof
now proceeds similarly to the proof of Lemma 11.2.16. 1

Recall that Theorem 11.2.2 characterized those classes of partial orders P for
which H;(*) has a decidable elementary theory. Now we can extend this to the
monadic, the monadic chain, and the monadic antichain theory:

Theorem 11.2.19 Let P be a set of partially ordered sets.
1. The following are equivalent:

(i) The monadic theory MTh(H(B)) is decidable.
(i) The monadic chain theory MCTh(H;(*B)) is decidable.

(11i) the monadic theory MTh(B) is decidable and the diabolo width of the
elements of B is bounded above.

(iv) the monadic chain theory MCTh(®B) is decidable and the diabolo width
of the elements of P is bounded above.
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2. The monadic antichain theory MATh(H;(B)) is decidable if and only if the
elementary theory Th(P) is decidable and the diabolo width of the elements
of B is bounded above.

Proof. The implication (i)=-(ii) is trivial. Now assume MCTh(H/()) to be
decidable. Next we show the implication (ii)=-(iv): The monadic chain theory
MCTh(3) is decidable since it can be interpreted in the monadic chain theory
of Hy (). By contradiction, assume that the diabolo width of the elements of
B is unbounded. By Lemmas 11.2.13, 11.2.14, and 11.2.18 (cf. Figure 11.3), the
monadic theory of the grids MTh(G) can be reduced to the monadic chain theory
of H;(*B), contradicting the decidability of this latter theory.

For the implication (iv) = (i#7) note that the width of the elements of
is bounded by n, say. Hence any subset of P with (P, <) € B is the union n
chains. Therefore, the monadic theory of 3 can be reduced to the monadic chain
theory of 9. Hence (iii) holds. The last implication (iii) = (i) follows from
Theorem 11.2.10.

It remains to show the second statement: Suppose MATh(H(*P)) is decidable.
Then, trivially, Th(H()) and therefore Th(*}3) are decidable. The diabolo with
of the elements of P is bounded above by Lemmas 11.2.13 and 11.2.16. Thus, we
showed one implication.

Conversely, let the diabolo width of the elements of 3 be bounded by n
and let Th() be decidable. Since then the width of the elements of P is
bounded by 2n, the elementary theory Th(H/(3)) is decidable by Corollary
11.2.3. By Lemma 10.2.5, the width of the elements of H;(J3) is bounded above
by some m € N. Hence any antichain contains at most m elements implying
that MATh(H(B)) can be reduced to Th(H/(3)). Hence the monadic antichain
theory MATh(H(*P)) is decidable. O

11.3 Finite distributive lattices

Since, for any finite distributive lattice (L, <) it holds (L, <) = H;J(L, <), we
can now characterize the sets of finite distributive lattices having a decidable
monadic (chain, antichain) theory:

Corollary 11.3.1 Let £ be a set of finite distributive lattices.
1. The following are equivalent:

(i) The monadic theory MTh(£) is decidable.
(11) The monadic chain theory MCTh(L) is decidable.
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(iii) the monadic theory MTh(J(£)) is decidable and the width of the ele-

ments of £ is bounded above.

(v) the monadic chain theory MCTh(J(£)) is decidable and the width of
the elements of £ is bounded above.

2. The monadic antichain theory MATh(L) is decidable if and only if the ele-
mentary theory Th(J(£)) is decidable and the width of the elements of £ is
bounded above.

Proof. Since H/(J(£)) = £, it remains to show that the width of the elements
of £ is bounded if and only if the diabolo width of the elements of J(£) is bounded.
In the proof of Lemma 11.2.18 we saw that a bounded width of the elements of
£ implies a bound of the diabolo width of the elements of J(£).

To show the other implication assume dw(J(L,<)) < n — 2 for any lattice
(L,<) € £. By contradiction, suppose that the width of the elements of £ is
unbounded. Then there exists (L, <) in £ such that w(L,<) > R,.1(6"). By
Theorem 10.2.6, there exists a lattice embedding 1 : [n — 1] X [n — 1] — L. Let
A:=J(L)NIn(l,n—1) and B := J(L)N|n(n—1,1). Since the elements n(1,17)
and n(j, 1) are pairwise incomparable for i,5 > 1, A\ B and B\ A both contain
at least n — 2 elements. Furthermore, these two sets are incomparable. Hence
the diabolo width of J(L, <) is at least n — 2, a contradiction. O

Now let £; and £5 be sets of finite distributive lattices. Suppose that the
elementary theories of £; and £, are decidable. Then, as an easy consequence
of the Feferman-Vaught Theorem [FV59], the set of direct products of lattices
from £; and lattices from £, has a decidable elementary theory. Next, we want
to characterize when this set has a decidable monadic (chain, antichain) theory:

Corollary 11.3.2 Let £, and £5 be sets of finite distributive lattices and define
€ = {(I0,<) x (L2.<) | (L <) € &}, If MTh(£,) (MATh(L,), MCTh(g,),
resp.) is decidable, then MTh(£) (MATh(L), MCTh(L), resp.) is decidable iff
£y or £y is finite.

Proof. We give the proof for the monadic theories, only. The other cases can
be handled similarly. If both £; and £, are infinite, we find for any n € N lattices
(L1, <) € £ and (Lo, <) € £, of length at least n. Then the width of the direct
product (L1, <) x (Lo, <) is at least n, i.e. the width of the lattices in £ is not
bounded. Hence MTh(£) is undecidable.

Conversely let £ be finite. Then there is n € N with |L;| < n for any lattice
(Li,<) € £;. Since MTh(£,) is decidable, we can assume w(£y) < n. Note
that the width w(L; X L, <) is at most |L1| - w(Lg, <) for any finite distributive
lattices (L1, <) and (Ls, <). Hence w(£) < n?. It remains to show that J(£) has
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a decidable monadic theory: For finite distributive lattices (L1, <) and (Lg, <),
one has J(L; x Ly, <) = J(Ly, <)UJ(Ls, <). Thus, we have to show that the
monadic theory of {(Pr, <)U(P,, <) | (P, <) € J(£)} is decidable. This follows
from the composition theorem from Shelah [She75] (cf. [Tho97a] for the proof of
this result) since MTh(J(£;)) is decidable. O

Note that the in the corollary above we assumed from the very beginning
that MTh(£;) is decidable for ¢ = 1,2. Actually, the finiteness of £; or £, follows
without this assumption from the decidability of MTh(£). We finish this section
with an example of classes £, £, and £ as in the corollary above such that
£, is finite, £ has a decidable monadic theory but the monadic theory of £, is
undecidable:

Example 11.3.3 For simplicity, let 2 denote the Boolean lattice ({1,2}, <). Let
£, consist of the lattices 2¢ for 0 < i < 2 (i.e. £; contains the one-point-lattice,
the Boolean lattice and the diamond). Let Lin denote the set of finite linear
orders and let B C Lin be an undecidable set of linear orders. We define a set
of finite distributive lattices £, C {2' x (L,<) | 0 < i < 2,(L,<) € Lin} by
Zi X (L,S) € £2 iff

1. i € {0,2} and (L, <) € Lin, or
2. i=1and (L, <) € P.

Then £, is a set of finite distributive lattices. It is undecidable since the subset
of £, of lattices of width 2 corresponds to @ which was chosen to be undecidable.
Hence, in particular, £, has an undecidable monadic theory. It is straightforward
to show that the set of direct products of lattices from £; and £, equals the set
{2"x (L,<)|1<i<5,(L,<) € Lin} = £. Since Lin has a decidable monadic
theory, we can apply the corollary above and obtain that MTh(£) is decidable.

Remark The important property that we used in this section is the isomor-
phism of (L, <) and Hy J(L, <) whenever (L,<) is a finite distributive lattice.
The reader may check that Corollary 11.3.1 holds verbatim if we require £ to
consist of distributive lattices satisfying this isomorphism. In Corollary 11.3.2,
we obtained that MTh(£) is decidable if and only if £; or £, is a finite set of
finite lattices.



