On the Analysis of Two Fundamental
Randomized Algorithms

Multi-Pivot Quicksort and Efficient Hash Functions

Dissertation zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Fakultat fiir Informatik und Automatisierung
der Technischen Universitat Ilmenau

von

Dipl.-Inf. Martin Aumiiller

geboren am 12.01.1986 in Gera, Deutschland

Eingereicht am 1. Dezember 2014

1. Gutachter:
2. Gutachter:
3. Gutachter:

Abstract

Randomization is a central technique in the design and analysis of algorithms and data structures.
This thesis investigates the analysis of two fundamental families of randomized algorithms in two
different branches of research.

The first part of this thesis considers the sorting problem, i. e., the problem of putting elements
of a sequence into a certain order. This is one of the most fundamental problems in computer
science. Despite having a large set of different sorting algorithms to choose from, the “quick-
sort” algorithm turned out to be implemented as the standard sorting algorithm in practically
all programming libraries. This divide-and-conquer algorithm has been studied for decades, but
the idea of using more than one pivot was considered to be impractical. This changed in 20009,
when a quicksort algorithm using two pivots due to Yaroslavskiy replaced the well-engineered
quicksort-based sorting algorithm in Oracle’s Java 7. The thesis presents a detailed study of
multi-pivot quicksort algorithms. It explains the underlying design choices for dual-pivot quick-
sort algorithms with respect to the comparisons they make when sorting the input. Moreover, it
describes two easy to implement dual-pivot quicksort algorithms that are comparison-optimal,
i. e., make as few comparisons as possible on average. These algorithms make about 1.8n In n key
comparisons on average when sorting an input of n distinct elements in random order, improving
on the 1.9n Inn key comparisons in Yaroslavskiy’s algorithm. To analyze quicksort algorithms
using more than two pivots, only slight modifications to the dual-pivot case are necessary. This
thesis also considers the theoretical analysis of the memory and cache behavior of multi-pivot
quicksort algorithms. It will be demonstrated that using more than one pivot makes it possible
to improve over the cache behavior of classical quicksort. If no additional space is allowed, using
three or five pivots provides the best choice for a multi-pivot quicksort algorithm with respect
to cache behavior. Otherwise, significant improvements are possible by using 127 pivots. A
large-scale study on the empirical running time of multi-pivot quicksort algorithms suggests that
theoretical improvements translate into practice.

The second part of this thesis considers the use of hash functions in algorithms and data struc-
tures. Hash functions are applied in many different situations, e. g., when building a hash table
or when distributing jobs among machines in load balancing. Traditionally, the analysis of a
particular hashing-based algorithm or data structure assumes that a hash function maps keys
independently and uniformly at random to a range. Such functions are unrealistic, since their
space complexity is huge. Consequently, the task is to construct explicit hash functions providing
provable theoretical guarantees. The thesis describes such a construction. The considered hash
functions provide sufficient randomness properties for running many different applications, such
as cuckoo hashing with a stash, the construction of a perfect hash function, the simulation of a

iii

uniform hash function, load balancing, and generalized cuckoo hashing in a sparse setting with
two alternative insertion algorithms. The main contribution of this part of the thesis is a unified
framework based on the first moment method. This framework makes it possible to analyze a
hashing-based algorithm or data structure only using random graph theory, without exploiting
details of the hash function. The hash functions are easy to implement and turn out to be practical
while providing strong randomness guarantees.

iv

Zusammenfassung

Die Nutzung von Zufall ist eine wichtige Technik in der Entwicklung und Analyse von Algorith-
men und Datenstrukturen. Diese Arbeit beschéftigt sich mit der Analyse von zwei grundlegenden
Familien randomisierter Algorithmen in zwei unterschiedlichen Forschungsbereichen.

Im ersten Teil der vorliegenden Arbeit wird das Sortierproblem betrachtet, also das Problem,
die Elemente einer Sequenz in eine bestimmte Ordnung zu bringen. Dieses Problem ist eines
der grundlegendsten Probleme der Informatik. In den letzten Jahrzehnten wurden eine Viel-
zahl unterschiedlicher Algorithmen zur Losung des Sortierproblems vorgestellt. Quicksort, ein
auf dem Prinzip von Teile-und-Herrsche basierender Algorithmus, ist dabei der am haufigsten
in Programmierbibliotheken genutzte Sortieralgorithmus. Die Idee mehr als ein Pivotelement
im Quicksort-Algorithmus zu nutzen, erschien iiber viele Jahre als unpraktikabel. Dies dnderte
sich im Jahr 2009, in dem eine elegante Quicksort-Variante von V. Yaroslavskiy zum Standard-
Sortierverfahren in Oracles Java 7 wurde. Uberraschenderweise basierte dieser Algorithmus auf
der Idee zwei Pivotelemente zu nutzen. Die vorliegende Arbeit stellt eine detaillierte Studie von
sogenannten Multi-Pivot-Quicksort-Algorithmen dar, also Varianten des Quicksort-Algorithmus,
die mit mehr als einem Pivotelement arbeiten. Sie beschreibt dabei die Konstruktionsprinzipien
von 2-Pivot-Quicksort-Algorithmen in Bezug auf die Schlisselvergleiche, die bei der Sortierung
einer Eingabe noétig sind. Ein Ergebnis dieser Untersuchung sind zwei leicht zu implementierende
2-Pivot-Quicksort-Algorithmen, die optimal beztiglich der Anzahl an Schliisselvergleichen sind:
Die Kosten stimmen mit einer in dieser Arbeit entwickelten unteren Schranke fiir die kleinst-
moglichen durchschnittlichen Kosten eines 2-Pivot-Quicksort-Algorithmus tiberein. Auf einer
Eingabe, die aus n paarweise verschiedenen Elementen in zufalliger Reihenfolge besteht, werden
diese Algorithmen durchschnittlich ungefahr 1.8n Inn Schlissel miteinander vergleichen, was
einen groflen Vorteil gegentiber den 1.9n Inn Schlisselvergleichen im Algorithmus von Yaros-
lavskiy darstellt. Die Verallgemeinerung der Resultate auf Quicksort-Varianten mit mindestens
drei Pivotelementen benétigt nur kleine Anpassungen des entwickelten Modells. Diese Arbeit be-
trachtet aulerdem die theoretische Analyse von Kostenmafien, die es erméglichen, Multi-Pivot-
Quicksort-Algorithmen hinsichtlich ihres Speicher- und Cacheverhaltens zu vergleichen. Es zeigt
sich dabei, dass Ansitze mit mehreren Pivotelementen grofle Vorteile im Bezug auf diese Kos-
tenmafle gegeniiber Standard-Quicksort haben. Wenn es nicht erlaubt ist zusétzlichen Speicher
zu allokieren, dann haben Verfahren mit drei oder fiinf Pivotelementen das beste Cacheverhal-
ten. Andernfalls konnen Algorithmen auf Basis vieler Pivotelemente, z. B. 127 Pivotelemente, zu
deutlichen Verbesserungen hinsichtlich des Cacheverhaltens fithren. Eine umfangreiche Studie
der Laufzeit von Multi-Pivot-Quicksort-Algorithmen deutet darauf hin, dass diese theoretischen
Vorteile auch in der Praxis zu schnelleren Sortieralgorithmen fithren.

Der zweite Teil der vorliegenden Arbeit beschiftigt sich mit dem Einsatz von Hashfunktio-
nen im Rahmen der Entwicklung von Algorithmen und Datenstrukturen. Hashfunktionen bilden
eine Kernkomponente vieler Anwendungen, z.B. beim Aufbau einer Hashtabelle oder bei der
Verteilung von Jobs auf Maschinen im Rahmen der Lastbalancierung. In der Literatur wird dabei
eine praktisch oft nicht zu begriindende Annahme getétigt: Die Abbildung von Elementen auf
Hashwerte sei voll zuféllig; Hashwerte seien also unabhéngig und uniform im Wertebereich der
Hashfunktion verteilt. Die Speicherplatzkomplexitat, die die Beschreibung einer solchen Funk-
tion bendtigt, ist fiir den praktischen Einsatz fir gewdhnlich unverhaltnisméflig hoch. Das Ziel
ist es also, einfache Konstruktionen zu finden, deren Zufallseigenschaften ausreichen, um sie mit
beweisbaren theoretischen Garantien praktisch einsetzen zu konnen. Diese Arbeit beschreibt eine
solche einfache Konstruktion von Hashfunktionen, die in einer Vielzahl von Anwendungen be-
weisbar gut ist. Zu diesen Anwendungen zéhlen Cuckoo Hashing mit einem sogenannten Stash,
die Konstruktion einer perfekten Hashfunktion, die Simulation einer uniformen Hashfunktion,
verschiedene Algorithmen zur Lastbalancierung und verallgemeinertes Cuckoo Hashing in ei-
ner leicht abgeschwichten Variante mit verschiedenen Einfiigealgorithmen. Der zentrale Beitrag
dieser Dissertation ist ein einheitliches Analysekonzept. Dieses ermdglicht es, eine auf Hash-
funktionen basierende Datenstruktur oder einen auf Hashfunktionen basierenden Algorithmus
nur mit Mitteln der Theorie von Zufallsgraphen zu analysieren, ohne Details der Hashfunktion
offenzulegen. Die Analysetechnik ist dabei die sogenannte First-Moment-Methode, eine Standar-
danalysemethode innerhalb der randomisierten Algorithmen. Die Hashfunktionen zeigen gutes
Cacheverhalten und sind praktisch einsetzbar.

vi

Acknowledgements

This work would not have been possible without the help and generous contributions of others.
I consider many people met along this way to be my dearest friends or greatest mentors.

First and foremost I would like to thank my supervisor Martin Dietzfelbinger. His lectures got
me first interested in the area of algorithms and data structures. Over the years, he has been
an incredible advisor. Collaborating with him was not only a pleasure but also a tremendous
learning experience. Looking back, it seems like most ideas presented in this thesis probably
came out from a meeting with him. His vast knowledge, patience, rigor, and generosity with his
time and ideas are truly inspiring. He shaped my thinking far beyond the realm of theoretical
computer science. If in the future I will ever get the chance to mentor students, I wish to become
a mentor to them in the same way Martin Dietzfelbinger has been a mentor to me.

I am greatly honored that Rasmus Pagh and Philipp Woelfel agreed to review this thesis. Both
had a direct or indirect impact on this work. Most of the algorithms in the second part of this the-
sis were first described in a paper co-authored by Rasmus. Philipp provided me with a manuscript
that described the idea which eventually led to the framework that is now a foundation of this
thesis. Thank you!

This work is greatly influenced by discussions with colleagues. I would like to thank Michael
Rink for many interesting and helpful discussions on randomized algorithms, Sebastian Wild for
sharing great discussions and ideas on quicksort algorithms, and Timo Bingmann for teaching
me many aspects of algorithm engineering and experimental setups. Timo’s “sqlplot-tools” saved
me countless hours of evaluating and presenting experimental data. I also thank the audience at
ESA 2012 and the people at the Dagstuhl seminar on “Data Structures and Advanced Models of
Computation on Big Data” for encouraging and/or critical comments on my work.

I have spent the last five years in the company of students, office mates, and colleagues who
have made this place feel like home. First, I would like to thank the members—past or present—of
the Institute of Theoretical Computer Science, Petra Schiiller, Jana Kopp, Dietrich Kuske, Man-
fred Kunde, Martin Huschenbett, Michael Brinkmeier, Sascha Grau, Ulf Schellbach, Roy Men-
nicke, Raed Jaberi, and Christopher Mattern for many interesting conversations over lunch and
entertaining hiking, cycling, and rafting trips. In particular, I would like to thank Martin for
many encouraging debates and coffee breaks, Petra for the relaxing chats, and Jana, for endless
support with candy. Moreover, I thank Michael Rossberg for many interesting discussions and
a glimpse of the world beyond theoretical computer science. I also enjoyed the company of my
fellow conspirator Andre Puschmann.

vii

Over the last years, somewhat unexpectedly, teaching became one of the most enjoyable expe-
riences in my life. I thank all the students who visited my tutorials week after week. Specifically,
I thank Steffen Hirte, Pascal Klaue, Tafil Kajtazi, Andreas Seifert, Markus Theil, and Martin Back-
haus. In particular, I thank Pascal for allowing me to include some parts of his Master’s thesis,
which was prepared under my guidance, in this thesis.

The weekly board game evenings have been one of my favorite moments in the week. I thank
my fellow “board game geeks” Sascha Grau, Adrian Grewe, Martin Huschenbett, Roy Mennicke,
Raed Jaberi, Michael Brinkmeier, and Michael Rink for making these evenings truly entertaining.
I also thank my friends Jaehsus, Anna, Felix, Fabian, and Martin for the rafting trips, cycling
tours, and so many entertaining evenings over the last years.

Finally I thank my parents, Sabine and Andreas, for providing all the opportunities that al-
lowed me to come this far, and my sister Annelie, for unconditional support. Moreover, I thank
my grandfathers, Adolf and Walter, whom I owe many beliefs and ideas about this world. Most
of all, I thank Sophia, for all of the above, love, and patience.

Martin Aumiiller,
Ilmenau, November 28, 2014.

viii

Contents

1 Outline & Motivation

I Multi-Pivot Quicksort

2 Introduction

3 Basic Approach to Analyzing Dual-Pivot Quicksort

3.1
3.2

3.3

BasicSetup
Analysis of a Partitioning Step
3.2.1 Analysis of the Additional Cost Term
Discussion

4 Classification Strategies For Dual-Pivot Quicksort

4.1
4.2

4.3

Analysis of Some Known Strategies
(Asymptotically) Optimal Classification Strategies
4.2.1 Two Unrealistic (Asymptotically) Optimal Strategies
4.2.2 Two Realistic Asymptotically Optimal Strategies
Discussion e

5 Choosing Pivots From a Sample

5.1
5.2
5.3

Choosing the Two Tertiles in a Sample of Size 5 as Pivots
Pivot Sampling in Classical Quicksort and Dual-Pivot Quicksort
Optimal Segment Sizes for Dual-Pivot Quicksort.

6 Generalization to Multi-Pivot Quicksort

6.1
6.2
6.3
6.4

6.5

General Setup
The Average Comparison Count for Partitioning
Example: 3-pivot Quicksorto
(Asymptotically) Optimal Classification Strategies
6.4.1 Choosing an Optimal Comparison Tree
6.4.2 The Optimal Classification Strategy and its Algorithmic Variant
6.4.3 An Oblivious Strategy and its Algorithmic Variant
Guesses About the Optimal Average Comparison Count of k-Pivot Quicksort . .

15
15
18
19
25

27
27
29
30
35
37

39
39
40
41

45
45
49
53
56
56
56
58
60

Contents

10

11

12

13

14

ii

6.6 Discussion e

The Cost of Rearranging Elements

7.1 Why Look at Other Cost Measures Than Comparisons

7.2 Problem Setting, Basic Algorithms and Related Work

7.3 Algorithms
7.3.1 Partitioning After Classification
7.3.2 Partitioning During Classification

7.4 Assignments

7.5 Memory Accesses and Cache Misses

Running Time Experiments

8.1 Running Times of Dual-Pivot Quicksort Algorithms
8.2 Running Times of k-Pivot Quicksort Algorithms based on “Exchange;”
8.3 Running Times of k-Pivot Quicksort Algorithms based on “Permute;,” and “Copyy.”
8.4 Do Theoretical Cost Measures Help Predicting Running Time?

Conclusion and Open Questions

Hashing
Introduction

Basic Setup and Groundwork

11.1 TheHash Class
11.2 Graph Properties and the Hash Class
11.3 Bounding the Failure Term of Hash Class Z2
11.4 Step by Step Example: Analyzing Static Cuckoo Hashing

Randomness Properties of Z on Leafless Graphs
121 A Counting Argument
12.2 The Leafless Part of G(S, hi,ha) o

Applications on Graphs

13.1 Cuckoo Hashing (withaStash)
13.2 Simulation of a Uniform Hash Function
13.3 Construction of a (Minimal) Perfect Hash Function
13.4 Connected Components of G(S, h1,ho)aresmall

Applications on Hypergraphs
14.1 Generalized Cuckoo Hashing

62

65
65
69
69
70
70
73
80

87
87
88

94

97

99

101

107
108
111
114
119

125
125
126

131
131
136
139
143

147

Contents

14.2 Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing
143 LoadBalancing

15 A Generalized Version of the Hash Class
15.1 The Generalized Hash Class
15.2 Application of the Hash Class
15.3 Discussion e e e e e e

16 Experimental Evaluation
16.1 Setup and Considered Hash Families
16.2 Success Probability
16.3 Running Times

17 Conclusion and Open Questions
Bibliography

A Quicksort: Algorithms in Detail

B Details of k-pivot Quicksort Experiments
List of Figures

List of Tables

List of Algorithms

Erklarung

177
177
179
179

181
181
184
185

189

190

205

215

221

223

226

227

iii

1. Outline & Motivation

Randomness is an ubiquitous tool in computer science. In the design and the analysis of algo-
rithms and data structures, randomness is usually applied in two different ways. On the one
hand, in Average Case Analysis we assume that the input is random and we make statements
about the expected, i. e., average, behavior of a deterministic algorithm over all such inputs. On
the other hand, randomness can be used to “cancel out” worst-case inputs. Then we consider the
expected behavior of a randomized algorithm on an arbitrary, fixed input. This thesis uses both
of these techniques and applies them to two different fundamental topics of computer science:
sorting and hashing.

In the first part of this thesis, we consider the average case analysis of new variants of the
well-known quicksort algorithm. The purpose of this algorithm is to sort a given input, i.e., to
put the elements of a possibly unordered sequence into a particular order. Over the last decades,
a great number of different sorting algorithms were developed. A standard textbook on algo-
rithms and data structures like “Introduction to Algorithms” by Cormen, Leiserson, Rivest, and
Stein [Cor+09] lists twelve different sorting algorithms in the index; most of them are covered
extensively. Despite this variety of sorting algorithms, the quicksort algorithm (with its vari-
ants), as introduced by Hoare in [Hoa62], turned out to be used dominantly throughout almost
all standard libraries of popular programming languages.

Following the divide-and-conquer paradigm, on an input consisting of n elements quicksort
uses a pivot element to partition its input elements into two parts: the elements in one part being
smaller than or equal to the pivot and the elements in the other part being larger than or equal
to the pivot; then it uses recursion to sort these parts. This approach—with slight variants such
as detecting worst-case inputs or choosing the pivot from a small sample of elements—found its
way into practically all algorithm libraries.

This thesis considers variants of quicksort using more than one pivot element. Such variants
were deemed to be impractical since Sedgewick’s PhD thesis in 1975 [Sed75]. The approach of
using more than one pivot was pioneered in the dual-pivot quicksort algorithm of Yaroslavskiy
[Yar09] in 2009, which replaced the well-engineered quicksort algorithm in Oracle’s Java 7
shortly after its discovery. This algorithm initiated much research which is documented, e. g.,
in the papers [WN12; Wil+13; NW14; WNN13; WNM13; Kus+14; MNW15; AD13].

The goal of this thesis is to answer the following general question:

How good is multi-pivot quicksort?

We will identify several advantages of multi-pivot quicksort algorithms over classical quicksort.
At the beginning we consider the classical cost measure of counting the average number of key

1. Outline & Motivation

comparisons between input keys made by a specific sorting algorithm. We will detail the design
choices for developing a dual-pivot quicksort, i.e., an algorithm that uses two pivots p and ¢
with p < ¢. This approach will make it possible to analyze the average comparison count of an
arbitrary dual-pivot quicksort algorithm. It will turn out that a very simple property of a dual-
pivot quicksort algorithm, the average number of times it compares an element to the smaller
pivot p first, will describe its average comparison count up to lower order terms. This means that
we do not have to care about things like the way pointers move through the input array to analyze
the average comparison count of a dual-pivot quicksort algorithm. Next, we will show that there
exist natural comparison-optimal dual-pivot quicksort algorithms, i. e., algorithms which achieve
the minimum possible average comparison count. To do this, we will develop a lower bound
for the average comparison count of dual-pivot quicksort. We will extend our theory to k-pivot
quicksort, for k& > 3. This will allow us to compare multi-pivot quicksort with other standard
variants such as classical quicksort using the median in a sample of size 2k’ + 1,k" > 0, as
pivot. (We will refer to this algorithm as “median-of-£’”). It will turn out that the improvements
in the average comparison count when using comparison-optimal k-pivot quicksort algorithms
can be achieved in much simpler ways, e. g., by using the median-of-k strategy. The algorithmic
subproblems which have to be solved by optimal k-pivot quicksort algorithms will let us conclude
that no practical improvements are to be expected from using such variants with more than two
pivots.

However, there could be other advantages of multi-pivot quicksort apart from a lower average
comparison count. In [Kus+14], Kushagra, Lopez-Ortiz, Qiao, and Munro described a beauti-
ful 3-pivot quicksort algorithm that was faster than Yaroslavskiy’s algorithm in their experi-
ments. Their algorithm makes much more comparisons on average than a comparison-optimal
3-pivot quicksort algorithm would make, but has a much simpler implementation. The authors
of [Kus+14] conjectured that the improvements of multi-pivot quicksort are due to better cache
behavior. (They provided experimental results to back this thesis in [LO14].) We will provide a
theoretical study of partitioning algorithms, i. e., algorithms that solve the problem of partition-
ing the input with respect to the pivots. One of these algorithms will generalize the partitioning
algorithm for classical quicksort. We will see that using more than one pivot makes it possible
to decrease the average number of memory accesses to the input, which directly translates into
better cache behavior. Another partitioning algorithm uses a two-pass approach and minimizes
both the average number of element rearrangements and the average number of memory ac-
cesses to the input when used with many, e. g., 127 pivots. At the end, we will report on results
of a large-scale study on the empirical running time of multi-pivot quicksort algorithms. When
no additional space is allowed, variants using two or three pivots provide the best running time.
If additional space can be allocated, significant improvements are possible by using 127 pivots.

The second part of this thesis considers the use of hash functions in algorithms and data struc-
tures. For a finite set U (“the universe”) and a finite set R (“the range”), a hash function is a
function mapping elements from U to R. Hash functions are used in many application: dis-
tributing keys to table cells in hash tables, distributing jobs among machines in load balancing,

and gathering statistics in data streams, to name just a few.

In the analysis of a hashing-based algorithm or data structure, the hash function is traditionally
assumed to be “ideal”, i. e., the mapping is fully random, it consumes no space, and its evaluation
takes unit time. Such functions do not exist. In fact, the representation of a fully random hash
functions takes |U|log |R| bits, which is inefficient since in hashing the universe U is assumed
to be huge. Consequently, a large body of work has considered explicit, efficient hash functions,
which are not fully random, but just good enough to allow running a specific application. The
goal of the second part of this thesis is to detail exactly such a construction and show its use in
different applications.

Traditionally, explicit hash function constructions build upon the work of Carter and Wegman
[CW79]. They proposed a technique called universal hashing, in which the idea is to pick a hash
function randomly from a set H C {h | h: U — R}. (We call such a set H a hash family
or hash class.) They coined the notions of “universality” and “independence” of such sets H (to
be defined rigorously in the respective part of this thesis). Both results mean the hash function
behaves close to a fully random hash function with respect to the collision probability of two
distinct elements or with respect to full randomness on small key sets of the universe. These two
concepts were (and still are) central in the analysis of hashing-based algorithms. As examples, we
mention the groundbreaking results of Alon, Matias, and Szegedy, who showed in [AMS99] that
4-wise independence suffices for frequency estimation, and Pagh, Pagh, and Ruciz [PPR09], who
proved, only in 2009, that 5-wise independence suffices for running linear probing, the most
often used hash table implementation. Finding a proof that a certain degree of independence
allows running a specific application has the advantage that one can choose freely from the pool
of available hash families that achieve the necessary degree of independence. If a faster hash
family becomes known in future research, one can just switch to use this hash class.

In a different line of research, explicit properties of a hash class beyond its “universality”
and “independence” were exploited to show that specific hash functions suffice to run a cer-
tain application with provable guarantees. Here, examples are the papers of Dietzfelbinger and
Meyer auf der Heide [DM90] (dynamic hashing), Karp, Luby, and Meyer auf der Heide [KLM96]
(PRAM simulations), Dietzfelbinger and Woelfel [DW03] (cuckoo hashing, uniform hashing,
shared memory simulations) and Woelfel [Woe06a] (load balancing). In 2010, Patragcu and Tho-
rup showed in [PT11] that a class of very simple tabulation hash functions allows running many
important applications such as linear probing, static cuckoo hashing, frequency estimation and e-
minwise independent hashing. The same authors described in [PT13] a more involved tabulation
class allowing for Chernoff-type bounds which guarantees robust execution times for a sequence
of operations in linear probing and chained hashing. Currently, there is a lot of ongoing research
devoted to the demonstration that explicit hash function constructions allow running certain ap-
plications. For tabulation-based hashing this is demonstrated by the recent papers of Dahlgaard
and Thorup [DT14] and Dahlgaard, Knudsen, Rotenberg and Thorup [Dah+14]. A different hash
class was presented by Celis, Reingold, Segev, and Wieder in [Cel+13]. They proved that their
construction has strong randomness properties in the classical situation of throwing n balls into
n bins. In [RRW14], Reingold, Rothblum, and Wieder showed that this hash class allows running

1. Outline & Motivation

a modified version of cuckoo hashing (with a stash) and load balancing using two hash functions.

This thesis considers a generalization of the hash class described by Dietzfelbinger and Woelfel
in [DW03]. We will prove that the hash class provides sufficient randomness properties to run
many different applications, such as cuckoo hashing with a stash as introduced by Kirsch, Mitzen-
macher, and Wieder [KMW09], the construction of a perfect hash function as described by
Botelho, Pagh, and Ziviani [BPZ13], the simulation of a uniform hash function due to Pagh and
Pagh [PP08], generalized cuckoo hashing as described by Fotakis, Pagh, Sanders, and Spirakis
[Fot+05] in a sparse setting with two recent insertion algorithms introduced by Khosla [Kho13]
and Eppstein, Goodrich, Mitzenmacher, and Pszona [Epp+14], and many different algorithms
for load balancing as studied by Schickinger and Steger in [SS00]. The main contribution is a
unified framework based on the first moment method. This framework allows us to analyze a
hashing-based algorithm or data structure without exploiting details of the hash function. While
our construction is more involved as the simple tabulation scheme of Patrascu and Thorup from
[PT11], we show in experiments it is indeed practical.

How to Read This Thesis. This thesis consists of two independent parts. These two parts can
be read independently of each other. Each part will contain its own introduction and conclusion
with pointers to future work. Part 1 will explain the work on multi-pivot quicksort. There,
Sections 3-5 (dual-pivot quicksort), Section 6 (multi-pivot quicksort), and Section 7 (additional
cost measures for multi-pivot quicksort) do not dependent on each other. Part 2 will describe
the explicit construction of a class of simple hash functions and its analysis. Section 11 presents
the basic framework and is mandatory to understand the subsequent sections. Section 12 and
Section 13 can be read independently of Section 14.

Publications. The first part of this thesis draws some content from the following published or
submitted material:

e “Optimal Partitioning For Dual Pivot Quicksort”, Martin A., Martin Dietzfelbinger, ap-
peared in ICALP ’13 [AD13]. Full version of this paper submitted to ACM Transactions on
Algorithms.

The second part of this thesis builds upon a manuscript of Woelfel [Woe05]. Furthermore, it
includes some parts of the following published material:

e “Simple Hash Functions Suffice for Cuckoo Hashing with a Stash”, Martin A., Martin Dietz-
felbinger, Philipp Woelfel, in ESA 12 [ADW12]. Full version [ADW14] to appear in Algo-
rithmica 70 (2014) as part of an issue on selected papers from ESA ’12.

Notation. We fix some notation that we are going to use throughout this thesis. Form € N, we
let [m] := {0,...,m — 1}. We assume the reader is familiar with basics of discrete probability
theory. A good treatment of the topic with respect to this thesis are the books [MR95; MU05].
In this work, probabilities are denoted by Pr, expectations are denoted by E. When considering

different probability spaces, we add the probability space as a subscript to Pr or E. Random
variables will always be referred to by an uppercase character. Events considered in this work
often depend on an integer n. If an event E,, occurs with probability at least 1 — O(1/n®), for
some constant o > 0, we say that F,, occurs with high probability, often abbreviated by “w.h.p.”.

Experimental Setup. All experiments were carried out on an Intel i7-2600 (4 physical cores,
3.4 GHz, 32 KB L1 instruction cache, 32 KB L1 data cache, 256 KB L2 cache and 8 MB L3 cache)
with 16 GB RAM running Ubuntu 13.10 with kernel version 3.11.0. The C++ source code and the
measurements from experiments can be accessed via the web page that accompanies this thesis.
It is available at http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/.

http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/

Part I Multi-Pivot Quicksort

2. Introduction

Quicksort [Hoa62] is a thoroughly analyzed classical sorting algorithm, described in standard
textbooks such as [Cor+09; Knu73; SF96] and with implementations in practically all algorithm
libraries. Following the divide-and-conquer paradigm, on an input consisting of n elements
quicksort uses a pivot element to partition its input elements into two parts, the elements in one
part being smaller than or equal to the pivot, the elements in the other part being larger than or
equal to the pivot, and then uses recursion to sort these parts. It is well known that if the input
consists of n elements with distinct keys in random order and the pivot is picked by just choosing
an element, then on average quicksort uses 2nInn + O(n) comparisons between elements from
the input. (Pseudocode of a standard implementation of quicksort can be found in Appendix A.)

In 2009, Yaroslavskiy announced’ that he had found an improved quicksort implementation,
the claim being backed by experiments. After extensive empirical studies, in 2009 Yaroslavskiy’s
algorithm became the new standard quicksort algorithm in Oracle’s Java 7 runtime library. This
algorithm employs two pivots to split the elements. If two pivots p and ¢ with p < ¢ are
used, the partitioning step partitions the remaining n — 2 elements into three parts: elements
smaller than or equal to p, elements between p and ¢, and elements larger than or equal to g,
see Fig. 2.1. (In accordance with tradition, we assume in this theoretical study that all elements
have different keys. Of course, in implementations equal keys are an important issue that requires
a lot of care [Sed77].) Recursion is then applied to the three parts. As remarked in [WN12],
it came as a surprise that two pivots should help, since in his thesis [Sed75] Sedgewick had
proposed and analyzed a dual-pivot approach inferior to classical quicksort. Later, Hennequin
in his thesis [Hen91] studied the general approach of using k£ > 1 pivot elements. According to
[WN12], he found only slight improvements which would not compensate for the more involved
partitioning procedure.

In [WN12] (full version [WNN13]), Nebel and Wild formulated and thoroughly analyzed a
simplified version of Yaroslavskiy’s algorithm. They showed that it makes 1.9nlnn + O(n)
key comparisons on average, in contrast to the 2nlnn 4+ O(n) of standard quicksort and the
%n Inn + O(n) of Sedgewick’s dual-pivot algorithm. On the other hand, Yaroslavskiy’s algo-
rithm requires 0.6nInn + O(n) swap operations on average, which is much higher than the
0.33n1nn + O(n) swap operations in classical quicksort. As an important future research di-
rection, they proposed to explain how Yaroslavskiy’s algorithm can compensate for the large
number of extra swaps it makes.

'An archived version of the relevant discussion in a Java newsgroup can be found at
http://permalink.gmane.org/gmane.comp. java.openjdk.core-1libs.devel/2628. Also see [WN12].

http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628

2. Introduction

L <p Ipl p<...<gq Iql L..>q

Figure 2.1.: Result of the partition step in dual-pivot quicksort schemes using two pivots p, ¢ with
p < q. Elements left of p are smaller than or equal to p, elements right of q are larger
than or equal to g. The elements between p and q are at least as large as p and at most
as large as q.

In the discussion referenced in Footnote 1, Jon Bentley, one of the authors of the seminal paper
[BM93] describing engineering steps for a sorting algorithm used in programming libraries, is
quoted as saying:

It would be horrible to put the new code [Yaroslavskiy’s algorithm] into the library,
and then have someone else come along and speed it up by another 20% by using
standard techniques.

This thesis considers what is possible when using more than one pivot and whether or not im-
provements beyond Yaroslavskiy’s algorithm are to be expected from multi-pivot quicksort algo-
rithms.

In the first part of our study on multi-pivot quicksort algorithms, we will detail the design
choices we have for developing a dual-pivot quicksort algorithm that, on average, makes as few
key comparisons as possible. Let us take some time to understand the general idea.

The first observation is that everything depends on the cost, i. e., the comparison count, of the
partitioning step. This is not new at all. Actually, in Hennequin’s thesis [Hen91] the connection
between partitioning cost and overall cost for quicksort variants with more than one pivot is
analyzed in detail. The result relevant for us is that if two pivots are used and the (average)
partitioning cost for n elements is a - n+ O(1), for a constant a, then the average cost for sorting
n elements is

ga-nlnn—i-O(n). (2.1)

Throughout this part of the thesis all that interests us is the constant factor with the leading term.
(The reader should be warned that for real-life n the linear term, which may even be negative,
can have a big influence on the average number of comparisons. We shall see that this is indeed
the case in the empirical verification.)

The second observation is that the partitioning cost depends on certain details of the partition-
ing procedure. This is in contrast to standard quicksort with one pivot where partitioning always
takes n — 1 comparisons. In [WN12] it is shown that Yaroslavskiy’s partitioning procedure uses
n + O(1) comparisons on average, while Sedgewick’s uses 1n + O(1) many. The analysis
of these two algorithms is based on the study of how certain pointers move through the array, at
which positions elements are compared to the pivots, which of the two pivots is used for the first
comparison, and how swap operations exchange two elements in the array. For understanding
what is going on, however, it is helpful to forget about concrete implementations with loops in

10

which pointers sweep across arrays and entries are swapped, and look at partitioning with two
pivots in a more abstract way. For simplicity, we shall always assume the input to be a permu-
tation of {1,...,n}. Now pivots p and g with p < ¢ are chosen. The task is to classify the
remaining n — 2 elements into classes “small” (s = p — 1 many), “medium” (m = g —p — 1
many), and “large” (¢ = n — p many), by comparing these elements one after the other with the
smaller pivot or the larger pivot, or both of them if necessary. Note that for symmetry reasons it
is inessential in which order the elements are treated. The only choice the algorithm can make is
whether to compare the current element with the smaller pivot or the larger pivot first. Let the
random variable So denote the number of small elements compared with the larger pivot first,
and let Ly denote the number of large elements compared with the smaller pivot first. Then, the
total number of comparisons is n — 2 +m + So + Lo.

Averaging over all inputs and all possible choices of the pivots the term n — 2 + m will lead to
%n + O(1) key comparisons on average, independently of the algorithm. Let W = Sy + Lg be
the number of elements compared with the “wrong” pivot first. Then E(TV) is the only quantity
influenced by a particular partitioning procedure.

In this thesis, we will first devise an easy method to calculate E(W). The result of this analysis
will lead to an (asymptotically) optimal strategy. The basic approach is the following. Assume
a partitioning procedure is given, and assume p,q and hence s = p — 1 and £ = n — q are
fixed, and let wsy = E(W | s,¢). Denote the average number of elements compared to the
smaller and larger pivot first by ff’ ¢ and f;l’ ¢» respectively. If the elements to be classified were
chosen to be small, medium, and large independently with probabilities s/(n — 2), m/(n — 2),
and £/(n — 2), resp., then the average number of small elements compared with the large pivot
first would be fg s - 8/(n — 2), similarly for the large elements. Of course, the actual input is a
sequence with exactly s, m, and ¢ small, medium, and large elements, respectively, and there is
no independence. Still, we will show that the randomness in the order is sufficient to guarantee
that

Wsp :fgg-s/n—kff’(-é/n—i-o(n). (2.2)

The details of the partitioning procedure will determine f”, and f3,, and hence w; ¢ up to o(n).
This seemingly simple insight has two consequences, one for the analysis and one for the
design of dual-pivot algorithms:

(i) In order to analyze the average comparison count of a dual-pivot algorithm (given by its
partitioning procedure) up to lower order terms, determine f¥, and f{, for this partition-
ing procedure. This will give wy ¢ up to lower order terms, which must then be averaged
over all s, £ to find the average number of comparisons in partitioning. Then apply (2.1).

(ii) In order to design a good partitioning procedure w.r.t. the average comparison count, try
to make f3,-s/n+ f*, - ¢/n small

We shall demonstrate both approaches in Section 4. An example: As explained in [WN12], if s
and / are fixed, in Yaroslavskiy’s algorithm we have f;l , ~ L and fg ; & s+ m. By (2.2) we get

11

2. Introduction

ws e = (Us+ (s+m)l)/n+ o(n). This must be averaged over all possible values of s and ¢. The
result is 2n + o(n), which together with %n + O(1) gives n + o(n), close to the result from
[WN12].

Principle (ii) will be used to identify an (asymptotically) optimal partitioning procedure that
makes 1.8n Inn+o(n Inn) key comparisons on average. In brief, such a strategy should achieve
the following: If s > /, compare (almost) all entries with the smaller pivot first (ff ;Rn
and f;l’ ¢, ~ 0), otherwise compare (almost) all entries with the larger pivot first (f}; , ~ 0and
fi ¢, = n). Of course, some details have to be worked out: How can the algorithm decide which

case applies? In which technical sense is this strategy optimal? These questions will be answered
in Section 4.2.

Following our study on dual-pivot quicksort, we will consider the case of using k£ pivots
P1,...,Pk in a quicksort algorithm, for & > 1. We shall see that the model for dual-pivot
quicksort algorithms extends nicely to this general situation. First, instead of having “small”,
“medium”, and “large” elements, there are k + 1 different groups Ay, ..., A;. An element x
belongs to group A;,0 < i < k, if p; < © < p;j+1. (For ease of discussion, we set pg = 0 and
pr+1 = n + 1.) The classification of a single element becomes more involved when at least three
pivots are used. Naturally, it is done by comparing the element against the pivots in some order.
This order is best visualized using a comparison tree, which is a binary tree with £ + 1 leaves
labeled Ao, ..., A from left to right and % inner nodes labeled p,, ..., p, according to inorder
traversal. The classification of an element can then be read off from the leaf that is reached in the
obvious way. The design choice of a multi-pivot quicksort algorithm for classifying an element is
then to pick a certain pivot order, i. e., a certain comparison tree. To find out how many key com-
parisons a multi-pivot quicksort algorithm makes on average it suffices to multiply the average
number of times a certain comparison tree is used with a certain cost term which describes how
many comparisons a comparison tree will require on average for a fixed pivot choice, summed
up over all comparison trees and pivot choices.

In implementations of quicksort, the pivot is usually chosen as the median from a small sam-
ple of 2k + 1 elements with k& > 0. To speed up the selection of the pivot, other strategies
such as the “quasi-median-of-nine”, i. e., the median of three medians of samples of size 3, have
been suggested [BM93]. Intuitively, this yields more balanced (and thus fewer) subproblems.
This idea already appeared in Hoare’s original publication [Hoa62] without an analysis, which
was later supplied by van Emden [Emd70]. The complete analysis of this variant was given by
Martinez and Roura in [MR01] in 2001. They showed that the optimal sample size is © (/7).
For this sample size the average comparison count of quicksort matches the lower-order bound
of nlogn + O(n) comparisons. In practice, one usually uses a sample of size 3. Theoretically,
this decreases the average comparison count from 2nInn + O(n) to 1.714n1nn + O(n). We
will see that choosing the median of a sample of £ elements yields about the same improvement
to the average comparison count as using k pivots in a comparison-optimal multi-pivot quicksort
algorithm.

It seems hard to believe that key comparisons are the single dominating factor to the running

12

time of a sorting algorithm. This is especially true when key comparisons are cheap, e.g., for
comparing 32-bit integers. Two important performance bottlenecks in modern computers are
branch mispredictions and cache behavior [HP12]. In very recent work, Martinez, Nebel, and
Wild [MNW15] analyzed branch mispredictions in classical quicksort and Yaroslavksiy’s algo-
rithm. According to their paper, the running time differences observed in practice cannot be
explained by this cost measure.

Consequently, we have to consider the cost of rearranging the input elements using partition-
ing algorithms for multi-pivot quicksort in Section 7. This section draws some ideas from the
fast three-pivot quicksort algorithm of Kushagra et al. [Kus+14]. The classification strategy of
their algorithm is very simple. It compares a new element with the middle pivot first, and then
with one of the two others. While the general idea of this algorithm had been known (see, e.g.,
[Hen91; Tan93]), they provided a smart way of moving elements around to produce the partition.
Building upon the work of Ladner and LaMarca [LL99], they demonstrated that their algorithm is
very cache efficient. Hence, they conjectured that the observed running time behavior is largely
due to cache-efficiency, and not primarily influenced by comparisons or swaps. We will extend
their study to partitioning algorithms for multi-pivot quicksort.

In which sense can the cache-efficiency of classical quicksort be improved? It is often assumed
that the standard partitioning procedure of quicksort, in which two pointers move towards each
other and exchange misplaced elements along the way, see Algorithm A.1 in Appendix A, is
“optimal” with respect to cache-efficiency. There are only two places in the array which are
needed in memory at any given point in time and it is easy to predict the array segments that
are going to be used next. This makes prefetching of these array segments easy. To improve
cache behavior, we have to consider the whole sorting process. Intuitively, using more than one
pivot decreases the size of subproblems and thus reduces the depth of the recursion stack. Since
we have to read about the whole array on each level of the recursion, reduced depth means the
input has to be read fewer times. On the other hand, using more than one pivot increases the
number of elements that have to be exchanged because they are at a wrong position in the input.
This makes partitioning more complicated. So, using more than one pivot yields two effects
working in opposite directions: increased cost by more complicated partitioning, and decreased
cost because the input has to be read fewer times. It will turn out that, in some sense, minimal
partitioning cost will be achieved when using five pivots.

Moreover, we will consider partitioning strategies that decouple classification and partition-
ing, i.e., use two passes to produce a partition. This technique was pioneered by Sanders and
Winkel with their “super scalar sample sort algorithm” [SW04]. This approach will prove to have
much better cache behavior because partitioning does not become more difficult with many piv-
ots. However, additional space is needed to obtain algorithms that are faster in practice than
algorithms using only one pass.

Summary and Outline. We will study multi-pivot quicksort algorithms and show how well
they perform with respect to different cost measures.

13

2. Introduction

In Section 3, we study the average comparison count of dual-pivot quicksort algorithms. To
this end, we introduce a model which covers dual-pivot quicksort algorithms. Then, we describe
how to calculate the average comparison count of a given algorithm. Next, we use this result to
re-analyze previously known dual-pivot quicksort algorithms like Yaroslavskiy’s algorithm and
Sedgewick’s algorithm in Section 4. In the same section, we present optimal algorithms, i.e.,
algorithms which achieve the minimum possible average comparison count for dual-pivot quick-
sort. Optimal dual-pivot quicksort algorithms make 1.8nInn + O(n) comparisons on average,
improving on the 1.9nInn + O(n) comparisons Yaroslavskiy’s algorithm makes on average. In
the subsequent section, we consider the well known technique of choosing pivots from a small
sample. We prove that choosing the tertiles of the sample as the two pivots, as, e.g., done in
the Java implementation of Yaroslavskiy’s algorithm, is not optimal for dual-pivot quicksort, and
describe optimal sampling strategies.

After understanding the case with two pivots, we consider quicksort algorithms using more
than two pivots in Section 6. We are going to see that our theory for dual-pivot quicksort general-
izes nicely to this case. Again, we describe how to calculate the average comparison count for an
arbitrary multi-pivot quicksort strategy and how comparison-optimal algorithms for dual-pivot
quicksort extend to the case of using more than two pivots. As we will find out, calculating the
average comparison count is hard even for a few, say, four pivots. From a practical perspective,
comparison-optimal multi-pivot quicksort will turn out to be slow and not competitive.

Consequently, we will follow a different approach in Section 7. We restrict ourselves to use
some fixed comparison tree for each classification—ignoring the average comparison count—,
and think only about moving elements around in order to produce the partition. This will help
to understand in which sense a multi-pivot quicksort approach allows more efficient algorithms
than classical quicksort.

Finally, Section 8 reports on a study of empirical running times of different quicksort algo-
rithms. We shall see that many variants are faster than classical quicksort. Furthermore, we
will investigate whether or not our theoretical cost measures help predicting observed running
times. In brief, the cache-efficiency of an algorithm provides the best prediction for differences
in running times. However, it cannot explain observed running times in detail.

14

3. Basic Approach to Analyzing Dual-Pivot
Quicksort

In this section we formalize the notion of a “dual-pivot quicksort algorithm”, give the basic as-
sumptions of the analysis and show how to calculate the average comparison count of an arbi-
trary dual-pivot quicksort algorithm.

In Section 6 we will generalize this approach to “k-pivot quicksort”, for & > 1. Of course,
this generalization includes the dual-pivot quicksort case. However, the algorithmic approach to
dual-pivot quicksort is much easier to understand. Furthermore, we are able to prove some tight
results analytically only in the dual-pivot quicksort case.

3.1. Basic Setup

We assume the input sequence (ay,...,ay,) to be a random permutation of {1,...,n}, each
permutation occurring with probability (1/n!). If n < 1, there is nothing to do; if n = 2, sort
by one comparison. Otherwise, choose the first element a; and the last element a,, as the set of
pivots, and set p = min(aq,ay) and ¢ = max(a,ay). Partition the remaining elements into
elements smaller than p (“small” elements), elements between p and ¢ (“medium” elements), and
elements larger than g (“large” elements), see Fig. 2.1. Then apply the procedure recursively to
these three groups. Clearly, each pair p, g with 1 < p < ¢ < n appears as set of pivots with
probability 1/ (g) Our cost measure is the number of key comparisons needed to sort the given
input. Let C), be the random variable counting this number. Let P, denote the number of key
comparisons necessary to partition the n —2 non-pivot elements into the three groups, and let 2,
denote the number of key comparisons made in the recursion. Since elements are only compared
with the two pivots, the randomness of subarrays is preserved. Thus, in the recursion we may
always assume that the input is arranged randomly. The average number of key comparisons

15

3. Basic Approach to Analyzing Dual-Pivot Quicksort

E(C,,) obeys the following recurrence:

E(Cp) = Z Pr(p, q pivots) - E(P, + Ry, | p,q)

1<p<g<n

2
_ Z T . E(Pn + Cp,1 + qupfl + Cnfq | D, Q)

1<p<g<n
9 n—2
=E(P,) + n(n_l)-skzzo(n— k—1)-E(Cy). (3.1)

Solving the Recurrence for Dual-Pivot Quicksort. 'We now solve this recurrence using the
Continuous Master Theorem of Roura [Rou01], whose statement we will review first.

Theorem 3.1.1 ([Rou01, Theorem 18])
Let F}, be recursively defined by

~ Jbn, for0 <n < N,
L tn, + Z;l;ol wn,ijv forn > N,

where the toll function t,, satisfies ¢, ~ Kn®log®(n) as n — oo for constants K # 0, o >
0,5 > —1. Assume there exists a function w: [0, 1] — R such that

nol (G+1)/n
Z W, j —/ w(z) dz
J

§=0 "

= O0(n™ %, (3.2)

for a constant d > 0. Let H :=1 — 01 2%w(z) dz. Then we have the following cases:*
1. If H > 0, then F}, ~ t,,/H.

2. If H = 0, then F}, ~ (t, Inn)/H, where
. 1
o= —(8+ 1)/ 2 In(2)w(z) da.
0
3. If H < 0, then F}, ~ O(n°) for the unique ¢ € R with

1
/ z‘w(z) dz = 1.
0

“Here, f(n) ~ g(n) means that lim, .« f(n)/g(n) = 1.

16

3.1. Basic Setup

Theorem 3.1.2

Let A be a dual-pivot quicksort algorithm which has for each subarray of length n partitioning
cost E(P,) = a-n + o(n). Then

E(Cy) = gan Inn + o(nlnn). (3.3)

Proof. Recurrence (3.1) has weight

6(n—j—1)

n.g = n(n—1)

We define the shape function w(z) as suggested in [Rou01] by
w(z) = nh_>r20n “Wp2n = 6(1 — 2).

Now we have to check (3.2) to see whether the shape function is suitable. We calculate:

G+1)/n
Wn,j —/ w(z) dz
J

n—1

j=0 /n
n—1 o (j+1)/n
= 6; 77:1(71]— 1)1 —/j/i (1—2)dz
n—1 o .
< 6: %(nl_l)' — O(1/n).

Thus, w is a suitable shape function. By calculating
1
H::1—6/ (z—2%)dz =0,
0

we conclude that the second case of Theorem 3.1.1 applies for our recurrence. Consequently, we
calculate

1
H:= —6/ (z — 2%) Inz dz,
0

which—using a standard computer algebra system—gives H=5 /6. The theorem follows. O

17

3. Basic Approach to Analyzing Dual-Pivot Quicksort

This generalizes the result of Hennequin [Hen91] who proved that for average partitioning cost
a-n+ O(1) for n elements, for a constant a, the average cost for sorting n elements is

ga-nlnn—i—O(n). (3.4)

Remark 3.1.3. Most of our algorithms have partitioning cost a - n + o(n), for a constant a. Thus,
we cannot apply (3.4) directly. In the paper [AD13] we give an alternative proof of Theorem 3.1.2
only based on (3.4), see [AD13, Theorem 1].

Handling Small Subarrays. One of our algorithms will make a decision based on a small
sampling step. For very small subarrays of size ng < n!/"1""_this decision will be wrong with
a too high probability, making the partitioning cost larger than a - n’ + o(n'). We will now argue
that the total contribution of these small subarrays to the average comparison count is o(n Inn),
and can hence be neglected.

To see this, wait until the algorithm has created a subarray of size n’ < ng. Note that the parti-
tioning cost of dual-pivot quicksort on input size n’ is at most 2n’. Using this simple observation
and combining it with (3.3), the cost for the whole recursion starting from this input is at most
12/5 - n'Inn’ 4+ o(n/Inn'). To calculate the total contribution of all small subarrays we must
then sum 12/5 - n; Inn; + o(n; Inn;) over a sequence of disjoint subarrays of length ny, . .., ng.
Since all n; are smaller than ng, n1 + ... + ni < n, and since x — x In x is a convex function,
this sums up to no more than - - Znolnng + 2o -o(noInng) = o(nlnn).

Thus, in the remainder of this work we will ignore the contribution of such small subarrays to
the total sorting cost.

3.2. Analysis of a Partitioning Step

The main consequence of Theorem 3.1.2 is that it is sufficient to study the cost of partitioning.

Abstracting from moving elements around in arrays, we arrive at the following “classification
problem”: Given a random permutation (a1, ..., a,) of {1,...,n} as the input sequence and a;
and a,, as the two pivots p and ¢, with p < ¢, classify each of the remaining n — 2 elements
as being small, medium, or large. Note that there are exactly s := p — 1 small elements, m :=
q — p — 1 medium elements, and ¢ := n — q large elements. Although this classification does
not yield an actual partition of the input sequence, a classification algorithm can be turned into a
partition algorithm only by rearranging the input elements after classification, without additional
key comparisons.

We make the following observations (and fix notation) for all classification algorithms. One
key comparison is needed to decide which of the elements a; and a,, is the smaller pivot p and
which is the larger pivot q. For classification, each of the remaining n — 2 elements has to be
compared against p or q or both. Each medium element has to be compared to p and q. On
average, there are (n — 2)/3 medium elements. Let Sy denote the number of small elements that

18

3.2. Analysis of a Partitioning Step

are compared to the larger pivot first, i. e., the number of small elements that need 2 comparisons
for classification. Analogously, let Ly denote the number of large elements compared to the
smaller pivot first. Conditioning on the pivot choices, and hence the values of s and ¢, we may
calculate E(P,) as follows:

E(P,)=Mn—-1)+(n—-2)/3+ % Z E(Se + Lo | s,¢). (3.5)
(2) s+H<n—2

Here, “s, £” denotes the event that the pivots p = s + 1 and ¢ = n — £ are chosen. We call the
third summand the additional cost term (ACT), as it is the only value that depends on the actual
classification algorithm.

3.2.1. Analysis of the Additional Cost Term

We will use the following formalization of a partitioning procedure: A classification strategy is
given as a three-way decision tree 7" with a root and n — 2 levels of inner nodes as well as one
leaf level. The root is on level 0. Each node v is labeled with an index i(v) € {2,...,n — 1} and
an element /(v) € {p,q}. If [(v) is p, then at node v element a;(, is compared with the smaller
pivot first; otherwise, i.e., [(v) = q, it is compared with the larger pivot first. The three edges
out of a node are labeled o, y, A, resp., representing the outcome of the classification as small,
medium, large, respectively. The label of edge e is called c(e). The three children of a node v are
called the o-, y-, and A-child of this node. On each of the 372 paths each index occurs exactly
once. Each input determines exactly one path w from the root to a leaf in the obvious way; the
classification of the elements can then be read off from the node and edge labels along this path.
The labeled reached in this way contains this classification. We call such a tree a classification
tree.

Identifying a path 7 from the root to a leaf If by the sequence of nodes and edges on it, i.e.,
m = (v1,€1,V2,€2,...,Un_2,en_2,lf), we define the cost ¢, as

Cr = ‘{j e{l,...,n—2}|c(ej) # p, (vj) #c(ej)}|.

For a given input, the cost of the path associated with this input exactly describes the number
of additional comparisons on this input. An example for such a classification tree is given in
Figure 3.1.

For a random input, we let S? [L2] denote the random variable that counts the number of
small [large] elements classified in nodes with label q [p]. We now describe how we can calculate
the ACT of a classification tree 7. First consider fixed s and ¢ and let the input excepting the
pivots be arranged randomly. For a node v in T', we let s,,, m,, and £, resp., denote the number
of edges labeled o, i, and A, resp., from the root to v. By the randomness of the input, the
probability that the element classified at v is “small”, i. e., that the edge labeled o is used, is exactly
(s —sy)/(n—2—1level(v)). The probability that it is “medium” is (m —m,,)/(n — 2 —level(v)),

19

3. Basic Approach to Analyzing Dual-Pivot Quicksort

as: o0 as: o az : i as : A\ as : A\
as: o as: i az: @ as: i as: A
ay: o0 ag: i ag: ag: i ag: A\
C1 1 (2:0 C3 0 C4:1 Cs 3

Figure 3.1.: An example for a decision tree to classify three elements a9, a3, and a4 according
to the pivots a1 and as. Five out of the 27 leaves are explicitly drawn, showing the
classification of the elements and the costs ¢; of the specific paths.

and that it is “large” is (¢ — £y)/(n — 2 — level(v)). The probability p{ , that node v in the tree is
reached is then just the product of all these edge probabilities on the unique path from the root
to v. The probability that the edge labeled o out of a node v is used can then be calculated as
Pey - (s —sy)/(n — 2 — level(v)). Similarly, the probability that the edge labeled A is used is
pY - (£ —4~y)/(n—2—level(v)). Note that all this is independent of the actual ordering in which
the classification tree inspects the elements. We can thus always assume some fixed ordering and
forget about the label i(v) of node v.

By linearity of expectation, we can sum up the contribution to the additional comparison count
for each node separately. Thus, we may calculate

— {— 20,
E(S3+L3 | s,0) S 3.6
(S2+Ly |5, ’UGZT Pae: n—2—level(v) veZT Pae: n—2—level(v)’ (36)

l(v)=q l(v)=p
The setup developed so far makes it possible to describe the connection between a classification
tree T' and its average comparison count in general. Let FpT resp. FqT be two random variables
that denote the number of elements that are compared with the smaller resp. larger pivot first

when using 7. Then let fi, = E (FqT \ s,€> resp. f7, =E (FpT | 3,6) denote the average

20

3.2. Analysis of a Partitioning Step

number of comparisons with the larger resp. smaller pivot first, given s and ¢. Now, if it was
decided in each step by independent random experiments with the correct expectations s/(n—2),
m/(n—2),and ¢/(n —2), resp., whether an element is small, medium, or large, it would be clear
that for example f;l, ;- 8/(n —2) is the average number of small elements that are compared with
the larger pivot first. We will show that one can indeed use this intuition in the calculation of the
average comparison count, excepting that one gets an additional o(n) term due to the elements
tested not being independent.

Before we can show this, we first have to introduce the basic probability theoretical argument
which will be used throughout the analysis of different lemmas and theorems.

Let s;, m;, £;, resp., be the random variables which counts the number of elements classified
as small, medium, and large, resp., in the first ¢ classification steps. Our goal is to show concen-
tration of these random variables. This would be a trivial application of the Chernoff bound if
the tests to which group elements belong to were independent. But when pivots are fixed, the
probability that the i-th considered element is small depends on s;_; and i. To deal with these
dependencies, we will use the following theorem, commonly known as “the method of averaged
bounded differences”.!

Theorem 3.2.1 ([DP09, Theorem 5.3])
Let X1,..., X, be an arbitrary set of random variables and let f be a function satisfying the
property that for each i € {1,...,n} there is a non-negative ¢; such that

‘E(f ‘ Xl:"'in) _E(f ‘ X17"'7Xi—1)’ <g¢.

Then
2
Pr(f >E(f)+1t) <exp <_20>
and
2
Pr(f <)~ 1) <o (5.).
where

"We remark that our statement corrects a typo in [DP09, Theorem 5.3] where the bound reads exp(—2t°/c) instead
of exp(—t%/(2¢)).

21

3. Basic Approach to Analyzing Dual-Pivot Quicksort

Lemma 3.2.2
Let the two pivots p and q be fixed. Let s; be defined as above. For each ¢ with 1 < i <mn —2
we have that

Pr (|sZ —E(s;)] > n2/3) < 2exp (—n1/3/2> .

Proof. Define the indicator random variable X; = [the j-th element is small]. Of course, s; =
219’9 X;. We let

Cj = |E(Si | Xl,...,Xj) —E(Si | Xl,...,Xj_l)‘ .
Using linearity of expectation we may calculate

cj = ‘E(SZ | Xl,..-,Xj) *E(Si | X17,..,X]’71)’

=X+ > (B(Xe| Xp,.. X)) —E(Xp | X1, X)) — B | X, XGo)

k=j+1
S —Si_1 . s — 8, s—s;i+X;
:X‘— J _ J _ J J
J n—j—l—i—(Z])<n—j—2 n—j—1

= |Xj <1 n Z_;j_ 1) a ::;j—_ll O —(;:Jé))(fn_—s;)— 1)‘

1—7 s—s;+X; §— 8,
<|x;(1- L) -y 2T
n—j—1 n—j—1 n—j—1

S
- Xj<1—z‘7,>'§1.
n—j—1

Applying Theorem 3.2.1 now gives us

_pA/3
Pr(|s; — E(s;)| > n®?) < 2exp 5 |

which is not larger than 2 exp(—n'/3/2). O

Of course, we get analogous results for the random variables m; and ¢;.

This allows us to prove the following lemma.

22

3.2. Analysis of a Partitioning Step

Lemma 3.2.3
Let T be a classification tree. Let E(P!) be the average number of key comparisons for classi-
fying an input of n elements using 7. Then

4 1
E(PT) = —n+

n

- 1 .5 Py o(n).

Proof. Fix p and q (and thus s, m, and ¢). We will show that

s+, 0
E(S + LY | 8,0) = = fﬁ +o(n). (37)
(The lemma then follows by substituting this into (3.5).)
We call a node v in T good if

I[(v) = qand S Sl <1 or

—d n—2 n—level(v) —2| ~ nl/12

14 (-1, 1

= — < . .

/(v) =pand n—2 n—level(v) — 2‘ — nl/12 (38)

Otherwise we call v bad. We first obtain an upper bound. Starting from (3.6), we calculate:

s—s -1,
E(Sg+Lg | Svg) = Z psé = + Z psf

n—2—level(v) n—2—level(v)
veT,l(v)=q veT,l(v)=p
_ v 3 v ¢
veT,l(v veT,l(v)=p
v S — Sy s
Z ps,@ (n — level(v) n— 2> *
veT,l(v)=
> e
p,g n—2—level (v) -2
veT | l(v)=
14
< > »p 5+
veT,l(v)=q veT,l(v
ps N4 psve v 3.9
Z YT Z Pse+ Z YT Z P (39)
veT,l(v)=q veT,l(v)=q veT,l(v)=p veT,l(v)=p
v good v bad v good v bad

where the last step follows by separating good and bad nodes and using (3.8). (For bad nodes we
use that the left-hand side of the inequalities in (3.8) is at most 1.) For the sums in the last line of

23

3. Basic Approach to Analyzing Dual-Pivot Quicksort

(3.9), consider each level of the classification tree separately. Since the probabilities p? , for nodes
v on the same level sum up to 1, the contribution of the 1/n'/12 terms is bounded by O(n!1/12).

Using the definition of f;l , and ff ¢» we continue as follows:

s 14
E(Sg+Lg‘S,€)§ Z p;)’g-n_2+ Z p;g'm‘i‘ng’g-i-o(n)
veTl(v)=q veTI(v)=p vel

v bad
fq[s + fpé.g
BT S o)
veT v bad
fq '8—|—fp Y n—3
=t st Z Pr(a bad node on level i is reached) + o(n), (3.10)
n—2 =

where in the last step we just rewrote the sum to consider each level in the classification tree
separately. So, to show (3.7) it remains to bound the sum in (3.10) by o(n).

To see this, consider a random input that is classified using 7. We will show that with very
high probability we do not reach a bad node in the classification tree in the first n — n3/4 levels.
Intuitively, this means that it is highly improbable that underway the observed fraction of small
elements deviates very far from the average s/(n — 2). In the following, we will only consider

«_ %

nodes which are labeled with “p”. Analogously, these statements are valid for nodes labeled with

C‘q’,‘

Let s; be the random variable that counts the number of small elements classified in the first ¢
classification steps. By Lemma 3.2.2, with very high probability we have that |s; —E(s;)| < n?/3.
Suppose this events occurs.

We may calculate

s 5—8; 2/3 n2/3

n

< .
n—2—1

s s(l—i/(n—2))'+

n—2 n—2—1

n—2 n—2-1 n—2—1
That means that for each of the first i < n — n3/* levels with very high probability we are in a
good node on level 7, because the deviation from the ideal case that we see a small element with
probability s/(n — 2) is n?/3/(n — 2 — i) < n?/?/n3/* = 1/n'/12 Thus, for the first n, — n?/*
levels the contribution of the sums of the probabilities of bad nodes in (3.10) is o(n). For the last
n3/4 levels of the tree, we use that the contribution of the probabilities that we reach a bad node
on level ¢ is at most 1 for a fixed level.

This shows that the contribution of he sum in (3.10) is o(n). This finishes the proof of the
upper bound. The calculations for the lower bound are similar and are omitted here. O

24

3.3. Discussion

3.3. Discussion

Lemma 3.2.3 and Theorem 3.1.2 tell us that for the analysis of the average comparison count of a
dual-pivot quicksort algorithm we just have to find out what ff ¢, and f;l ; are for this algorithm.
Moreover, to design a good algorithm (w.r.t. the average comf)arison count), we should try to
make f;{e -5+ fg}e - ¢ small for each pair s, /.

To model dual-pivot quicksort algorithms and study their average comparison count, we in-
troduced the concept of a classification strategy, which is a three-way decision tree. The reader
might wonder whether this model is general enough or not. We describe two ideas for possible
generalizations, and show how they are covered by our model.

Randomized Classifications. Of course, one could also think of allowing random choices
inside the nodes of the decision tree, e. g., “flip a coin to choose the pivot used in the first compar-
ison.” This, however, can just be seen as a probability distribution on deterministic classification
strategies. But this means that for every randomized classification strategy there is also a deter-
ministic strategy which is at least as good on average.

Postponing Classifications. In our model we enforce that an element has to be classified as
soon as it is inspected for the first time. Of course, it can be allowed that an element is left
unclassified (i. e., that its group is not determined after the first classification) and reconsidered
later. Intuitively, this should not help with respect to lowering the comparison count: If the
element is left unclassified then one more comparison is needed later to determine its group.
Moreover, one could think that not classifying an element is a disadvantage, since it could be
useful for future decisions to know about previous classifications. Neither is the case and we
make this statement precise in the following way. Naturally, postponing classifications can be
modeled by a decision tree which allows inner nodes that either have two or three children. But
given such a decision tree 7" one can build an equivalent decision tree 7" in which each inner
node has degree 3. We sketch one way to do this transformation. Let v be a node with only two
children in T". Let p = (vp,v1,...,v = v) be the unique path from the root vy of T to v. If
there exists a node v; with i(v;) = i(v) and j < ¢, then identify v with v;. Wlog. assume that
[(v) = p. Then construct a decision tree 7" from T in the following way: Let T;, be the subtree
rooted at v in 7. Let T}, be the tree we obtain from T;, by taking each non-root node v’ with
i(v") = i(v) and change the edge pointing to it from its parent to point to its -child. (The node
v’ and its A-child are thus removed from 7),.) Analogously, let T be the tree we obtain from
T, by taking each non-root node v’ with i(v') = i(v) and change the edge pointing to it from
its parent to point to its A-child. Now construct 7” in the obvious way: First, let 7/ = T Then,
replace the subtree reached from v by following the edge labeled ;v with the subtree from 7},
that is rooted at the p-child of v. Finally, add the subtree reached by following the edge labeled
w of T\ as a child to v; label the edge from v to the root of this tree with A. Starting with an
arbitrary decision tree with nodes with two and three children, this process is iterated until there

25

3. Basic Approach to Analyzing Dual-Pivot Quicksort

is no node with two children left. Thus, postponing classifications does not help with respect to
improving the average comparison count.

26

4. Classification Strategies For Dual-Pivot
Quicksort

This section is devoted to the study of different classification strategies. In the first section,
we will analyze the average comparison count of some known strategies. Then, we will study
classification algorithms which minimize the average comparison count. Pseudocode for actual
dual-pivot algorithms using these classification strategies is provided in Appendix A. The reader
is invited to look at the pseudocode to see the simplicity of dual-pivot quicksort algorithms.

4.1. Analysis of Some Known Strategies

Oblivious Strategies. We will first consider strategies that do not use information of previous
classifications for future classifications. To this end, we call a classification tree oblivious if for
each level all nodes v on this level share the same label I(v) € {p,q}. This means that these
algorithms do not react to the outcome of previous classifications, but use a fixed sequence of
pivot choices. Examples for such strategies are, e. g.,

e always compare to the larger pivot first (we refer to this strategy by the letter “L”),
e always compare to the smaller pivot first,
e alternate the pivots in each step.

Let T be an oblivious classification tree. Let f, denote the average number of comparisons to
the larger pivot first. By assumption this value is independent of s and /. Hence these strategies
make sure that f;e = fiand ff’e =n — 2 — fn for all pairs of values s, /.

Applying Lemma 3.2.3 gives us

4 1

=-n+-——"- Tos+(n—-2-f1)- o(n
E(Pn) = 3 =2 S+g_2(fn +(n—=2-f1)-0)+o(n)

:%n+nf7’%- > os +M- Yt +o(n)

3 (2) (n—-2) s+0<n—2 (2) -(n—2) sH6<n—2
4 1 15}
=3 + @ . S+ZSZH_2 s| +o(n)= 3" + o(n).

27

4. Classification Strategies For Dual-Pivot Quicksort

Using Theorem 3.1.2 we get E(C),) = 2nlnn + o(nlnn)—the leading term being the same
as in standard quicksort. So, for each strategy that does not adapt to the outcome of previous
classifications, there is no difference to the average comparison count of classical quicksort. We
believe that this is one reason why dual-pivot quicksort seemed inferior to classical quicksort for
a long time.!

Yaroslavskiy’s Algorithm. Following [WN12, Section 3.2], Yaroslavskiy’s algorithm is an im-
plementation based on the following strategy }: Compare { elements to q first, and compare the
other elements to p first.*

We get that fg’g = {and ff’e = s+ m. Applying Lemma 3.2.3, we calculate

E(PY) :§n+% Z <ns_£2+ (S+m)€> + o(n).

(3) s+0<n—2 n—2

Of course, it is possible to evaluate this sum by hand. We used Maple® to obtain E (PT%]) =
1 + o(n). Using Theorem 3.1.2 gives E (C),) = 1.9nInn + o(nlnn), as in [WN12].

Sedgewick’s Algorithm. Following [WN12, Section 3.2], Sedgewick’s algorithm amounts to
an implementation of the following strategy S: Compare (on average) a fraction of s/(s + £) of
the keys with q first, and compare the other keys with p first. We get f;e =(Mn—-2)-s/(s+70)
and fgg = (n—2)-¢/(s+ {). Plugging these values into Lemma 3.2.3, we calculate

2

s 2
E(P,f):gn—i-% Z (+ ¢ >+0(n):196n+0(n).

(5) s s+l s+4

Applying Theorem 3.1.2 gives E(C),) = 2.133... - nlnn + o(nlnn), as known from [WN12].
Obviously, this is worse than the oblivious strategies considered before.®> This is easily ex-
plained intuitively: If the fraction of small elements is large, it will compare many elements with
g first. But this costs two comparisons for each small element. Conversely, if the fraction of large
elements is large, it will compare many elements to p first, which is again the wrong decision.
Since Sedgewick’s strategy seems to do exactly the opposite of what one should do to lower the

"This does not mean that oblivious strategies do not have other advantages over classical quicksort. The simple
strategy £ will be among the fastest algorithms in our experiments.

®The idea behind this is simple: By default, we compare against p first. But whenever we classify an element as being
large, the next classification is started by comparing against g first. We see that this is slightly different to strategy
Y: It makes ¢ — 1 comparisons to the larger pivot first, if the element classified last is large. Otherwise, it makes £
comparisons to the larger pivot first. So, we get f¢ , = £ — avand f} , = s +m + a, for some 0 < a < 1. The
difference of this strategy and strategy) with regérd to the average comparison count for classification vanishes
in the o(n) term. Thus, we disregard this detail in the discussion.

*We remark that in his thesis Sedgewick [Sed75] focused on the average number of swaps, not on the comparison
count.

28

4.2. (Asymptotically) Optimal Classification Strategies

comparison count, we consider the following modified strategy S’: For given p and q, compare
(on average) a fraction of s/(s + £) of the keys with p first, and compare the other keys with q
first. (S simply uses p first when S would use ¢ first and vice versa.)

Using the same analysis as above, we get E(P,) = X'n+o(n), which yields E(C,,) = 1.866....
nlnn 4+ o(nlnn)—improving on the standard quicksort algorithm and even on Yaroslavskiy’s

algorithm! Note that this has been observed by Wild in his Master’s Thesis as well [Wil13].

Remark. Swapping the first comparison of p with g and vice versa as in the strategy described
above is a general technique. In fact, if the leading coefficient of the average number of compar-
isons for a fixed rule for choosing p or ¢ first is o, e.g., a = 2.133... for strategy S, then the
leading coefficient of the strategy that does the opposite is 4 — o, e. g., 4 — 2.133... = 1.866... as
in strategy S’.

To make this precise, let A be a strategy that uses a fixed choice of ff Y, and fsq - Let A’ be a
strategy that uses gg = fg , and g;{ = fﬁ ¢ (Such a strategy is easily obtained by exchanging
the labels [(v) in the decision tree that corresponds to strategy .A.) Since ff,e =n-2- fg o)
summing up to the additional cost terms of A and A" in Lemma 3.2.3 leads to

1 fgl . ff ./ 2 . 5 ./
a(= (e ra) - 2 (B) v

2 sH0<n—2 s+Hl<n—2
1 2

—m Y (s+0)+o(m) = 50— 2) +oln)
(2) sH0<n—2

So, if the additional cost term of A is b - n + o(n), for a constant b, then the additional cost term
of A'is (2/3 —b) -n+ o(n). Now let « = 6/5- (4/3 +b),i.e, E(C) = a-nlnn +o(nlnn).
Using (3.3), we obtain by a standard calculation

/ 6 (4 2

E(C) = £ (3 + 3 b) -nlnn+o(nlnn)
=4 —a)nlnn+o(nlnn),

which precisely describes the influence of exchanging ff , and fsq ¢ to the leading term of the

average comparison count.

4.2. (Asymptotically) Optimal Classification Strategies
We now present optimal classification strategies, that means, classification strategies which achieve
the minimum average comparison count in our model of dual-pivot quicksort algorithms. At first,

we will consider two different strategies whose optimality proof is surprisingly simple. However,
they require that after the pivots p and ¢ are chosen, the algorithm knows s and /. We call them

29

4. Classification Strategies For Dual-Pivot Quicksort

“improper” classification strategies, because a classification strategy uses only a single classifica-
tion tree. In the second part of this subsection, we will slightly change these two strategies and
obtain “real” classification strategies. The main task is then to show that these changes do not
affect the dominating term of the average comparison count.

4.2.1. Two Unrealistic (Asymptotically) Optimal Strategies

We consider the following strategy O: Given s and ¢, the comparison at node v is with the smaller
pivot first if s — s, > { — {,, otherwise it is with the larger pivot first.* (For the definition of s,
and /,, see Page 19.)

Theorem 4.2.1

Strategy O is optimal, i.e., its ACT (see (3.5)) is at most as large as ACTr for every single
classification tree 7. When using O in a dual-pivot quicksort algorithm, we get E(CO) =
1.8nInn + O(n).

Proof. Fix the two pivots. We will prove each statement separately.

First statement: According to (3.6), the contribution of an arbitrary node v in the decision tree to
the additional cost term is at least

p min{s—s,,¢—40,}

Psy -

n — 2 — level(v)

Strategy O chooses the label of each node in the decision tree such that this minimum contribu-
tion is achieved, and hence minimizes the additional cost term in (3.6).

Second statement: We first derive an upper bound of 1.8n1nn + O(n) for the average number
of comparisons, and then show that this is tight.

For the first part, let an input with n entries and two pivots be given, so that there are s small
and ¢ large elements. Assume s > ¢. Omit all medium elements to obtain a reduced input
(a1,...,a,) withn' = s+ ¢. For 0 < i < n’ let s; and ¢; denote the number of small resp.
large elements remaining in (a;41, ..., ay). Let D; = s; — £;. Of course we have Dy = s — ¢
and D, = 0. Leti; < is < ... < iy be the list of indices ¢ with D; = 0. (In particular, i;, = n’.)
Rounds ¢ with D; = 0 are called zero-crossings. Consider some j with Di]. = Dij g =0
The numbers Di;41,....Dj;,,—1 are nonzero and have the same positive [or negative] sign.
The algorithm compares a;; 42, . .., a;;,, with the smaller [or larger] pivot first, and a;, +1 with
the larger pivot first. Since {a;;11,...,ai;,,} contains the same number of small and large
elements, the contribution of this segment to the additional comparison count is %(ijﬂ —ij)—1
[or 5(ij41 — i5)].

If Dg > 0,i.e, s >/, all elements in {ay, ..., a;, } are compared with the smaller pivot first,
and this set contains % (i1 — (s — £)) large elements (and 3 (i1 + (s — £)) small elements), giving

“This strategy was suggested to us by Thomas Hotz (personal communication).

30

4.2. (Asymptotically) Optimal Classification Strategies

a contribution of (i1 — (s — £)) to the additional comparison count. Overall, the additional
comparison count of strategy O on the considered input is

k—1 .

Z.l—(S—E) Z]'Jrliij * n’—(s—f) * *
k" =————-k={(-k
> Tl > ’
7j=1
for some correction term k* € {0,..., k}.

Averaging the upper bound ¢ over all pivot choices, we see that the additional cost term of
strategy O is at most

@l 2- > 0+ > ¢, (4.1)

2 s+0<n 1<n/2
I<s

which gives an average number of at most 1.5n + O(1) comparisons. For such a partitioning
cost we can use (2.1) and obtain an average comparison count for sorting via strategy O of at
most 1.8n1Inn + O(n).

It remains to show that this is tight. This follows by a lengthy calculation. We shall see that
the essential step in this analysis is to show that the average (over all inputs) of the number
of zero-crossings (the number k& from above) is O(logn). Again, we temporarily omit medium
elements to simplify calculations, i.e., we assume that the number of small and large elements
together is n. Let Z,, be the random variable that denotes the number of zero-crossings for an
input of n elements. We calculate:

E(Z,) = Z Pr(there is a zero-crossing at position n — 2i)
1<i<n/2
9 n/2 n/2
= Z Z Pr(there is a zero-crossing at position n — 2i | s small elements)
i=1 s=i
”/2 n/2 21) . (n 21)

:7227

=1 s=i

By using the well-known estimate (2;) = ©(2%//i) (which follows directly from Stirling’s

31

4. Classification Strategies For Dual-Pivot Quicksort

approximation), we continue by

n/2 _9; n/2 n— ;
1 24
E(Zn) = <) Z
i=1 8
n/2 o n/2 . .
B 1 2% (n—2i)-...- (n—i—s+1)-s-...- (s—i+1)
=9 <n> Zz; ZZ n-...-(n—s+1)
n/2
1 n+1 n+2j 2k)(n—2j—2k)
=0 |- , 4.2
<n>2\/n 2i+1) ZH (n—2k+1)(n—2k) (4.2)

j=0 k=

where the last step follows by an index transformation using j = s — i and multiplying 2%’ into
the terms of the right-most fraction. We now obtain an upper bound for the right-most product:

)<Y

We substitute this bound into (4.2) and bound the right-most sum by an integral:

= (n+275—2k)(n—25—2k) 1 -
) ey o TS <H< (

k=0

E(Z, (> HE/S Vi nn_+21+ D /On/2 (1 — <2nt>2)idt +1]. (4.3)

We now obtain a bound on the integral as follows:

[@) o3 Lo-era 35 (e

_)Q.F(l)-F(iJrl) 3)
AR ES) 6(\/{>’

~—

—

involving the Gamma function I'(z) = [;° ¢*~'e~"dt. Here, (1) follows according to the Bino-
mial theorem, (2) is a well-known identity for the sum, see, e.g., [Gou72, Identity (1.40)], and (3)
follows by Stirling’s approximation and the identity

r <i+ 1) L)LY

2 il -4

which can be checked by induction using I' (%) =ymandT'(z)=(x — 1) -T'(z —1).

32

4.2. (Asymptotically) Optimal Classification Strategies

So, we can continue our calculation at (4.3) and obtain

n/2 n+1 n/41 n/2 1
E(Z,) = | = - — | =0(1 .
(Zn) =0 ;z(n—21+1) O ;z+,_%+ln—22+l O(logn)

Now we consider the case that the input contains medium elements. Fix the number of small
elements and the number of large elements. Medium elements have no influence on the value
of the additional cost term, so we can remove them and get the same number of additional
comparisons. This means that we should not consider a round ¢ to be a zero crossing, when there
was a zero-crossing in round ¢ — 1, for 1 < ¢ < n — 2. Thus, we have that

E(Zstm+e | s small, m medium, ¢ large elements) = E (Zs,, | s small, £ large elements) ,

i. e., it equals the average number of zero-crossings for a smaller input containing s + ¢ elements.

We can now simply calculate the average number of zero-crossing for an arbitrary input as
follows:

E(Z) = 3 E(Zn) s,e):(i) S Ollog(s + 6)) = Ologn).

(g) s+L<n 2) s+41<n

So, the difference between the upper bound on the additional cost term shown in (4.1) and the
actual additional cost term is O(log n). It remains to show that the influence of these O(logn)
terms to the total average sorting cost is bounded by O(n). By linearity of expectation, we
consider these terms in the average sorting cost of (3.1) separately. So, assume that the cost
associated with a partitioning step involving a subarray of length n is ¢ - log n for a constant c.

We show by induction on the input size that the contributions of the clogn terms sum up to at
most O(n) for the total average comparison count. Let E(A,,) denote the sum of the error terms
in the average comparison count. We will show that

E(A,) <C-n—Dlnn, (4.4)

for suitable constants C' and D.

Let D > ¢/5. For the base case, let ng € N and set C' such that E(4,,) < C'-n — DlInn for
all n < ng. As the induction hypothesis, assume that (4.4) holds for all n’ < n. For the induction

33

4. Classification Strategies For Dual-Pivot Quicksort

step, we calculate:

1
E(An):(n—) Z E(A, | s,m,¥)
2/ s+m—+b=n
SC'TL—F% Z (clnn—D - (Ins+Inm +1n¥))
(2)s+m+Z:n
ZC-n—I—clnn—% Z D-lns:C-nﬁ—clnn—gZD'lns
<2) s+m+L=n n 1<s<n

We use that Z?: o f@) > ff f(z)dz for monotone functions f defined on [a, b] and obtain

D
E(Ay) SC-n+clnn—6—-(nlnn—n—|—1):C-n+clnn—6D-(lnn—l—i-l/n).
n
An easy calculation shows that from D > it follows that
clnn —6D(lnn—1+4+1/n) < —Dlnn,

which finishes the induction step.

Thus, the additional O(logn) terms sum up to O(n) in the total average comparison count.
Thus, the difference between the upper bound of 1.8n1nn + O(n) derived in the proof of The-
orem 4.2.1 and the exact cost is O(n), and so the total average sorting cost of strategy O is

1.8nInn 4+ O(n). O

Strategy O is the optimal strategy for dual-pivot quicksort. However, there exist other strate-
gies whose comparison count for classification will differ by only an o(n) term. We call these
strategies asymptotically optimal.

We will now study the following “oracle” strategy N: If s > ¢ then always compare with p
first, otherwise always compare with q first.

Theorem 4.2.2
When using AV in a dual pivot quicksort algorithm, we have E(CYY) = 1.8n1nn + o(nlnn).

Proof. Lemma 3.2.3 says that the additional cost term for fixed pivots is
fig -5+ ffj -4+ o(n). (4.5)

If ¢ < s, strategy \ sets f;lz =n—2and ffz = 0; otherwise it sets f;lg = 0and ffg =n—-2.

34

4.2. (Asymptotically) Optimal Classification Strategies

Using symmetry this means that the additional cost term of strategy A\ is

L2 S e 0| 4o,
(2) s—zégn {<n/2
<s

which means that

4 1
E(P,) = 3" + g" +o(n) = 1.5n 4 o(n).

Plugging this value into Theorem 3.1.2 gives E(C),) = 1.8n1lnn 4 o(nlnn). O

4.2.2. Two Realistic Asymptotically Optimal Strategies

While strategy O looks into the yet unclassified part of the input and is interested if there are
more small or more large elements in it, this decision could just be based on what has been seen
so far.

We consider the following “counting” strategy C: The comparison at node v is with the smaller
pivot first if s, > {,,, otherwise it is with the larger pivot first.

It is not hard to see that for some inputs the number of additional comparisons of strategy O
and C can differ significantly. The next theorem shows that averaged over all possible inputs,
however, there is only a small difference.

Theorem 4.2.3

Let ACTp and ACT¢ be the ACT for classifying n elements using strategy O and C, respec-
tively. Then ACT¢ = ACTp + O(logn). When using C in a dual-pivot quicksort algorithm,
we get E(CS) = 1.8n1Inn + O(n).

Proof. Assume that strategy O inspects the elements in the order a,,—1, . . ., a2, while C uses the
order ag, ..., a,—1. If the strategies compare the element a; to different pivots, then there are
exactly as many small elements as there are large elements in {ag,...,a;—1} or {ag,...,a;},

depending on whether ¢ is even or odd, see Figure 4.1. Thus, the same calculation as in the
proof of Theorem 4.2.1 shows that ACT¢ — ACTp is O(log n), which sums up to a total additive
contribution of O(n) when using strategy C in a dual-pivot quicksort algorithm, see the proof of
Theorem 4.2.1 for details. O

Thus, dual-pivot quicksort with strategy C has average cost at most O(n) larger than dual-pivot
quicksort using the (unrealistic) optimal strategy O.

Now we consider a realistic variation of strategy . To decide whether there are more small
or more large elements in the input, we take a sample of n3/* elements and make a guess based
on this sample.

35

4. Classification Strategies For Dual-Pivot Quicksort

@ C
[o A o I } o A o o ‘ ‘ o A o Iz o { A o o }
1 1
Next element Next element

Figure 4.1.: Visualization of the decision process when inspecting an element using strategy O
(left) and C (right). Applying strategy O from left to right uses that of the remaining
elements three are small and one is large, so it decides that the element should be
compared with p first. Applying strategy C from right to left uses that of the inspected
elements two were small and only one was large, so it decides to compare the element
with p first, too. Note that the strategies would differ if, e. g., the right-most element
would be a medium element.

Specifically, consider the following “sampling” strategy SP: “Make the first n3/* comparisons
against the smaller pivot first. Let s’ denote the number of small elements, and let ¢’ denote the
number of large elements seen in these first comparisons. If s > (', compare the remaining
elements with p first, otherwise compare them with q first.”

Theorem 4.2.4

Let ACTpr and ACTgsp be the ACT for classifying n elements using strategy A and strategy
SP, respectively. Then ACTsp = ACTxr + o(n). When using SP in a dual-pivot quicksort
algorithm, we get E(CS7) = 1.8n1nn + o(nInn).

Proof. Fix the two pivots p and ¢, and thus s, m, and ¢. Assume that s < /. (The other case
follows by symmetry.)

Strategy N makes exactly s additional comparisons. We claim that strategy S7P makes at most
s + o(n) additional comparisons. From Lemma 3.2.3, we know that the additional cost term of
SP for fixed pivot choices is

_fg,e‘5+f§,e'€

SP
E(Z" | s,0) —

+ o(n).

We will now distinguish two cases:

Case 1: s + 2n'1/12 > ¢ (The segment sizes s and ¢ are close to each other.)

36

4.3. Discussion

Since ffj + fig = n — 2, we may calculate:

q p
S,K'S_Ffs,é'e

E(Z | s,0) = 3 + o(n)
U g4 (54 2pll/12). fP
< Jut (n2) Jet | o)

= 5+ o(n),

So, the difference between strategy N and strategy SP is o(n).

Case 2: s 4+ 2n'1/12 < (. (The segment sizes s and / are far away from each other.)

By Lemma 3.2.2 we know that with very high probability |’ —E(s')| < n?/3 and |/ —E(¢')| <
n?/3. Now, consider a random input with s small and # large elements such that s + 2n'1/12 < ¢
and s’ and ¢ are concentrated around their expectation. We will now show that concentration
of s’ and ¢ implies that s’ < ¢/, and hence that SP (correctly) compares all elements to p first.

By assumption, we have that

s — n3/4 .

g/_n3/4. <n2/3.

n—2‘_

‘ < n?/3 and

n—2
So, we conclude that in this case s’ < s-n~" Y4+ n2/3 and ¢ > ¢ - n~Y* — n2/3, We calculate:

11/12
o A2 s s s L g

s < i +n
nl/4

nl/4 nl/4 nl/4
Thus, whenever s’ and ¢’ are close enough to their expectation, and s and ¢ far away from each
other, strategy S’P chooses the correct pivot for the first comparison. So, if s and ¢ are far away
from each other, then the difference between the average classification cost of A" and SP is o(n).
We note that in the case that £ > s, strategy SP chooses the wrong pivot for the first n?/3
classifications. This contributes o(n) to the average comparison count, which does not affect the
dominating term of the average comparison count.
So, ACTsp = ACTx + o(n), and applying Theorem 3.1.2 gives a total average comparison
count of 1.8n1nn + o(nlnn). O

4.3. Discussion

In this section we analyzed some known classification strategies. We described two new clas-
sification strategies, which both achieve the minimum possible average comparison count up to
lower order terms. The minimum average comparison count is 1.8nInn + O(n).

We will now experimentally evaluate the influence of the lower order terms to the average
comparison count of the algorithms considered in this section. For this, we sorted random per-
mutation of {1,...,n} using implementations of the classification strategies. The pseudocode

37

4. Classification Strategies For Dual-Pivot Quicksort

1.9 =
S 1.8} =
=
<
= 17 .
o
2
£ 16| |
=9
5
o 15 |
—o— 0SS =)
1'47 +Sl—*—c B
—— N -e-L
| | | | | | | | | | | |

8 10 12 14 16 18 20 22 24 26 28 30
Items [logy(n)]

Figure 4.2.: Average comparison count (scaled by n Inn) needed to sort a random input of up to
n = 227 integers. We compare classical quicksort (QS), Yaroslavskiy’s algorithm ()),
the optimal sampling algorithm (\), the optimal counting algorithm (C), the modified
version of Sedgewick’s algorithm (S”), and the simple strategy “always compare to the
larger pivot first” (L). Each data point is the average over 400 trials.

of these algorithms can be found in Appendix A. Figure 4.2 shows the results of this experi-
ment. We make two observations: (i) Lower order terms have a big influence on the average
comparison count for “real-life” values of n. (ii) For n large enough, the relations between the
different algorithms reflect the relation of the theoretical average comparison count nicely: the
counting strategy C has the lowest comparison count, the sampling strategy N follows closely.
(Note that while they share the same factor in the nInn term, the difference due to lower order
terms is clearly visible.) Subsequently, the modified version of Sedgewick’s algorithm has a lower
average comparison count than Yaroslavskiy’s algorithm. Next, strategy L is slightly better for
practical input sizes than classical quicksort. (This is also known from theory: on average clas-
sical quicksort makes 2nlnn — 1.51n + O(Inn) [Sed75] comparisons, while strategy £ makes
2nInn—2.75n+0O(In n) comparisons. The latter result can be obtained by plugging in the exact
average partition cost of £, which is 5/3(n — 2) 4 1, into the exact solution of the recurrence
(3.1), see [WN12, Section 3.1].)

38

5. Choosing Pivots From a Sample

In this section we consider the variation of dual-pivot quicksort where the pivots are chosen from
a small sample. Intuitively, this guarantees better pivots in the sense that the partition sizes are
more balanced. For classical quicksort, the median-of-£ strategy is optimal w.r.t. minimizing the
average comparison count [MR01], which means that the median in a sample of k elements is
chosen as the pivot. The standard implementation of Yaroslavskiy’s algorithm in Oracle’s Java
7 uses an intuitive generalization of this strategy: it chooses the two tertiles in a sample of five
elements as pivots.

We will compare classical quicksort and dual-pivot quicksort algorithms which use the two
tertiles of the first five elements of the input, i. e., the second- and the fourth-largest element in
the sample, as the two pivots. Moreover, we will see that the optimal pivot choices for dual-pivot
quicksort are not the two tertiles of a sample of k elements, but rather the elements of rank & /4

and k/2.

We remark that while preparing this thesis, Nebel and Wild provided a much more detailed
study of pivot sampling in Yaroslavskiy’s algorithm [NW14].

5.1. Choosing the Two Tertiles in a Sample of Size 5 as Pivots

We sort the first five elements and take the second- and the fourth-largest elements as pivots.
The probability that p and ¢, p < ¢, are chosen as pivots is exactly (s - m - £)/(%). Following
Hennequin [Hen91, pp. 52-53], for average partitioning cost E(P,,) = a - n + O(1) we get

! -a-nlnn+0(n):@~a~nlnn+0(n), (5.1)

E(Cn) = Hs — Hy 19

where H,, denotes the n-th harmonic number.

When applying Lemma 3.2.3, we have average partitioning cost a - n + o(n). To show that the
average comparison count becomes 20/19 - a - nlnn + o(nInn) in this case, we would have to
redo the proof of Theorem 3.1.2. Fortunately, this has already been done by Nebel and Wild in
[NW14, Appendix E] for a much more general case of pivot sampling in dual-pivot quicksort.

We will now investigate the effect of pivot sampling on the average number of key comparisons
in Yaroslavskiy’s and the (optimal) sampling strategy SP, respectively. The average number of

39

5. Choosing Pivots From a Sample

medium elements remains (n — 2)/3. For strategy), we calculate using Maple®

o(n) = %n + o(n).

E(Py):érw—% Z E-(23+nm_)5s-m-€+

3 (5) s+4€<n—>5

Applying (5.1), we get E (C%)) = 1.704n1nn + o(n1nn) key comparisons on average. (Note
that Wild et al. [Wil+13] calculated this leading coefficient as well.) This is slightly better than
“clever quicksort”, which uses the median of a sample of three elements as pivot and achieves
1.714n1nn + O(n) key comparisons on average [Hoa62]. For the sampling strategy SP, we get

E(P,‘fp):én—l-% Z S.S.m.g+o(n):£n+o(n).
3 (5) s+¢<n—5 4
s</t

Again using (5.1), we obtain E(CS”) = 1.623n In n+o(n In n), improving further on the leading
coefficient compared to clever quicksort and Yaroslavskiy’s algorithm.

5.2. Pivot Sampling in Classical Quicksort and Dual-Pivot
Quicksort

In the previous subsection, we have shown that optimal dual-pivot quicksort using a sample
of size 5 clearly beats clever quicksort which uses the median of three elements. We will now
investigate how these two variants compare when the sample size grows.

The following proposition, which is a special case of [Hen91, Proposition II.9 and Proposition
I11.10], will help in this discussion.

Proposition 5.2.1
Let a - n + O(1) be the average partitioning cost of a quicksort algorithm A that chooses the
pivot(s) from a sample of size k, for constants a and k. Then the following holds:

1. If k4 1 is even and A is a classical quicksort variant that chooses the median of these %
elements as pivot, then the average sorting cost is

1
Hiv1— Haqr))2

ca-nlnn+ O(n).

2. If k + 1 is divisible by 3 and A is a dual-pivot quicksort variant that chooses the two
tertiles of these k elements as pivots, then the average sorting cost is

1
Hiv1— Ha1ys

~a-nlnn+ O(n).

40

5.3. Optimal Segment Sizes for Dual-Pivot Quicksort

Sample Size) 11 17 41
Median (QS) 1.622n1nn | 1.531nlnn | 1.501nlnn | 1.468nlnn
Tertiles (DP QS) || 1.623nlnn | 1.545nlnn | 1.523nlnn | 1.504nlnn

Table 5.1.: Comparison of the leading term of the average cost of classical quicksort and dual-
pivot quicksort for specific sample sizes. Note that for real-life input sizes, however,
the linear term can make a big difference.

Note that for classical quicksort we have partitioning cost n — 1. Thus, the average sorting cost
[S
becomes T Ty s Inn + O(n).

For dual-pivot algorithms, the probability that p and ¢, p < ¢, are the two tertiles in a sample
of size k, where k + 1 is divisible by 3, is exactly

(25 (325) (as)
(W)

Thus, the average partitioning cost E (P;lgf) of strategy S’P using a sample of size k£ can be

calculated as follows:

2 = 3+ 1 5 () () () oo 69

s</

Unfortunately, we could not find a closed form of E (Pff) Some calculated values obtained

via Maple® in which classical and dual-pivot quicksort with strategy SP use the same sample
size can be found in Table 5.1. These values clearly indicate that starting from a sample of size
5, asymptotically, classical quicksort has a smaller average comparison count than dual-pivot
quicksort. This raises the question whether dual-pivot quicksort is inferior to classical quicksort
using the median-of-£ strategy with regard to minimizing the average comparison count.

5.3. Optimal Segment Sizes for Dual-Pivot Quicksort

It is known from, e. g., [MRO01] that for classical quicksort in which the pivot is chosen as the
median of a fixed-sized sample, the leading term of the average comparison count converges
with increasing sample size to the lower bound of (1/1n2) - nlnn = 1.4426..n Inn. Nebel and
Wild observed in [NW14] that this is not the case for Yaroslavskiy’s algorithm, which makes at
least 1.4931n1nn + o(nlnn) comparisons on average. In this section, we will show how to
match the lower bound for comparison-based sorting algorithms with a dual-pivot approach.

We study the following setting, which was considered in [MR01; NW14] as well. We assume

41

5. Choosing Pivots From a Sample

that for a random input of n elements' we can choose (for free) two pivots w.r.t. a vector 7 =
(71, T2, T3) such that the input contains exactly 711 small elements, 7on medium elements, and
T3n large elements. Furthermore, we consider the (simple) classification strategy £: “Always
compare with the larger pivot first.”

The following lemma says that this strategy achieves the minimum possible average compari-
son count for comparison-based sorting algorithms, 1.4426..n In n, when setting 7 = (i, %, %)

Lemma 5.3.1
Let 7 = (11,72, 73) with0 < 7 < land), 7 = 1, fori € {1,2,3}. Assume that for each
input size n we can choose two pivots such that there are exactly 7 - n small, 79 - n medium,
and 73 - n large elements. Then the comparison count of strategy L is

= 1+7+m

"(n) ~ nlnn.
b () _Z1§i§37'i1n7'i

This value is minimized for 7 = (1/4,1/4,1/2) giving

—% 1
p"(n) ~ <ln2> nlnn = 1.4426..nlnn.

Proof. On an input consisting of n elements, strategy £ makes n+ (71 +72)n comparisons. Thus,
the comparison count of strategy £ follows the recurrence

p(n)=n+(r+mr)n+p (r-n)+p (2-n)+p (13-n).

Using the Discrete Master Theorem from [Rou01, Theorem 2.3, Case (2.1)], we obtain the follow-
ing solution for this recurrence:

= 1
p’(n) ~ %nln n.
—> g TilnT
Using Maple®, one finds that p™ is minimized for 7* = (1, %, 1), giving p™ (n) ~ 1.4426..n1nn.
U

The reason why strategy £ with this particular choice of pivots achieves the lower bound is
simple: it makes (almost) the same comparisons as does classical quicksort using the median of
the input as pivot. On an input of length n, strategy £ makes 3/2n key comparisons and then
makes three recursive calls to inputs of length n/4, n/4, n/2. On an input of length n, classical
quicksort using the median of the input as pivot makes n comparisons to split the input into
two subarrays of length /2. Now consider only the recursive call to the left subarray. After

"We disregard the two pivots in the following discussion.

42

5.3. Optimal Segment Sizes for Dual-Pivot Quicksort

n/2 comparisons, the input is split into two subarrays of size n/4 each. Now there remain two
recursive calls to two subarrays of size n/4, and one recursive call to a subarray of size n/2 (the
right subarray of the original input), like in strategy L. Since classical quicksort using the median
of the input clearly makes n log n key comparisons, this bound must also hold for strategy L.

43

6. Generalization to Multi-Pivot Quicksort

In this section we generalize our theory with respect to the average comparison count of dual-
pivot quicksort algorithms to the case that we use more than two pivots. Some of this content,
specifically the generalization of the classification tree, the comparison tree as a tool for clas-
sification, and all statements of theorems and lemmas already appeared in the Master’s thesis
of Pascal Klaue [Kla14], which was prepared under the guidance of the author. The details of
the calculations for 3-pivot quicksort in Section 6.3 can be found in [Kla14, Section 4.3], too. I
am a very thankful that he allowed me to include these parts in this thesis. The general setup
has been simplified a little and the proofs presented here differ significantly from the ones given
in [Kla14]. (We use a general concentration argument similar to Lemma 3.2.2, while in [Kla14]
specific concentration arguments were used.) Moreover, we solve the cost recurrence for k-pivot
quicksort directly, and give a proof of Theorem 6.4.2 (which was only conjectured in [Kla14]).
Also, Section 6.5 is new. The topics presented here are part of a future publication of the author,
Martin Dietzfelbinger, and Pascal Klaue, which is in preparation.

6.1. General Setup

We assume that the input is a random permutation (eg, ..., e,) of {1,...,n}. Let k > 1 be an
integer. The method “k-pivot quicksort” works as follows: If n < k then sort the input directly.
For n > k, sort the first k elements such that e; < eo < ... < e andset p; =eq,...,pr = €.
In the partition step, the remaining n — k elements are split into k¥ + 1 groups Ao, . . . , A, where
an element x belongs to group Ay, if p, < & < pp41, see Figure 6.1. (For the ease of discussion,
we set pop = 0 and pgr1 = n + 1.) The groups Ao, ..., A are then sorted recursively. We
never compare two non-pivot elements against each other. This preserves the randomness in the
groups Ag, . .., Ag.

Solving the Recurrence for k-Pivot Quicksort. Let £ > 1 be fixed. As for dual-pivot quick-
sort, we let C,, and P,, denote the random variables that count the comparisons made for sorting
and partitioning, respectively.' The total cost of sorting inputs of length n’ < k in the recursion
is O(n). We shall ignore this linear term in the following, assuming the cost for the base cases is
0. The average comparison count of k-pivot quicksort clearly obeys the following recurrence.

"We omit the dependency on k for random variables in the notation.

45

6. Generalization to Multi-Pivot Quicksort

<pm e <. <palp2]p2 < ... < ps|ps] o] pe <.
%/—/
Ay Ay Asg Ak
Figure 6.1.: Result of the partition step in k-pivot quicksort using pivots p1, . .., p.
1
E(Cp) =E(Po) + 7v D (E(Cap) + ... +E(Cy,)), with E(Cy,) = 0 forn < k.

(Z) ap+...+ar=n—~k

We collect terms with a common factor E(Cy), for 0 < £ < n — k. Fix £ € {0,...,n — k}.
There are k + 1 ways of choosing j € {0, ..., k} with a; = ¢, and if j is fixed there are exactly
(n;le) ways to choose the other segment sizes a;,i # j, such thatag + ... + ax = n — k.
(Note the equivalence between segment sizes and binary strings of length n — ¢ — 1 with exactly

k — 1 ones.) Thus, we conclude that

n—k
B(C) = B(P) + o > () (" LT B, (61

(& =0 -1

which was also observed in [Ili14]. (This generalizes the well known formula E(C),) =n — 1 +
2/n - Y g<pen_q E(Cy) for classical quicksort, the formulas for & = 2 from, e.g., [WN12] or
Section 3, and k = 3 from [Kus+14].)

The Continuous Master Theorem of Roura [Rou01] can again be applied to solve this recur-
rence. For partitioning cost E(P,)) = a - n + O(1), for constant a, the solution of this recurrence
can be found in [Hen91] and in [Ili14].

Theorem 6.1.1
Let A be a k-pivot quicksort algorithm which has for each subarray of length n partitioning
cost E(P,) = a-n+ o(n). Then

1

E(Crn) = Hir —1

anlnn + o(nlnn), (6.2)

where Hj11 = Zfill(1/i) is the (k 4 1)-st harmonic number.

Proof. Recall the statement of the Continuous Master Theorem, cf. Theorem 3.1.1. Recurrence
(6.1) has weight

(k+1) - k-(n—j—1)-...-(n—j—k+1)
n.g = nn—1) ... (n—k+1)

46

6.1. General Setup

We define the shape function w(z) as suggested in [Rou01] by

w(z) = lm n-wpym = (k+ k(1 — 2)FL

n—oo

Using the Binomial theorem, we note that for all z € [0, 1]
(n — zn)k1
(n — k)k—1

<k (k+1)-|1=2 (140 (07) - (1- 2! = o™,

‘n'wn,zn—QU(Z” Sk(k+1) _(1_2)k_1

and

(n —zn — k)k1
k-1

‘n'wn,zn—w(z)‘ <k-(k+1)- —(l—z)k_l

<k.(k+1). M—FO(n*l)—(l—z)k*l _
= k-1

Now we have to check (3.2) to see whether the shape function is suitable. We calculate:

- (G+1)/n
Z W, j —/ w(z) dz
=0 i/n
ol G/
= / n-wp; —w(z) dz
j=0 i/n
n—1

1
< — max n-Wpi — w2
<2 nze[j/n,uu)/n}‘ d = w()l

J=0
n—1
1
<\ = L y
- ; n <ze[j/%)i1)/n] [w(j/n) = w(z)] + O (n))
n—1
< Zl < max ‘w(z) _w(z/)‘) (n_1)>
— = n |Z*Z/|§1/n
n—1
SJZ:% " <Z_1;qa<x1/n 1=z = (1=z-1/n) ‘+O(n)
n—1
< @) (n_Q) ~0 (n_l) ’
j=0

where we again used the Binomial theorem in the last two lines.

47

6. Generalization to Multi-Pivot Quicksort

Thus, w is a suitable shape function. By calculating
1
H .= 1—k(k+1)/ 2(1-2)F1ldz =0,
0

we conclude that the second case of Theorem 3.1.1 applies for our recurrence. Consequently, we
have to calculate

1
H:=—k(k+ 1)/ 2(1 - 2)*tnzdz.
0

To estimate the integral, we use the following identity for Harmonic numbers due to Sofo [Sof12,
Lemma 7]

1
Hy = —k:/ 2 1nzdz.
0
By symmetry, we may calculate

1 1
—k(k + 1)/2(1 — 2 nzdz = —k(k+1) [(1-2)2""1In(1 —2)dz
0

0
1 1
=—k(k+1) </ 1 n(1 - 2) dz — / 2F1n(1 — 2) dz>
0 0
Hir1 Hi
= — 1 - T - - 1'
k(k +)(k:—i—l k:) Hit1
O
As in the case of dual-pivot quicksort, very small subarrays of size ng < n'/™™" occurring

in the recursion require special care for some algorithms that are described in the next section.
However, similar statements to the ones given in Section 3.1 (“Handling Small Subarrays”) show
that the total cost of sorting such subarrays in the recursion is bounded by o(n In n) in the multi-
pivot case as well.

The Classification Problem. As before, it suffices to study the classification problem: Given
a random permutation (e1, ..., ey,) of {1,...,n}, choose the pivots p1, ..., py and classify each
of the remaining n — k elements as belonging to the group Ag, A1, ..., Ax—1, or Ag. In this
setting, we have a; := |A;| = pi+1 —pi — 1 fori € {0,... k}.

Next, we will introduce our algorithmic model for solving the classification problem. Of
course, this model will share a lot of similarities with the classification tree of dual-pivot quick-
sort. The main difference to dual-pivot quicksort, where an element was classified by either
comparing it to p or to g first, is the classification of a single element.

48

6.2. The Average Comparison Count for Partitioning

Algorithmically, the classification of a single element « with respect to the pivots p1, ..., pi is
done by using a comparison tree t. In a comparison tree the leaf nodes are labeled Ay, ..., Ag,
from left to right, the inner nodes are labeled p,, ..., p, in inorder. Figure 6.2 depicts a compar-
ison tree for 5 pivots. A comparison tree with a particular pivot choice py, ..., px gives rise to
a binary search tree. Classifying an element means searching for this element in the search tree.
The group to which the element belongs is the label of the leaf reached in that way.

A classification strategy is formally described as a classification tree as follows. A classification
tree is a (k + 1)-way tree with a root and n — k levels of inner nodes as well as one leaf level.
Each inner node v has two labels: an index i(v) € {k + 1,...,n}, and a comparison tree ¢(v).
The element e;(, is classified using the comparison tree #(v). The k + 1 edges out of a node
are labeled O, ..., k, resp., representing the outcome of the classification as belonging to group
Ao, . .., Ay, respectively. On each of the (k+-1)"* paths each index from {k+1,...,n} occurs
exactly once. An input (ey,...,e,) determines a path in the classification tree in the obvious
way: sort the pivots, then use the classification tree to classify ex41, . . . , e,. The groups to which
the elements in the input belong can then be read off from the nodes and edges along the path
from the root to a leaf in the classification tree.

To fix some more notation, for each node v, and for h € {0, ..., k}, we let aj be the number of
edges labeled “h” on the path from the root to v. Furthermore, let C', ; denote the random variable
which counts the number of elements classified as belonging to group Ay, for h € {0, ...k}, in
the first i levels, for i € {0,...,n — k}, i.e., C,; = a}, when v is the node on level i of the
classification tree reached for an input. Analogously to the dual-pivot case, in many proofs we
will need that C, ; is not far away from its expectation as/(n — i — k) for fixed pivot choices.
As in Section 3, one can use the method of averaged bounded differences to show concentration
despite dependencies between tests.

Lemma 6.1.2
Let the pivots p1, ..., py be fixed. Let C ; be defined as above. Then for each h with h €
{0,...,k} and for each i with 1 < i < n — k we have that

Pr (’Ch,i —E(Ch,i)| > n2/3) < 2exp (—n1/3/2) .

Proof. The proof is analogous to the proof of Lemma 3.2.2 in the dual-pivot quicksort case. [

6.2. The Average Comparison Count for Partitioning

In this section, we will obtain a formula for the average comparison count of an arbitrary clas-
sification tree. We make the following observations for all classification strategies: We need
klogk = O(1) comparisons to sort e1,...,eg, i.e., to determine the k pivots pq,...,pg in

49

6. Generalization to Multi-Pivot Quicksort

[Ae] [As][ad] [As]

Figure 6.2.: A comparison tree for 5 pivots.

order. If an element x belongs to group A;, it must be compared to p; and p; 1. (Of course,
no real comparison takes place against pg and piy1.) On average, this leads to kz—_ﬁn + 0(1)
comparisons—regardless of the actual classification strategy.

For the following paragraphs, we fix a classification strategy, i. e., a classification tree 7T'. Let v
be an arbitrary inner node of 7.

If e;(,) belongs to group Ap, exactly depth,,, (Ap) comparisons are made to classify the ele-

ment. We let CI' denote the number of comparisons that take place in node v during classifica-
tion. Clearly, P7 = >~ _, CI. For the average classification cost E(P]) we get:

[

T T
E(Pn):T) > E(P, | p1s---spr)-
k) 1<pi<p2<...<pr<n

We define p,, . to be the probability that node v is reached if the pivots are p1, ..., pr. We
may write:

E(PL | p1,....px) = ZE(CvT | p1,.. . Dk) = Zp;’)h_.’pk -E(CT | py,...,pg, vreached).
veT veT

(6.3)

For a comparison tree ¢ and group sizes aj, . . ., a}, we define the cost of ¢ on these group sizes
as the number of comparisons it makes for classifying an input with these group sizes, i. e.,

cost'(ay, . .., a}) == Z depth,(A;) - a;.

0<i<k

50

6.2. The Average Comparison Count for Partitioning

Furthermore, we define its average cost cgvg(a{], ..., a}) as follows:
t / /
cost'(ag, ..., a,)
t / AN 0 Uk
Cavg(Qs -+ -5 Q) 1= . (6.4)
Zogz’gk a;

Under the assumption that node v is reached and that the pivots are p1, ..., pk, the probability
that the element e;(,,) belongs to group Ay, is exactly (ap — aj)/(n — k — level(v)), for each

h € {0,...,k}, with aj defined as in Section 6.1. Summing over all groups, we get
E(Cg ’ b1s---sPk, U reached) = Cgsllé)(a[) - CLS, o, Q) — CLZ)

Plugging this into (6.3) gives

E(PnT ‘ p17 LU 7pk) = szl,,,,,pk : ngé)(ao - agv L 7ak - a}é) (65)
veT

Remark 6.2.1. From (6.5) it is clear that the order in which elements are tested has no influence
on the average classification cost of a classification strategy. So, we may always assume that the
element tests are made in some fixed order, e. g., €x+1, ..., €n.

Let Ty, be the set of all possible comparison trees. For each t € T, we define the random variable
F! that counts the number of times ¢ is used during classification. For given p1, ..., ps, and for
eacht € T, we let

oo =EE [prm) = Y phy (6.6)

veT
t(v)=t

be the average number of times comparison tree ¢ is used in 7" under the condition that the pivots
are pi, ..., Dk

Now, if it was decided in each step by independent random experiments with the correct
expectation ap,/(n — k), for 0 < h < k, whether an element belongs to group Ay or not,
it would be clear that for each ¢ € 7Tj the contribution of ¢ to the average classification cost
is f;; i cgvg(ao, ...,ar). We can prove that this intuition is true for all classification trees,

excepting that one gets an additional o(n) term due to the elements tested not being independent.

Lemma 6.2.2
Let T be a classification tree. Then

E(PnT) = (711) Z Z fél,-u,pk 'szg(a[), ..yai) +o(n).

1<pi<pe<..<pr<n t€Ty

51

6. Generalization to Multi-Pivot Quicksort

Proof. Fix a set of pivots py, ..., pg. Using the definition of f1§1,...,pk from (6.6), we can re-write
(6.5) as follows:

t
E(PT [pryee k) = D By e G (a0 — al, ... a — af)

veT
i t
- Z fpl:-u,pk ’ cavg(aov ey aE) —
teTk
v t(v)) v _
prl,---,pk Cavg (ao, ..., ax) Cavg (ap—ag,...,ax—ay)). (6.7)
veT

For a node v in the classification tree, we say that v is good if

t(v) t(v) 7k2
‘Cavg (ao, .. .,ak) — Cavg ((10 - aga sy A — aqlé)‘ < nl/lg‘

Otherwise, v is called bad. By considering good and bad nodes in (6.7) separately, we obtain

k2
T
E(Pn ’ p1,--- 7pk‘) S Z f;;l,...,pk : szg(a(b e 7ak> + Z p;;lv”wpk ' W +
teTk veT
v is good
v t(U) _ t(’l}) o v _ v
Z Ppr.p | Cavg (@0, - -, ag) — cavg (@0—ag, - - ., ag—ag)
veT
v is bad
S Z f;lv“wpk ’ Cng(ao’ T ’ak) + k) Z pl/l;l""’pk + O(n)
teTk veT
v is bad
=D Fov Congla0, s ap) +
t€Tk
n—k
k - Z Pr(a bad node is reached on level i) + o(n). (6.8)
=1
It remains to bound the second summand of (6.8). We observe that
t ¢
‘cas,?(ao, ceyag) — cagg)(ao —ag,...,a5 — a}é)}
b a ap — ay
h h — Qp
<(k-1)- —
=) hzon—k n — k — level(v)
ap, ap — ay,

S(k—l)-(k—i—l)-orélf?%(k{

b

n—k n—k—level(v)

52

6.3. Example: 3-pivot Quicksort

Thus, by definition, whenever v is a bad node, there exists h € {0, ..., k} such that

ap ap — ay S 1
n—k n—k—level(v) nl/12°

Recall from Section 6.1 the definition of the random variable C} ; and its connection to the
values aj, on level 4 of the classification tree. For fixed i € {1,...,n — k}, assume that the
random variables C}, ;, h € {0,. .., k}, are tightly concentrated around their expectation. (From
Lemma 6.1.2 we know that this is true with very high probability). For each h € {0, ..., k}, and
each level i € {1,...,n — k} we calculate

an ap — Chi n2/3 n2/3

n—k n—k—1

an ah(l_i/(”_k)))

n—k n—k—i n—k—i n—k—1i

That means that for each of the first i < n — n®/* levels with very high probability we are in
a good node on level 7, because the deviation from the ideal case that the element test on level
i reveals an “Aj,”-element with probability aj,/(n — k) is smaller than n?/3/(n — k — i) <
n?/3 /n3/* = 1/n'/12. Thus, for the first n — n3/* levels the contribution of the sums of the
probabilities of bad nodes in (6.8) is o(n). For the last n3/* levels of the tree, we use that the
contribution of the probabilities that we reach a bad node on level ¢ is at most 1 for a fixed level.

This shows that the second summand in (6.8) is 0o(n). The lemma now follows from averaging
over all possible pivot choices. A lower bound follows in an analogous way. O

6.3. Example: 3-pivot Quicksort

Here we study some variants of 3-pivot quicksort algorithms in the light of Lemma 6.2.2. This
paradigm got recent attention by the work of Kushagra et al. [Kus+14], who provided evidence
that in practice a 3-pivot quicksort algorithm might be faster than Yaroslavskiy’s dual-pivot
quicksort algorithm.

In 3-pivot quicksort, we might choose from five different comparison trees. These trees, to-
gether with their comparison cost, are depicted in Figure 6.3. We will study the average compar-
ison count of three different strategies in an artificial setting: We assume, as in the analysis, that
our input is a permutation of {1,...,n}. So, after choosing the pivots the algorithm knows the
exact group sizes in advance. Generalizing this strategy is a topic of the subsequent section.

All considered strategies will follow the same idea: After choosing the pivots, they will check
which comparison tree has the smallest average cost for the group sizes found in the input; this
tree is used for all classifications. The difference will be in the set of comparison trees we allow
the algorithm to choose from. In the next section we will explain why deviating from such a
strategy, i.e., using different trees during the classification for fixed group sizes, does not help
for decreasing the average comparison count up to lower order terms, as already noticed for
dual-pivot quicksort with the optimal strategy V.

53

6. Generalization to Multi-Pivot Quicksort

ZO : ll : lg :
ag + 2a1 + 3as + 3as ag + 3a1 + 3as + 2as3 2a0 + 2a1 + 2a9 + 2a3

Figure 6.3.: The different comparison trees for 3-pivot quicksort with their comparison cost (dot-
ted boxes, only displaying the numerator).

The Symmetric Strategy. In the algorithm of [Kus+14], the symmetric comparison tree Iy is
used in the classification of each element. Using Lemma 6.2.2, we get?

1
E(P,) = -+ Z (2a0 + 2a1 + 2a3 + 2a3) + o(n)
(3) ag+a1+az+az=n—3

=2n+o(n).

Using Theorem 6.1.1, we conclude that

E(C,) =24/13nlnn + o(nlnn) ~ 1.846nlnn + o(nlnn),

20f course, E(P,,) = 2(n — 3), since each classification makes exactly two comparisons.

54

6.3. Example: 3-pivot Quicksort

as known from [Kus+14]. This improves over classical quicksort (2nlnn + O(n) comparisons
on average), but is worse than optimal dual-pivot quicksort (1.8n1nn 4+ O(n) comparisons on
average, see Section 4) or median-of-3 quicksort (1.714nInn + O(n) comparisons on average,
see Section 5).

Using Three Trees. Here we restrict our algorithm to choose only among the comparison trees
{l1,12,13}. The computation of a cost-minimal comparison tree is then simple: Suppose that the
segment sizes are ay, . . ., a3. If ag > a3 and ag > a; + ay then comparison tree /; has minimum
cost. If ag > ag and a3 > aj + as then comparison tree /3 has minimum cost. Otherwise l2 has
minimum cost.

Using Lemma 6.2.2, the average partition cost with respect to this set of comparison trees can
be calculated (using Maple®) as follows>:

1

. 2a1+3a2+3a3,2a0+2a1+2a2+2a3,
E(Pn>=f(n) > min {tofPertitdes faotaa a2} 4 o(n)
3/ ao+..+az3=n—3
17

This yields the following average comparison cost:

E(Cy) = %nlnn +o(nlnn) ~ 1.744nlnn + o(nlnn).

Using All Five Trees. Now we let our strategies choose among all five trees. Using Lemma 6.2.2
and the average cost for all trees from Figure 6.3, we calculate (using Maple®)

1 . ap+2a1+3a2+3a3,a0+3a1+3a2+2a3,

E(P,) = -~ E min {2ao+2a1+2a2+2a3,2ao+3a1+3a2+a3,} +o(n)
() 3ap+3a1+2a2+as3

3/ ag+...+a3=n—3

133
= + o(n). (6.9)

This yields the following average comparison cost:
133

E(Cp) = 7—8nlnn +o(nlnn) =~ 1.705nInn + o(n1nn),

which is—as will be explained in the next section—the lowest possible average comparison count
one can achieve by picking three pivots directly from the input. So, using three pivots gives a

3 There was a lot of tweaking and manual work necessary before Maple® was able to find a closed form of the sum.
Details of these calculations can be found in [Kla14].

55

6. Generalization to Multi-Pivot Quicksort

slightly lower average comparison count than quicksort using the median of three elements as the
pivot and makes about 0.1n In n fewer comparisons as comparison-optimal dual-pivot quicksort.

6.4. (Asymptotically) Optimal Classification Strategies

In this section, we will discuss the obvious generalizations for the optimal strategies O, C, N, and
SP for dual-pivot quicksort to k-pivot quicksort. In difference to Section 4, we first present the
“improper” classification strategy (O and N, respectively) that uses different classification trees
depending on the pivot choices and then directly show its connection with the implementation
of that strategy (C and SP, respectively).

Since all these strategies need to compute cost-minimal comparison trees, this section starts
with a short discussion of algorithms for this problem. Then, we discuss the four different strate-
gies.

6.4.1. Choosing an Optimal Comparison Tree

For optimal k-pivot quicksort algorithms it is of course necessary to devise an algorithm that
can compute an optimal comparison tree for group sizes ao, . . ., ag, i. e., a comparison tree that
minimizes (6.4). It is well known that the number of binary search trees with £ inner nodes equals

the k-th Catalan number, which is approximately 4% / ((/{: + 1)V Trk) . Choosing an optimal tree

is a standard application of dynamic programming, and is known from textbooks as “choosing
an optimum binary search tree”, see, e. g., [Knu73]. The algorithm runs in time and space O(k?).

6.4.2. The Optimal Classification Strategy and its Algorithmic Variant

Here, we consider the following strategy O:* Given ay, . . ., ay, the comparison tree t(v) is one
that minimizes cost'(ag — ag), . .. ,ay — al) over all comparison trees t.

Although being unrealistic, since the exact group sizes ag, . . ., aj are in general unknown to
the algorithm, strategy Oy, is the optimal classification strategy, i.e., it minimizes the average
comparison count.

Theorem 6.4.1
Strategy Oy, is optimal for each k.

Proof. Strategy Oy, chooses for each node v in the classification tree the comparison tree that
minimizes the average cost in (6.5). So, it minimizes each term of the sum, and thus minimizes
the whole sum in (6.5). O

“For all strategies we just say which comparison tree is used in a given node of the classification tree, since the test
order is arbitrary (see Remark 6.2.1).

56

6.4. (Asymptotically) Optimal Classification Strategies

We remark here that in difference to strategy Os, cf. Theorem 4.2.1, we could not find an argu-
ment that yields the average comparison count of strategy Oy for &k > 3. This is an important
open question.

As in the dual-pivot case there exist other strategies whose average comparison count dif-
fers by at most o(n) from the average comparison count of Of. Again, we call such strategies
asymptotically optimal. Strategy Cy, is an algorithmic variant of O. It works as follows: The
comparison tree t(v) is one that minimizes cost'(af), . . ., a) over all comparison trees t.

Theorem 6.4.2
Strategy Cy, is asymptotically optimal for each k.

Proof. By Remark 6.2.1, assume that strategy Oy, classifies elements in the order ex41, ..., en,
while strategy Cy, classifies them in reversed order, i.e., e, ..., ex1+1. Then the comparison tree
that is used by Cj, for element ey ; is the same as the one that Oy, uses for element ey ;1, for
i €{l,...,n —k —1}. Let C¥ denote the number of comparisons used to classify ej; with
classification tree 7.

Fix the pivots p1, ..., pk, let T denote the classification tree of strategy Oy, and let 7" denote
the classification tree of strategy Cy. Fix some integer i € {1,...,n — k — 1}. Fix an arbitrary
sequence (af, ...,a,) € N¥*1 fora} < ap,h € {0,...,k}, witha) + ...+ a), =i—1and
|lal, — (i —1)-ap/(n— k)| < n?/3. Assume that the elements g1, . . . , e;—1 have group sizes
ag, - - ., ay, and let t be a comparison tree with minimal cost w.r.t. (ag — ag, . .., a; — aj,). For
fixedi € {2,...,n — k — 1}, we calculate:

‘E(C’iT|ao,...,ak)—E<CiT_/1|a0,...,ak>‘

= czwg(ao — Ay A — a)) — czvg(alo, . ,a;))
k k
_ | 2h=odepth(Ap) - (an — ap) Y h—odepth(Ap) - aj
n—k—i 1

IN

n—k—1)

Sk depth(An)(an — 20) Shoodepth(an) (i35) | g2 2 N
) n—i—k i
k2. n2/3 k2. n2/3

T S

Since the concentration argument of Lemma 6.1.2 holds with very high probability, the difference
between the average comparison count of element ey ; (for Of) and egy,;_1 (for Cy) is at most

E2.n2/3 k2.p2/3

n—1—=k 7

+o(1).

57

6. Generalization to Multi-Pivot Quicksort

Thus, the difference of the average comparison count over all elements ey, ..., exyj, 7 >
n3/*,j < n — n?*, is at most o(n). For elements outside of this range, the difference in the
average comparison count is at most 2k - n?/4. So, the total difference of the comparison count
between strategy O and strategy Cy, is at most o(n). O

This shows that the optimal strategy Oy, can be approximated by an actual algorithm that makes
an error of up to o(n), which sums up to an error term of o(n In n) over the whole recursion. We
have seen in the dual-pivot case that the difference between O2 and Cs is O(logn). It remains
an open question to prove tighter bounds than o(n) for the difference of the average comparison
count of Oy, and Cj, for k > 3.

6.4.3. An Oblivious Strategy and its Algorithmic Variant

Now we turn to strategy Nj: Given ao, ..., ay, the comparison tree t(v) used at node v is one
that minimizes cost' (ao, . . . , a;) over all comparison trees t.

Strategy N, uses a fixed comparison tree for all classifications for given group sizes, but has
to know these sizes in advance.

Theorem 6.4.3
Strategy N} is asymptotically optimal for each k.

Proof. According to Lemma 6.2.2 the average comparison count is determined up to lower order
terms by the parameters f1§17~--,pk’ for each t € Ty. For each py, ..., pg, strategy N}, chooses the
comparison tree which minimizes the average cost. According to Lemma 6.2.2, this is optimal up
to an o(n) term. O

We will now describe how to implement strategy N}, by using sampling. Strategy SPj, works
as follows: Let tg € Tj, be an arbitrary comparison tree. After the pivots are chosen, inspect the
first n3/4 elements and classify them using ¢g. Let ay, . . .,), denote the number of elements that
belonged to Ay, ..., Ag, respectively. Let ¢ be an optimal comparison tree for aj, ..., a}. Then

classify each of the remaining elements by using .

Theorem 6.4.4
Strategy SPy; is asymptotically optimal for each k.

Proof. Fix the k pivots p1, ..., pi and thus ag, . . ., ax. Let t* be a comparison tree with minimal
cost w.rt. ag, ..., ag.
According to Lemma 6.2.2, the average comparison count E(CS”* | p1, ..., p) can be calcu-

lated as follows:

E(Cng ’ p1,. .. 7pk) = Z f;;l,_,,J,k : cgvg(ao, coag) F o(n).
teTs

58

6.4. (Asymptotically) Optimal Classification Strategies

Let ag, . . ., a}, be the group sizes after inspecting n3/* elements. Let ¢ be a comparison tree with
minimal cost w.r.t. ag, . .., a}. We call ¢ good if
¢ * 2k ,
Cavg(Q0s + - -5 k) — Cyg(an, - .., ag) < Az O equivalently
cost' (ag, ..., ax) — costt*(ao, cooag) < 2knt1/12, (6.10)

otherwise we call ¢ bad. We define good, as the event that the sample yields a good comparison
tree. We calculate:

E(CST% | pr, ... pk) :Z Foipn Covgl@o, - ar) +Z Foipn Covgl@0, - ax) + o(n)

teTk teTy
t good t bad
<n-c (ao...ak)—i—th - (ag, ... ax) +o(n)
- avg ’ ? P1,--Pk avg ’ ’
teTh
t bad
<n- cﬁig(ao, coap)+ k- Z f;17...7pk + o(n). (6.11)
tETy,
t bad

Now we derive an upper bound for the second summand of (6.11). After the first n3/4 classi-
fications the algorithm will either use a good comparison tree or a bad comparison tree for the
remaining classifications. Pr (goiodt | p1,y- .-, pk) is the ratio of nodes on each level from n3/4 to
n — k of the classification tree of nodes labeled with bad trees (in the sense of (6.10)). Summing
over all levels, the second summand of (6.11) is thus at most k - n - Pr (goiodt | p1,. .. ,pk).

Lemma 6.4.5
Conditioned on py, . . ., pi, good, occurs with very high probability.

Proof. Foreachi € {0, ..., k}, let a; be the random variable that counts the number of elements
from the sample that belong to group A;. According to Lemma 6.1.2, with very high probability
we have that |a}, — E(a/)| < n%/3, for each i with 0 < i < k. By the union bound, with very high
probability there is no a} that deviates by more than n%/3 from its expectation n=/* - a;. We
will now show that if this happens then the event good, occurs. We obtain the following upper
bound for an arbitrary comparison tree ¢’ € Ty:

cost’ (ag, - - -, ap) = Z depth, (A;) - a;

0<i<k

< Z depth,, (A;) - n?/3 +n~ Y. cost” (aq, . . . , ar)
0<i<k

< K2 4 0 Y cost! (a, ..., ar).

59

6. Generalization to Multi-Pivot Quicksort

Similarly, we get a corresponding lower bound. Thus, for each comparison tree ¢’ € T}, it holds
that

cost” (ag, ..., a / cost? (ag, ..., a
(01’/4 k) k2n?/® < cost’ (af, ..., a}) < (017/4 k) + k*n?/3,
n n
and we get the following bound:
cost' (ag, ..., ax) — costﬂ(ao7 cee,ag)
< n'/*(cost!(afy, ..., al) — cost! (afy,. .., a})) +2n'/* . k. n?/3
< 9k2 . pli/12
(The last inequality follows because ¢ has minimal cost w.r.t. ag, . . ., a}.) Thus, ¢ is good. O

Using this lemma, the average comparison count of SPy, is at most a summand of o(n) larger
than the average comparison count of Ny. Hence, SPy, is asymptotically optimal as well. d

Remark 6.4.6. Since the number of comparison trees in 7 is exponentially large in k, one might
want to restrict the set of used comparison trees to some subset 7, C 7. The strategies presented
here are optimal w.r.t. this subset of possible comparison trees as well.

6.5. Guesses About the Optimal Average Comparison Count of
k-Pivot Quicksort

In this section we use the theory developed so far to consider the optimal average comparison
count of k-pivot quicksort. We compare the result to the well known median-of-k strategy of
classical quicksort.

By Lemma 6.2.2 and Theorem 6.4.3, the minimal average comparison cost for k-pivot quicksort,
up to lower order terms, is

% Z min {cost’(ag, ..., ax) | t € Te} + o(n). (6.12)
(k) ag+...+ag=n—k

Then applying Theorem 6.1.1 gives the minimal average comparison count for k-pivot quicksort.

Unfortunately, we were not able to solve (6.12) for £ > 4. (Already the solution for £ = 3 as
stated in Section 6.3 required a lot of manual tweaking before using Maple®.) This remains an
open question. We resorted to experiments. As we have seen at the end of Section 4, estimating
the total average comparison count by sorting inputs does not allow to estimate the leading term
of the average comparison count correctly, because lower order terms have a big influence on the
average comparison count for real-life input lengths. We used the following approach instead:
Foreachn € {5-10%,105,5-10%,10%,...,5-107}, we generated 10 000 random permutations of

60

6.5. Guesses About the Optimal Average Comparison Count of k-Pivot Quicksort

k | opt. k-pivot | median-of-k
2 1.8nInn —
3| 1.705nInn | 1.714nlnn
4 1.65nlnn —
5 1.6Ilnlnn | 1.622nlnn
6 1.59n1Inn —
7| 1.57MnInn | 1.576nlnn
8 | 1.564n1nn —
9| 1.555nInn | 1.549nlnn

Table 6.1.: Optimal average comparison count for k-pivot quicksort for £ € {2,...,9}. For
k > 4 these numbers are based on experiments). For odd k, we also include the
average comparison count of quicksort with the median-of-£ strategy. (The numbers
for the median-of-k variant can be found in [Emd70] or [Hen91].)

{1,...,n} and ran strategy O for each input, i. e., we only classified the input with the optimal
strategy. The figures were constant beyond n = 5-10°, so we restrict our evaluation ton = 5-107.
For the average partitioning cost measured in these experiments, we then applied (6.2) to derive
the leading factor of the total average comparison count. Table 6.1 shows the measurements
we obtained for k € {2,...,9} and n = 5 - 107. Note that the results for k& € {2,3} are
almost identical to the exact theoretical bounds. Additionally, this table shows the theoretical
results known for classical quicksort using the median-of-£ strategy, see Section 5. Interestingly,
from Table 6.1 we see that based on our experimental data for k-pivot quicksort the median-of-k
strategy has a slightly lower average comparison count than the (rather complicated) optimal
partitioning methods for k-pivot quicksort for & > 7.

We have already seen that for classical quicksort using the median-of-£ strategy, the leading
term of the average sorting cost matches the lower bound of ~ 1.4426..nlnn + O(n) for k
large enough [MRO01]. This is also true for optimal k-pivot quicksort. For a proof, observe that
optimal k-pivot quicksort is not worse than k-pivot quicksort that uses a fixed tree from T in
each classification. Now, suppose k = 2% — 1, for an integer £ > 1. Then there exists exactly one
tree in 7 in which all leaves are on level x (“the symmetric tree”). Classifying the input with
this tree makes exactly - (n — k) comparisons. According to Theorem 6.1.1, this strategy turned
into a k-pivot quicksort algorithm has average sorting cost

sknlnn

m + 0(n In 7’L) (6.13)

When £ goes to infinity, the average sorting cost is hence 1/(In 2)nInn+o(nlnn). So, the aver-
age comparison count of optimal k-quicksort also converges to the lower bound for comparison-
based sorting algorithms.

61

6. Generalization to Multi-Pivot Quicksort

6.6. Discussion

In this section we considered the generalization of our theory for dual-pivot quicksort to the
case that we use more than two pivots. We showed how to calculate the average comparison
count for an arbitrary k-pivot quicksort algorithm. We generalized the natural optimal dual-pivot
quicksort algorithms to k-pivot quicksort algorithms and proved their optimality with respect to
minimizing the average comparison count. While we exemplified our theory at the case of three
pivots, the formulas are so complicated that for & > 4 we had to resort to experiments. The
results of these experiments suggested that comparison-optimal k-pivot quicksort is not better
than classical quicksort using the median-of-£ strategy, even for small k. Since this section ends
our study on the average comparison count of k-pivot quicksort algorithms, we reflect on some
open questions:

1. It would be interesting to see how one calculates the solution for (6.12) to obtain the optimal
average comparison count of k-pivot quicksort for k£ > 4.

2. One should also study the average comparison count of strategy O, for k > 3, in terms
of a direct argument comparable to the proof of Theorem 4.2.1 for O3. Although for
k = 3 we know from the optimality of strategy N3 in connection with (6.9) that strategy
O3 makes 133/72n + o(n) comparisons on average, we do not know how to obtain this
bound directly.

3. We conjecture that the difference in the average comparison count of O and Cy, is signifi-
cantly smaller than o(n). Experiments suggest that the difference is O (k2 log n)

4. The comparison of k-pivot quicksort and median-of-k quicksort from Table 6.1 might be
unfair. We compared these variants because each of these algorithms looks at £ elements
of the input. Actually, the cost for sorting the pivots influences the linear term of the
average comparison count, so one should rather look for k& and %’ such that optimal k-
pivot quicksort makes the same effort as classical quicksort using the median-of-£’ strategy
with respect to lower order terms. To prove such results, the solution of the recurrence for
generalized quicksort (see Theorem 6.1.1) must involve exact lower order terms. Currently,
such solutions are only known for partitioning cost a-n+O(1) for constant a from [Hen91;
Ii14].

We close our theoretical study of optimal k-pivot quicksort w.r.t. the average comparison count
with one remark about the practical impact of optimal k-pivot quicksort algorithms. When
the optimal comparison tree is computed by the dynamic programming algorithm mentioned
in [Knu73] for optimal binary search trees, neither strategy Ci nor SPj, can compete in empiri-
cal running times with classical quicksort. For k£ small enough, we can find out what comparisons
the dynamic programming approach makes to compute the optimal comparison tree. These de-
cisions can be “hard-coded” into the k-pivot quicksort algorithm. For k = 3, the results of
the experiments from [Kla14] clearly show that optimal strategies cannot compete with classical

62

6.6. Discussion

quicksort, even when bypassing the computation of a cost-minimal comparison tree. We will
consider the case k = 2 in detail in Section 8. The experiments suggest that strategy SP3 is
faster than classical quicksort.

This immediately raises the question if there are other theoretical cost measures more suited
to explain running time behavior. This will be the topic of the next section.

63

7. The Cost of Rearranging Elements

In the previous sections we focused on the average number of comparisons needed to sort a given
input in terms of solving the classification problem. We have described very natural comparison-
optimal k-pivot quicksort algorithms. However, experiments suggested that the improvements in
the average comparison count can be achieved in much simpler ways, e. g., by using the median
from a small sample as pivot in classical quicksort.

Kushagra et al. described in [Kus+14] a fast three-pivot algorithm and gave reason to believe
that the improvements of multi-pivot quicksort algorithms with respect to running times are
due to their better cache behavior. They also reported from experiments with a seven-pivot
algorithm, which ran more slowly than their three-pivot algorithm. The goal of this section is
to find out how their arguments generalize to quicksort algorithms that use more than three
pivots. In connection with the running time experiments from Section 8, this allows us to make
more accurate predictions than [Kus+14] about the influence of cache behavior to running time.
One result of this study will be that it is not surprising that their seven-pivot approach is slower,
because it has worse cache behavior than three- or five-pivot quicksort algorithms using a specific
partitioning strategy.

At the beginning of this section we will reflect upon the importance of different cost measures
with respect to the running time of a sorting algorithm. Then we will specify the problem setting,
introduce the basic primitive which allows “moving elements around” and discuss related work.
Next, we will describe three different algorithms. These algorithms will be evaluated with respect
to the number of assignments they make and the number of memory accesses they incur. The
latter cost measure will allow us to speculate about the cache behavior of these algorithms.

7.1. Why Look at Other Cost Measures Than Comparisons

Counting the average number of assignments a sorting algorithm makes on a given input is the
another classical cost measure for sorting algorithms. From a running time perspective, it seems
unintuitive that comparisons are the crucial factor, especially when key comparisons are cheap,
e. g., when comparing 32-bit integers. Counting assignments might be more important, because
an assignment usually involves access to a memory cell, which can be very slow due to signif-
icant speed differences between the CPU and the main memory. The situation is of course not
that simple. From an empirical point of view, a mixture of many different components makes
an algorithm fast (or unavoidably slow). For example, while the comparison of two elements is
usually cheap, mispredicting the destination that a branch takes, i. e., the outcome of the com-
parison, may incur a significant penalty to running time, because the CPU wasted work on

65

7. The Cost of Rearranging Elements

executing instructions on the wrongly predicted branch. These so-called branch mispredictions
are an important bottleneck to the performance of modern CPU’s [HP12]. On the other hand,
the cache behavior of an algorithm is also very important to its running time, because an access
to main memory in modern computers can be slower than executing a few hundred simple CPU
instructions. A cache tries to speed up access to main memory.

We first give a short theoretical introduction to caches. Here we adopt the cache-related no-
tation of Mehlhorn and Sanders [MS03]. A cache consists of m cache blocks or cache lines. Each
cache block has a certain size B. The cache sizeis M = m - B. (This can be measured in bytes or
the number of items of a certain data type.) Data transport from higher levels, e. g., other caches
or main memory, is done in memory blocks. Typically, the cache is divided into s = m/a cache
sets, where a is called the associativity of the cache. A memory block with address x - B can only
be stored in the cache set x mod s. For reasons of speed, price, and energy consumption, actual
caches usually have an associativity of at most 16.

Every memory access is first looked up in the cache. If the cache contains the content of the
memory cell then a cache hit occurs and the data can be used. Otherwise a cache miss is incurred
and the data has to be retrieved from memory (or a higher-level cache). Then it will be stored in
the cache. Storing a memory segment usually means that another segment must be evicted, and
there exist different strategies to handle this situation. Nowadays, many CPU’s use a variant of
the “least recently used” (LRU) strategy, which evicts the cache block in the cache set whose last
access lies farthest away in the past.

The cache structure of modern CPU’s is hierarchical. For example, the Intel i7 that we used
in our experiments has three data caches: There is a very small L1 cache (32KB of data) and
a slightly larger L2 cache (256KB of data) very close to the processor. Each CPU core has its
own L1 and L2 cache. They are both 8-way associative. Shared among cores is a rather big L3
cache that can hold 8MB of data and is 16-way associative. Caches greatly influence running
time. While a lookup in main memory costs many CPU cycles (= 140 cycles on the Intel i7
used in our experiments), a cache access is very cheap and costs about 4, 11, and 25 cycles for
a hit in L1, L2, and L3 cache, respectively [Lev09]. Also, modern CPU’s use prefetching to load
memory segments into cache before they are accessed. Usually, there exist different prefetchers
for different caches, and there exist different strategies to prefetch data, e. g., “load two adjacent
cache lines”, or “load memory segments based on predictions by monitoring data flow”.

From a theoretical point, much research has been conducted to study algorithms with respect
to their cache behavior, see, e.g., the survey paper of Rahman [Rah02]. (We recommend this
paper as an excellent introduction to the topic of caches.) For such a study one first had to refine
the standard model of computation, because in the classical RAM model [SS63] the machine
operates on machine words with random access costing unit time. This model cannot be used
to study cache effects. Consequently, Aggarwal and Vitter proposed the external memory model
(EM-model) [AV88], in which the machine consists of a fast memory (“cache”) of size M and
an infinitely large, slow memory (“disk”). Data can only be accessed from fast cache and is
exchanged between cache and disk in blocks of size B. The complexity of an algorithm in this
model is usually measured by the number of cache faults it incurs. An algorithm in this model can

66

7.1. Why Look at Other Cost Measures Than Comparisons

use M and B and must work for all (suitable) values of M and B. A cache-oblivious algorithm
in the external memory model does not use M and B in its program code [Fri+12]. Hence, these
algorithms show good cache behavior for arbitrary memory sizes.

In [LL99], LaMarca and Ladner gave a theoretical analysis of the cache behavior of sorting
algorithms. They compared quicksort, mergesort, heapsort and radix sort and showed that cache
misses can be analyzed rigorously. In the style of their paper, we will study three natural parti-
tioning strategies for k-pivot quicksort.

The first strategy extends the “crossing-pointer technique” of Hoare [Hoa62] for classical
quicksort, which was also the basis of Yaroslavskiy’s algorithm [WN12] and the 3-pivot algo-
rithm of Kushagra et al. [Kus+14]. The basic idea of this strategy is that one pointer scans the
array from left to right; another pointer scans the array from right to left. Misplaced elements
are exchanged “on the way” with the help of pointers that point to the starting cells of group
segments. Our results, with regard to the cache behavior of this partitioning strategy, show that
variants using 3 or 5 pivots have the best cache behavior. No benefit with respect to cache behav-
ior can be achieved by using more than 5 pivots. This allows us to study the influence of cache
behavior to running time in much more detail than previous work did. For example, Kushagra et
al. [Kus+14] analyzed the cache behavior of classical quicksort, Yaroslavskiy’s dual-pivot quick-
sort, and their own three-pivot algorithm. They drew the conclusion that cache behavior is the
important factor to running time. Our results indicate that this hypothesis should be used with
caution, since the 5-pivot quicksort algorithm will turn out to have even better cache behavior
than the algorithm of Kushagra et al., but it will be even slower than classical quicksort.

The second and third strategy work in a two-pass fashion and are inspired by the radix sort
implementation of Mcllroy et al. [MBM93] and the sample sort implementation of Sanders and
Winkel [SW04]. Both strategies classify the input in the first pass to obtain the segment sizes of
the input elements. One strategy uses these group sizes to copy elements to a correct position by
allocating a second array. (Thus, it is not in-place.) The other strategy uses the segment sizes and
permutes the input to obtain the actual partition. We will show that both of these strategies have
good cache behavior when many pivots (e. g., 127 pivots) are used. However, we shall see that it
is necessary to store the element classification in the first pass to make this algorithm competitive
with respect to running time. So, we get an interesting space-time tradeoff.

While the importance of hardware data caches is folklore today, there are other cache like
structures which are not that well known. According to the survey paper of Rahman [Rah02],
minimizing misses in the so-called translation-lookaside buffer (TLB) can be as important (or
more important) to the performance of programs. This buffer accelerates the translation of virtual
addresses (used by every process in modern operation systems) to physical addresses in memory.
Whenever the physical address corresponding to a virtual address in a process cannot be obtained
from this buffer, the hardware page walker works with the translation table of the operation
system to obtain the mapping. The crucial limitation is the number of entries it can hold. On
our Intel i7 the TLB has two levels, consisting of 64 and 512 entries, respectively, for each core
[Lev09]. In addition, there is a TLB consisting of 32 entries for large pages. Note that TLB misses
and data cache misses can occur independently of each other, since entries in the data cache

67

7. The Cost of Rearranging Elements

are tagged by their physical address in main memory. The importance of the TLB in sorting
algorithms has been noted in other papers, e.g., by Agarwal in [Aga96] and Jiménez-Gonzalez
et al. in [JNL02]. However, a theoretical model to address the cost of virtual address translation
has only been introduced recently by Jurkiewicz and Mehlhorn [JM13]. Their paper is motivated
by some very surprising experimental findings. For example, they showed that a random scan of
an array with n elements has running time behavior like O(nlogn), where standard measures
would predict time O(n). As it will turn out, TLB misses will also play a crucial role to the
performance of multi-pivot quicksort algorithms.

Besides cache behavior, branch mispredictions can be another crucial factor for running time.
A study of the empirical behavior of sorting algorithms with regard to branch mispredictions is
due to Biggar et al. [Big+08]. Modern CPU’s are pipelined and use a dynamic branch predictor
to predict the outcome of a conditional branch. A mispredicted branch always means wasted
work because the wrong instructions have been executed in the pipeline. On some hardware
architectures, the pipeline must be flushed after a branch misprediction, which usually involves
a penalty proportional to the depth of the pipeline. (This is not the case on the Intel i7 we used in
our experiments.) For general purpose programs, these predictors work rather well, see, e. g., the
paper of Biggar et al. [Big+08] and the references therein. However, branch prediction is hard
for comparison-based sorting algorithms: Slightly extending the standard lower bound argument
based on decision trees for comparison-based sorting algorithms, Brodal and Moruz showed in
[BM05] that a comparison-based sorting algorithm which makes O(dnlogn) comparisons, for
a constant d > 1, makes Q(nlogn/logd) branch mispredictions. (For d = 1 it must make
Q(nlogn) branch mispredictions.) Making these calculations precise, in algorithms which make
close to nlogn comparisons, each comparison has a close to 50% chance of being true, see,
e.g., [SW04].! When the number of comparisons is further away from n log n, comparisons are
biased. For example, Biggar et al. [Big+08] proved that in classical quicksort with random pivot
choice, key comparisons can be successfully predicted in about 71% of the cases. A very recent,
detailed analysis of classical quicksort and Yaroslavskiy’s algorithm is due to Martinez et al
[MNW15]. They showed that branch mispredictions can be analyzed accurately. However, they
conclude that this cost measure cannot explain the actual difference in running time between
Yaroslavskiy’s algorithm and classical quicksort observed in practice.

Branch mispredictions can yield odd effects for specific hardware choices: Kaligosi and Sanders
[KS06] report from experiments on a Pentium 4 Prescott generation which has such a long
pipeline (that has to be flushed upon a misprediction) that branch mispredictions become a dom-
inating factor in the running time. In that case, choosing a skewed pivot may actually improve
running time! For example, in [KS06] the fastest quicksort variant uses the element of rank n/10
as pivot. We will disregard branch mispredictions in this section. In the experimental evalua-

"This can also be used to explain many insights we found in Section 5. A dual pivot approach that uses the tertiles
of a sample yields “skewed” pivots, i. e., biased comparisons. Hence it cannot make close to n log n comparisons
on average. Furthermore, it explains why strategy £ using the elements of rank n/4 and n/2 as pivots makes
close to m log n comparisons. Also, Yaroslavskiy’s algorithm cannot achieve this lower bound because it uses both
pivots for comparisons and hence must have biased comparisons.

68

7.2. Problem Setting, Basic Algorithms and Related Work

tion in Section 8 we will report on the behavior of our algorithms with respect to branch mis-
predictions and mention some known programming techniques to lower the number of branch
mispredictions.

7.2. Problem Setting, Basic Algorithms and Related Work

For the analysis, we again assume that the input is a random permutation of the set {1,...,n}
which resides in an array A[l..n]. Fix an integer £ > 1. The first k elements are chosen as the
pivots. Our goal is to obtain a partition of the input, as depicted in Figure 6.1 on Page 46. Here,
determining whether the element A[i] belongs to group Ag, Ay, ..., or Ay is for free, and we
are interested in the average number of element movements and the average number of memory
accesses needed to obtain the partition. (The latter cost measure will be defined precisely in
Section 7.5.)

In terms of moving elements around, one traditionally uses the “swap”-operation which ex-
changes two elements. In the case that one uses two or more pivots, we we will see that it is
beneficial to generalize this operation. We define the operation rotate(iy, ..., 1) as follows:

tmp Afir]s Afir] Alia]s Alia] < Alia]s .. ; Alig—1] < Aligl; Afie] < tmp.

Intuitively, rotate performs a cyclic shift of the elements by one position. (A swap(A[i1], Aliz2])
isa rotate(i1, i2).) A rotate(iy,...,is) operation makes exactly ¢ + 1 assignments.
Assuming the groups of all elements are known, we can think of the problem in the following
way: Given n elements from the set {0, ..., k}, for k being a constant, rearrange the elements
into ascending order. For k& = 2, this problem is known under the name “Dutch national flag
problem”, proposed by Dijkstra [Dij76]. (Given n elements where each element is either “red”,
“white”, or “blue”, rearrange the elements such that they resemble the national flag of the Nether-
lands.) The algorithm proposed by Dijkstra has been used to deal with the problem of equal ele-
ments in standard quicksort and is known as “3-way partitioning” [SB]. As noticed by Wild et al.
in [WNN13], an improved algorithm for the dutch national flag problem due to Meyer [Mey?78]
is the partitioning strategy in Yaroslavskiy’s algorithm. For the analysis of algorithms solving
this problem see [McM78]. For k& > 2, we only know the work of Mcllroy et al. [MBM93], who
devised an algorithm they named “American flag sort”, which will be the topic of Section 7.3.1.

7.3. Algorithms

We will discuss three different algorithms. We shall disregard the pivots in the description of the
algorithms. We assume that they reside in the first k cells of the array. In a final step the k pivots
have to be moved into the correct positions between group segments. This is possible with at
most k rotate operations.

69

7. The Cost of Rearranging Elements

7.3.1. Partitioning After Classification

Here we assume that the elements of the input have been classified in a first pass. Partitioning
the input with respect to the k 4 1 different groups is then solved via the following approach that
is an adaption of Algorithm 4.1 from [MBM93].

Each &k > 1 gives rise to an algorithm Permutey. It works in the following way. Suppose
the group sizes are ao, ...,ax. Foreach h € {0,...,k} letop, = k+ 1+ > -, @i Let
0k41 = n + 1. Then the segment in the array which contains the elements of group Ay, in the
partition is A[op,..op11—1]. For each group Ay, h € {0, ..., k}, the algorithm uses two variables.
The variable cj, (“count”) contains the number of elements in group Ay, that have not been seen
so far. (Of course, initially c;, = aj.) The variable oy, (“offset”) contains the largest index where
the algorithm has made sure that Aoy..0;, — 1] only contains Ap-elements. Initially, o, = op,.
Basically, the algorithm scans the array from left to right until it finds a misplaced element at A[j]
with o, < j < op,41 — 1. Let this element be = and suppose x belongs to group h’ € {0, ..., k}.
Now repeat the following until an element is written into A[j]: The algorithm scans the array
from A[oy/] to the right until it finds a misplaced element y at A[;’]. (Note that j" < opr41 — 1.)
Assume y belongs to group h”. Write x into A[j']. If A" = h, then write y into A[j]. Otherwise,
set b’ = h” and 2 = y and continue the loop. This is iterated until the input is partitioned. The
pseudocode of the algorithm is shown in Algorithm 1. An example of this algorithm is given in
Figure 7.1.

We also consider a variant of Algorithm 1 we call “Copyy”. This algorithm was the basic
partitioning algorithm in the “super scalar sample sort algorithm” of Sanders and Winkel [SW04].
It uses the same offset values as Algorithm 1. Instead of an in-place permutation it allocates a
new array and produces the partition by sweeping over the input array, copying elements to a
final position in the new array using these offsets. So, this algorithm does not work in-place. The
pseudocode of this algorithm is given as Algorithm 2.

7.3.2. Partitioning During Classification

We now describe a family of algorithms that produce a partition in a single pass. Each k > 1
gives rise to an algorithm Exchange,.. The basic idea is similar to classical quicksort: One pointer
scans the array from left to right; another pointer scans the array from right to left, exchanging
misplaced elements on the way. Algorithm 3 uses k — 1 additional pointers to store the start of
groups Ay, ..., Ag_;. Figure 7.3 shows the idea of the algorithm for k = 6; Figures 7.4-7.6 show
the different rotations being made by Algorithm 3 in lines 8, 13, and 17. This algorithm is used
for k = 3 in the implementation of the 3-pivot algorithm of Kushagra et al. [Kus+14]. For k = 2
it can be used to improve the basic implementation of Yaroslavskiy’s algorithm from [WN12],
see [WNN13].

We now study these algorithms with respect to the average number of assignments and the
average number of memory accesses they make.

70

7.3. Algorithms

Ag ? ? Ay ? ? As ? ?

T T T

00 01 02

Figure 7.1.: General memory layout of Algorithm 1 for k = 2.

[3.
. N)
Ag As ? Ay Ao ? ? As A Ap
Y ..
............ 2,
............. 4
Ao ? Al ? ? A2
0o 01

Figure 7.2.: Top: Example for the cyclic rotations occurring in one round of Algorithm 1 starting
from the example given in Figure 7.1. First, the algorithm finds an A-element, which
is then moved into the Aj-segment (1.), replacing an A;-element which is moved
into the Aj-segment (2.). It replaces an Az-element that is moved to replace the
next misplaced element in the Ag-segment, an Ay element (3.). This element is then
moved to the Ag-segment (4.), overwriting the misplaced As-element, which ends
the round. = Bottom: Memory layout and offset indices after moving the elements
from the example.

71

7. The Cost of Rearranging Elements

Ap Aq Ao As ? ? | Ay As Ag
T [T [T
g1 g 83 7 J g4 g5

Figure 7.3.: General memory layout of Algorithm 3 for £ = 6. Two pointers ¢ and j are used to
scan the array from left-to-right and right-to-left, respectively. Pointers g1, ..., gx—1
are used to point to the start of segments.

AQ A1 A2 A3 Al ? A4 A5 A6
T ~N—" [T
&1 g2 83 1 J 84 85

Figure 7.4.: The rotate operation in Line 8 of Algorithm 3. An element that belongs to group A
is moved into its respective segment. Pointers ¢, g2, g3 are increased by 1 afterwards.

Ao Aq As Az As Ag | Ay As Ag
T [T ~—
g1 g 83 i J 84 g5

Figure 7.5.: The rotate operation in Line 13 of Algorithm 3. An element that belongs to
group Ag is moved into its respective segment. Pointers j, g4, g5 are decreased by
1 afterwards.

Ao Ay As As As A | Ay As Ag

I T

g1 g 83 7 J 84 g5

Figure 7.6.: Example for the rotate operation in Line 17 of Algorithm 3. The element found at
position ¢ is moved into its specific segment. Subsequently, the element found at
position j is moved into its specific segment.

72

7.4. Assignments

Algorithm 1 Permute elements to produce a partition

procedure Permutey(A[l..n])

Requires: Segment sizes are ag, . . ., ak.
1: Yhe{0,...,k}: ch<—ah;oh:k—|—1+2?;01ai;
2: forh from O to k — 1 do
3: while ¢, > 0 do

4 while Afo,] belongs to group Ay, do > Find misplaced element
5: op ¢ op+ 1;cp ¢ cp — 1

6: if c;, = 0 then

7: break;

8: home < oy;

9: from < home;

10: x < A[from];

11 while true do > Move elements cyclicly
12: Ag < Group of x;

13: while Afoy] belongs to group A do > Skip non-misplaced elements
14: Og <~ 0g + 1;¢cg < cg — 1;

15: 0o <= 0g;0g <~ 0g + 15 < cg — 1

16: from < to;

17: if home # from then

18: r < Ato]; A[to] < x;x « 1}

19: else

20: Alfrom| < x;

21: break;

7.4. Assignments

Since we are interested in cost measures for predicting empirical running time, we only count
assignments involving an array access. For example, in Line 18 of Algorithm 1 we count two
assignments. Here we assume that variables which are needed frequently are in registers of the
CPU. An assignment between two registers is much cheaper.

We start by fixing notation. Let AS,, and PAS,, be the total number of assignments needed for
sorting and partitioning, resp., a given input of length n. For the average number of assignments,
we get the recurrence

E(AS,) = E(PAS,,) + % > (E(ASq) + ... +E(ASq,)).
(k) ag+...+ap=n—=k

This recurrence has the same form as (6.1), so we may apply (6.2) and focus on a single partition

73

7. The Cost of Rearranging Elements

Algorithm 2 Copy elements to produce a partition

procedure Copyi(A[l..n))
Requires: Segment sizes are ag, . . ., ak.
1: Vh e {0,...,k} : o :k:+1+2?:_01ai;
2: allocate a new array BJ[1..n];
3: for i from k + 1 ton do
4 Ay < group of A[i];
5 Blo[p]] + A[i];
6 ofp] < o[p] +1;
: Copy the content of B to A;

]

step. We consider Algorithm 1. In each round, Algorithm 1 makes one assignment in Line 10
and two assignments involving array access for each iteration that reaches Line 18. At the end
of the loop it makes one assignment in Line 20. We charge two assignments to each element that
is moved to its final location in Line 18. (Recall that we only account for assignments involving
array cells.) Furthermore, the assignment in Line 10 is charged extra to the assignment in Line 20.
Thus, each misplaced element incurs exactly two assignments. Furthermore, we charge for an
input of n elements cost n — k for the classification step that precedes partitioning.

By a simple calculation it follows that on average there are k(n — k)/(k + 2) misplaced
elements. Hence,

3k +4
E (PAS,) = “(n—k), 7.1
(PAS) = T (0= K) 7.1
and by applying (6.2) we conclude that
3k +4

E (AS,) = -nlnn+o(nlnn). (7.2)

(k+2)- (Hr1 — 1)
In particular, the average partitioning cost will converge to 3(n — k) for large k.

The analysis of Algorithm 2 is even simpler. It makes exactly n — & assignments to produce
a partition (Line 5 in Algorithm 2). In addition, we charge n — k assignments for copying the
input back (Line 7 in Algorithm 2), and n — k assignments for the classification step, which we
charge to Line 4 in Algorithm 2. So, it makes 3(n — k) assignments in one partitioning step, and
the average number of assignments for sorting is

3nlnn/(Hiy1 — 1) + o(nlnn). (7.3)

Counting assignments in Algorithm 3 is a little bit harder. Fix the pivots and hence the group
sizes ag, . ..,ag. Let k' = [(k —1)/2], and let H := ag + ... + ap. We charge the number
of assignments in Algorithm 3 to the two pointers ¢ and j separately in the following way: Let p

74

7.4. Assignments

Algorithm 3 Move elements by rotations to produce a partition

procedure Exchangey(A[l..n])
Lik+1j <« n;
K e [5];
1,58 < 1
817 8k—1 < I
p,q < —1; > p and q hold the group indices of the elements indexed by i and j.
while i < j do
while A[i] belongs to group A, with p < k" do
if p < k' then
rotate(i,gy,. .. ,gp+1);
gp+1++; e Gt

11: 1++;

—_
4

12: while A[j] belongs to group Aq with q > k" do

13: ifq > k' + 1 then

14: rotate(j.gy 1,---»8q—1);

15: 8q—1777 1 Br/417 TS

16: j==

17: if i < j then

18: rotate(i, gy, .. 1 8qt10 30 By s gp_l);
19: i++; gq+1++; ce Bt

20: J7 817 8p—17

and g hold the content of the variables p and q, respectively, when the pointer i is at position %,
and the pointer j is at position j. The rotate operation in Line 8 is charged to the pointer i. One
rotation of an element that belongs to group A,,, p < k’, makes 2+ &’ — p assignments. Similarly,
the rotate operation in Line 13 is charged to the pointer j and has cost 1 + ¢ — k. The rotate
operation in Line 17 makes exactly 2 + p — ¢ assignments and is charged as follows: We charge
p — k' — 1 assignments to pointer i, and 3 + &’ — ¢ assignments to pointer j. Consequently, we
define

2+ K —p, ifp<k,
costi(p) =< p—K —1, ifk +1<p,

0, otherwise,

75

7. The Cost of Rearranging Elements

and

3+K —q, ifg<k,
costj(q) = 1+q—FK, ifk/+1<gq,

0, otherwise.

Let A;;, and A, , be the number of elements inspected by 4 and j that belong to group A, and
Ay, respectively. The exact assignment count for partitioning an input of n elements is then

k k

PA, =) Ajp-costi(p) + Y Ajg - costj(q). (74)
p=0 q=0

For a random input (excepting the pivot choices) the average number of assignments can be
calculated as follows: Pointer ¢ is increased by one whenever an element is found that belongs to
group A, p < k'. Thus, it inspects exactly H array cells. Analogously, pointer j inspects n—k —
H array cells.? So, the pointer 7 incurs assignments for the array segment A[k + 1..k + H + 1],
while the pointer j makes assignments for A[k + H + 2..n|. Now, consider E(A;,, | ao, ..., ax)
for a fixed integer p, with 0 < p < k. There are exactly a, elements of group A,, in the input.
The positions of these elements are drawn from the n — k possible positions by sampling without
replacement. Hence, we know that

ap

E(A@p‘ao,...,ak):H.m'

Analogously, for a fixed integer ¢, with 0 < ¢ < k, we have that

. aq

E(Ajg|a0,...,ak):(n_k_H) n_k

Plugging this into (7.4) and rearranging terms yields, for odd k, the formula

kl
H _ ‘
E(PASw | ao, ., ax) = <n — k:) ‘ 2 (2+7) aw—j+7-awiits)
J:
n—k—H K
+ (H) . 3ak/ + Z; ((3 +]) T Qg —j + (2 —|—]) . ak’—l—l—f—j) . (75)
]:

*They may cross over by one element. We disregard this case; it costs no additional assignments.

76

7.4. Assignments

For even k, we have that:

k/
H . .
E(PAS, | ag,...,ar) = (n — k‘) . E ((2 +7)- ag—j + (-1 'ak/ﬂ)
J=1

k-1
n—k—-H . '
+ <H> 3ag + (3 + k/)ao + Z ((3 +])ak’—j + (1 +])ak’+1+j)) (7.6)

J=1

Using Maple® we calculated the average number of assignments of Algorithm 1-Algorithm 3
for k € {1,...,9}. Since Algorithm 1 and Algorithm 2 benefit from larger values of k, we
also calculated the average assignment count for using them with 15,31, 63, and 127 pivots.
Table 7.1 shows the results of these calculations. The average assignment count of Algorithm 1
slowly increases for k getting larger. The average assignment count for sorting decreases, first
rapidly, then more slowly. For k > 31, Algorithm 1 makes fewer assignments than classical
quicksort, which makes n In n assignments. Algorithm 2 makes exactly 3(n — k) assignments on
each input. The average assignment count of this algorithm decreases for growing k, and is for
k > 31 practically the same as the average assignment count of Algorithm 1. For Algorithm 3, the
average number of assignments rapidly increases from classical quicksort to quicksort variants
with at least two pivots. Afterwards, it slowly increases. Interestingly, Algorithm 3 is slightly
better for three pivots than for two pivots.?

In summary, Algorithm 1 and Algorithm 2 make many assignments for small values of k. For
k > 31, they achieve a lower average assignment count than classical quicksort. Algorithm 3
does not benefit from using more than one pivot. We will now compare these calculations with
measurements we got from experiments.

Empirical Verification. Figure 7.7 shows the measurements we got with regard to the average
number of assignments for implementations of the algorithms described before. In the experi-
ment, we sorted 600 random permutations of {1, ...,n} for each n = 2¢ with 9 < i < 27.

For Algorithm 3, we see that the measurements agree with our theoretical study (cf. Table 7.1).
There is a big gap between the average assignment count for one pivot (“Exchange;”) and the
variants using more than one pivot. Also, the 3-pivot algorithm makes fewer assignments (on
average) than the 2-pivot algorithm. In order, it follows the 5-pivot, 7-pivot (omitted in the
plots), and 9-pivot algorithm. Their average assignment count is very close to our calculations.
For Algorithm 1, we see that lower order terms have a big influence on the actual measurements.
In all measurements, the average assignment count is slightly lower than what we expect from
the leading term disregarding lower order terms. For large k the influence of lower order terms
seems to decrease. We see that Algorithm 1 makes fewer assignments than classical quicksort
for k large enough. Our experiments for Algorithm 2 showed that—as expected—there is almost

*This has been observed in the experiments in [Kus+14], too.

77

7. The Cost of Rearranging Elements

L E(PASy,) E(AS,) E(PAS,) E(AS,) E(PAS,) E(ASy)

(Algorithm 1) (Algorithm 1) | (Algorithm 2) (Algorithm 2) | (Algorithm 3) (Algorithm 3)

1 2.33n | 4.66nlnn 3n 6nlnn 0.5n nlnn

2 2.5n 3nlnn 3n | 3.6nlnn 1.33n 1.6nlnn

3 2.6n | 2.4nlnn 3n | 2.7Mnlnn 1.70n | 1.57nInn

4 2.66n | 2.08nlInn 3n | 2.34nlnn 2.13n | 1.66nlnn

5 2.71n | 1.87Tnlnn 3n | 2.07nlnn 2.40n | 1.66nlnn

6 2.75n | 1.73nlnn 3n | 1.88nlnn 2.75n | 1.73nlnn

7 2.77n | 1.62nlnn 3n | 1.75nInn 3n | 1.75nInn

8 2.8n | 1.53nlnn 3n | 1.64nlnn 3.31n | 1.81nlnn

9 2.82n | 1.46nlnn 3n | 1.56nlnn 3.55n | 1.84nlnn

15 2.88n | 1.21nlnn 3n | 1.26nlnn — —
31 2.94n | 0.96nInn 3n | 0.98nInn — —
63 2.97n | 0.79n1nn 3n | 0.80nlnn — —
127 2.98n | 0.67nlnn 3n | 0.68nlnn — —

Table 7.1.: Average number of assignments for partitioning (E(PAS,,)) and average number of
assignments for sorting (E(AS,,)) an array of length n disregarding lower order terms
using Algorithm 1, Algorithm 2, and Algorithm 3. We did not calculate the average
comparison count for Algorithm 3 for k¥ € {15,31,63,127}. For comparison, note
that classical quicksort (“Exchange;”) makes n Inn assignments involving array ac-
cesses on average.

no difference to Algorithm 1 for large values of k. Consequently, variants of Algorithm 2 are
omitted from the plots.

Generalization of Algorithm 3. The figures from Table 7.1 show that the average assignment
count of Algorithm 3 rapidly increases from one pivot to variants using more than one pivot. We
make the following observations about a generalization of Algorithm 3. For this algorithm, the
parameter k" (cf. Algorithm 3, Line 2) can be set to an arbitrary value from {0,...,k — 1} and
the formulae (7.5) and (7.6) still hold. For k& = 2, due to symmetry, setting ¥’ = 0 or k' = 1
yields the same values. As in the sampling strategy SP for comparison-optimal multi-pivot
quicksort algorithms, we can make use of unbalanced inputs, i. e., inputs where there are much
more/less small elements than large elements, as follows. Suppose the group sizes are ag, ay,
and ag. If ag > ag, the algorithm should use &’ = 0, because it makes fewer assignments for
elements that belong to group Ag. If as > ag, analogous arguments show that the variant with
k' = 1 should be used. If the partitioning process would correctly choose the parameter &’
depending on the relation of ag and aq, the average assignment count for partitioning decreases
from 1.333n + O(1) to 1.15n 4+ O(1) in Table 7.1. For an actual implementation, one would
look at the first n®/4 elements and decide whether to choose ¥’ = 0 or k&’ = 1 according to ratio
of small/large element in the sample.

78

7.4. Assignments

—o— Permutegs —#— Permute o7 —— Permute 5 —— Permute; —— Permuteg
-o--Exchange; - #- Exchange, - - Exchanges -+ - Exchanges - +-- Exchangeg

21 .

1.8 o--O——g G- —— = i Sl Seinh ainie SRR Sl At a4 .
R = m Rk — ke — A =k — ok — ke — e — — k= — ke — =k

1.6 B - - -P--B--F-B--P--F- - --F-- ==F=F N

Assignments /nlnn
—_
\)
T
|

0.8+

0.6

0.4 o

Items [logy(n)]

Figure 7.7.: The average number of assignments for sorting an input consisting of n elements
using Algorithm 1 (“Permutey”) and Algorithm 3 (“Exchangey”) for certain values of
k. Each data point is the average over 600 trials.

We did not look into generalizing this approach to & > 3. We remark that the analysis
should be simpler than calculating the average comparison count for comparison-optimal k-
pivot quicksort, since there are fewer cost terms. (For k pivots, k' € {0, ...,k — 1}. So for each
group size we have to calculate the minimum over k cost terms, whereas for comparison-optimal
k-pivot quicksort this minimum was taken over exponentially many cost terms.)

In summary, only Algorithm 1 and Algorithm 2 are better than classical quicksort with respect
to counting assignments, but only for a large number of pivots. In particular, Algorithm 3 does
not benefit from using more than one pivot, which was also observed for the case k¥ = 2 by Wild
and Nebel [WN12] and k£ = 3 by Kushagra et al. [Kus+14]. In the next section, we will consider
a different cost measure that shows that partitioning using Algorithm 3 requires less effort when
using more than one pivot.

79

7. The Cost of Rearranging Elements

7.5. Memory Accesses and Cache Misses

We will now study how many array accesses the pointers of the partitioning algorithms Algo-
rithm 1-3 require to sort an input. As we will show this cost measure can be analyzed rigorously.
From an empirical point of view the cost measure gives a lower bound on the number of clock
cycles the CPU spends just waiting for memory. It can also be used to predict the cache behavior
of Algorithm 1-3. We will see that it gives good estimates for the cache misses in L1 cache which
we observed in our experiments.

A memory access occurs whenever the CPU reads the content of a memory address or writes to
it. (We do not distinguish between read and write access, which is common when the architecture
uses write-back caches [Rah02].) Let the random variable MA,, count the number of memory
accesses that a k-pivot quicksort algorithm requires until an input of length n is sorted. Let
PMA,, denote the number of memory accesses that the algorithm requires in the first partitioning
step. In general, we get the recurrence:

E(MA,) =E(PMA,) + = 3 (E(MAg,)+ ...+ B(MA,,)).
(k) ag+...+ap=n—=k

Again, this recurrence has the form of (6.1), so we may apply (6.2). Thus, from now on we focus
on a single partitioning step.

We charge memory accesses for Algorithm 1 as follows: During the classification phase each
array cell is accessed exactly once. In the partitioning phase each element that is already at a
final position is accessed exactly once. All other elements are accessed twice, once for reading
the element, once for writing it into another table cell. Comparing with the analysis of the
assignments that Algorithm 1 makes, there is exactly one array access per assignment, so we get
(see Section 7.4)

3k +4
E(PMAL) = 375

(n—k). (7.7)
For Algorithm 2, we charge n — k memory accesses for the first classification step. Then, we
charge 2(n — k) array accesses for the partitioning step. Finally, we charge 2(n — k) array
accesses for copying the input back. So we have

E(PMA,,) = 5(n — k). (7.8)

Again, the analysis of Algorithm 3 is more difficult. For this algorithm, the number of memory
accesses is the sum over all i € {1,...,k — 1} of the number of array cells visited by pointer
g; plus the number of array cells visited by pointers i and j. Let the pivots and thus ay, . .., aj
be fixed. The pointers i, j scan the whole array, and thus inspect n — k array cells. When
Algorithm 3 terminates, g; points to A[k + a¢ + 1], having visited exactly ag array cells. An

80

7.5. Memory Accesses and Cache Misses

Lk E(PMA,) E(MA;,) E(PMA,) E(MA;,) E(PMA;,) E(MA;,)
(Algorithm 1) (Algorithm 1) | (Algorithm 2) (Algorithm 2) | (Algorithm 3) (Algorithm 3)
1 2.33n | 4.66nlnn 5n 10nlnn 1n 2nlnn
2 2.5n 3nlnn 5n 6nlnn 1.33n 1.6nlnn
3 2.6n | 2.4nlnn 5n | 4.62nlnn 1.5n | 1.385nInn
4 2.66n | 2.08nlnn 5n | 3.89nlnn 1.8n | 1.402nlnn
5 2.71n | 1.87Tnlnn 5n | 3.45nlnn 2n | 1.379n1nn
6 2.75n | 1.73nlnn 5n | 3.14nlnn 2.29n | 1.435n1nn
7 2.7Tn | 1.62nlnn 5n | 2.91nlnn 2.5n | 1.455n1nn
8 2.8n | 1.53nlnn 5n | 2.73nlnn 2.77n | 1.519n1nn
9 2.82n | 1.46nlnn 5n | 2.59nInn 3n | 1.555n1Inn
15 2.88n | 1.21nlnn 5%0) 2.1nlnn 4.5n 1.89n1nn
31 2.94n | 0.96nInn 5n | 1.63nlnn 8.5n | 2.78nlnn
63 2.97n | 0.791nn 5n | 1.34nlnn 16.5n | 4.41nlnn
127 2.98n | 0.67Tnlnn 5n | 1.18nlInn 32.5n | 7.33nlnn

Table 7.2.: Average number of memory accesses for partitioning (E(PMA,,)) and average number
of memory accesses for sorting an array (E(MA,,)) of length n disregarding lower
order terms. Note that classical quicksort makes 2n In n memory accesses on average.

analogous statement can be made for the pointers g,,...,g;_;. On average, we have (n —
k)/(k + 1) elements of each group Ay, ..., A, so g, and g;,_, each visit (n — k)/(k + 1) array
cells on average, g, and g;,_, each visit 2(n — k)/(k + 1) array cells, and so on.

For the average number of memory accesses during a partitioning step we consequently get

[k/2] i-(n—k
E(PMA,) = {2 ‘ 22721 : (lercl ; k/2+1 forodd £
2.9 ! (an) + ,ﬁ:{ -(n—k), forevenk,
and a simple calculation shows
E(PMA EES . (n— k), for odd &,
= 7.9
() (%—’_ki—&-l) -(n—k), forevenk. 79)

We calculated the average number of memory accesses for k € {1,...,9,15,31,63, 127} using
(7.7), (7.8), (7.9), and (6.2). Table 7.2 shows the results of these calculations. As before, with
respect to the average assignment count, Algorithm 1 benefits from large k. For k& € {1, 2} it has
very high cost. For k > 5, it outperforms classical quicksort. Starting from £ > 15 (for values of
k considered in the calculations) it improves over Algorithm 3. Algorithm 2 also benefits from &
getting larger. For large k, it makes about 5/3 times as many memory accesses as Algorithm 1.
More interestingly, and in big difference to counting assignments, Algorithm 3 actually improves

81

7. The Cost of Rearranging Elements

over classical quicksort when using more than one pivot. A 3-pivot quicksort algorithm, using
this partitioning algorithm, has lower cost than classical and dual-pivot quicksort. Interestingly,
the average number of memory accesses is minimized by the 5-pivot partitioning algorithm. The
difference to the 3-pivot algorithm is, however, only small. Using more than 5 pivots increases
the average number of memory accesses. Since each memory access, even when it can be served
from L1 cache, is much more expensive than other operations like simple subtraction or addition
on registers, this shows that are big differences in the time the CPU has to wait for memory
between multi-pivot quicksort algorithms.

We now face the question what the considerations we have made so far could mean for the
cache behavior. Intuitively, fewer memory accesses should yield better cache behavior, when
memory accesses are done “scan-like” as in the algorithms considered here. The argument used
in [LL99] and [Kus+14] is as follows: When each of the m cache memory blocks holds exactly
B keys, then a scan of n array cells (that have never been accessed before) incurs [n'/B] cache
misses. In theoretical models that allow control over the cache replacement strategy, this can
easily be proven to be true for the algorithms considered here. However, suppose that & is large
and we use Algorithm 1. With respect to the fact that a memory block can only be placed into
a small number of different cache lines, it seems hard to believe that such a simple argument
should hold. For example, suppose “many” elements have been moved in the loop in Line 11
of Algorithm 1. Then the access to A[from| on Line 20 might incur a second cache miss, since
the last access to this memory cell lies far away in the past. Moreover, when k is “large” it
might also happen that particular segments are stored in cache lines and get evicted before they
are read from/written to again. We observe that in Algorithm 1 the situation is very much like
having k + 1 sequences of total length n’ that are scanned concurrently. The decision which
pointer is to be moved next is based on the classification of an element. This problem (with an
adversary that picks the pointer to be advanced next at random) has been studied by Mehlhorn
and Sanders in [MS03]. Assuming that the starting addresses of these sequences are random they
showed that the cache misses incured by such a scanning task are bounded by O(n’/B) as long
as k = O(m/B/?), where a is the associativity of the cache. For example, the L1 cache of the
Intel i7 CPU used in our experiments can store m = 512 cache lines of size B = 64 byte and
is 8-way associative. In this case, m/B'/® is about 300, so we may assume that as long as k is
small enough, our assumption for the relation between memory accesses and cache misses only is
a constant factor higher than our estimate. Of course in our setting we care about these constants.
Consequently, we are going to compare our estimate to measurements from experiments.

Empirical Verification. We implemented multi-pivot quicksort algorithms using Algorithm 1,
Algorithm 2 and Algorithm 3, resp., for partitioning. For Algorithm 1 and Algorithm 2, “Permute;,”
and “Copy},” denote the variants that classify each element twice: once during the classification
phase and once during the partitioning phase. As we shall see later, it will be beneficial to con-
sider these strategies with the modification that element groups are stored in the classification
phase. Consequently, “Permute,” and “Copy}.” are the variants that store the element groups

82

7.5. Memory Accesses and Cache Misses

Algorithm ‘ Ex; ‘ Exo ‘ Exs ‘ Exg ‘ Perm; ‘ Permy ‘ Permg; ‘ Permio7
avg. L1 misses/n | 0.125 | 0.163 | 0.25 | 0.378 | 025 | 0.25] 025| 0.28

Table 7.3.: Cache misses incured by Algorithm 1 (“Permy”) and Algorithm 3 (“Exy”) in a single
partitioning step. All values are averaged over 600 trials.

in an auxiliary array and use these classifications as an oracle in the second phase. (Note that
this introduces a linear memory overhead, which is often considered undesirable.) We measured
cache misses for each algorithm on inputs of size 2¢ with 9 < i < 27, for certain values of k.
These measurements were obtained with the help of the “performance application programming
interface” (PAPI), which is available at http://icl.cs.utk.edu/papi/. Independently, we
measured the number of misses in the translation-lookaside buffer (TLB) using the linux tool
“perf’.

First, we check whether the assumption that partitioning an input of n elements using Algo-
rithm 1 or Algorithm 3 incurs [E (PMA,,) /B]| cache misses or not. (Recall that B is the number
of elements in one cache line and E (PMA,,) is the average number of memory accesses during
partitioning.) In the experiment, we partitioned 600 inputs consisting of n = 227 items using
Algorithm 1, for 1,7, 31, and 127 pivots, and Algorithm 3, for 1,2, 5, and 9 pivots. The measure-
ments with respect to L1 cache misses are shown in Table 7.3. Theoretically, Algorithm 3 should
incur 0.125n, 0.166n, 0.25n, and 0.375n L1 cache misses for k& € {1,2, 5,9}, respectively. The
results from Table 7.3 show that the empirical measurements are very close to these values. On
the other hand, the measurements for Algorithm 1 are much lower than what we would expect
by calculating E (PMA,,) /B, cf. Table 7.2. This is easily explained: We have charged two array
accesses for a misplaced element. However, the second array access should always be cached,
see Line 18 in Algorithm 1. Keeping this in mind, we should assume that the algorithm requires
2n memory accesses, which reflects the measurements, except for the case of 127 pivots. There
we have to deal with the problem mentioned on the previous page: Cache blocks are evicted
before they are accessed again. However, even for such a large number of pivots our prediction
is accurate.

Table 7.4 shows the exact measurements regarding L1 cache misses for sorting 600 random
inputs consisting of n = 227
with respect to Algorithm 3 (“Exchange;,”). The figures indicate that the relation with respect to
the measured number of L1 cache misses of the different algorithms exactly reflect their relation
with respect to the average number of memory accesses. However, while the average number
of cache misses correctly reflects the relative relations, the measured values (scaled by n1nn)
are lower than we would expect by simply dividing E(MA,,) by the block size B. We suspect
this is due to (i) the influence of lower order terms and (ii) array segments considered in the
recursion already being present in cache. For variants of Algorithm 1, the relation with respect to
memory accesses predicts cache behavior correctly, as well. However, the exact ratio with respect
to memory accesses does not translate to the ratio between cache misses. (It should be noted that

elements and relates them to each other. We first consider our results

83

7. The Cost of Rearranging Elements

Algo E(MA,) L1 Cache Misses
Exchange; 2nlnn (+ 45.0%) | 0.14nlnn (+ 48.9%)
Exchange, 1.6nlnn (+ 16.0%) | 0.1lnlnn (+ 16.9%)
Exchanges | 1.385nInn (+ 0.4%) | 0.096nlnn (+ 1.3%)
Exchanges | 1.379n1nn (—)| 0.095nInn (-)
Exchange; | 1.455nInn (+ 5.5%) O0.lnlnn (+ 5.3%)
Exchangey | 1.555nInn (+ 12.8%) | 0.106nInn (+ 12.2%)
Permute; 4.66nlnn (+237.9%) | 0.29nlnn (+177.5%)
Permutes 24nlnn (+ 74.0%) | 0.17nlnn (+ 67.1%)
Permute; 1.62nlnn (+ 17.5%) | 0.098nlnn (+ 3.2%)
Permute; 5 1.21nlnn (— 14.0%) | 0.07nlnn (— 36.6%)
Permutes; 0.96nInn (— 43.6%) | 0.06nlnn (— 66.9%)
Permutegs 0.79n1nn (— 74.6%) | 0.05nlnn (— 90.9%)
Permuteor | 0.67nlnn (—=105.8%) | 0.05nInn (— 99.3%)
Permutey; | 1.12nlnn (- 23.1%) | 0.067nlnn (— 49.5%)
Copylar 1.575nInn (+ 14.2%) | 0.1lnlnn (+ 18.9%)

Table 7.4.: Average number of L1 cache misses compared to the average number of memory ac-
cesses. Measurements have been obtained for n = 227. Cache misses are scaled by
n Inn. In parentheses, we show the ratio to the best algorithmic variant of Algorithm 3
w.r.t. memory/cache behavior (k = 5), calculated from the non-truncated experimen-
tal data.

the ordering with respect to memory accesses equals—only with the exception of Permute;—the
ordering with respect to L1 cache misses.) We also tested the variant of the Permute;, algorithm
that stores the groups of elements in the first pass. Of course, Permute,, makes more cache
misses than Permute;97. By using one byte per element group—which is sufficient for at most
255 pivots—, it incurs about 33% more L1 cache misses than Permute;o7. Finally, we consider
one specific variant of Algorithm 2 (“Copyy”) that also stores element groups. For the variant
“Copy o7, results are not surprising. It incurs about twice as many cache misses as Permute;27
with an additional overhead due to the auxiliary array. In summary, memory accesses are a
suitable cost measure to predict the L1 cache behavior of Algorithm 1—3. (For Algorithm 1 and
Algorithm 2 some manual tweaking was necessary.) However, this is not true with regard to L2
and L3 cache behavior of these algorithms. In our experiments, the best algorithm with respect to
L2 cache behavior was Permute;s. The worst algorithm due to L2 cache behavior was Copy’ o7,
incuring more than 6 times more L2 cache misses than Permute ;. This picture was strengthend
even more for L3 cache behavior. There, Copy’,, made about 10 times as many cache misses
as Permute;s, which in turn was only slightly worse than Exchanger, the best algorithm with
respect to L3 cache behavior. Detailed experimental data can be found in Table B.2 in Appendix B.

To find out how large values of k£ make partitioning hard, we now consider the behavior of
the algorithms regarding load misses in the translation-lookaside buffer (TLB misses). (Recall
that the TLB is the cache that speeds up the translating between virtual and physical address

84

7.5. Memory Accesses and Cache Misses

Algorithm avg. TLB load misses
Exchange; | 0.0407nInn(0.0%)
Exchangeg | 0.0412nlnn(1.2%)
Permute/, 0.0421nnn(3.5%)
Permute;s | 0.0416nlnn(2.2%)
Permute}; | 0.0498nInn(22.4%)
Permutejo7 | 0.0716nInn(76.0%)
()
()
()
()

Permutefy; | 0.1203n1nn(195.7%
Permutesio | 0.0873n1nn(114.5%
Permutef;, | 0.1401n1nn(244.4%
0.8%

Copy' a7 0.041nlnn

Table 7.5.: Average number of TLB misses for random inputs with 227 items over 100 trials. Load
misses are scaled by nInn. The number in parentheses shows the relative difference
to algorithm Exchange;.

space.) Figure 7.8 shows the measurements we got for some selected algorithms. (The results for
all algorithms can be found in Table B.3 in Appendix B.) For arrays with no more than 222 items,
no misses in the TLB occur. This drastically changes for larger inputs. Each algorithm suffers
from a growing number of TLB misses. The algorithms based on Exchangey, and the algorithms
Copy’ 7, Permute’, and Permute;; suffer the fewest TLB misses. For larger k, algorithms based
on Permute;. or Permute;c incur much more TLB misses. For example, Permute;o7 suffers 1.76
times more TLB misses than Exchange;. Permutef,, shows the worst behavior with respect to
TLB misses, incuring 3.44 times more TLB misses than Exchange;. This shows that algorithms
based on “Permute;,” suffer in performance for large k£ because of TLB misses. More detailed
results with respect to TLB misses are shown in Table 7.5.

In summary this section described general partitioning strategies for multi-pivot quicksort. We
considered the average number of assignments and the average number of memory accesses. We
have shown that studying memory accesses allows us to predict empirical differences in cache
misses between these algorithms. For a small number of pivots, none of these strategies make
fewer assignments than classical quicksort. With respect to memory accesses and cache misses,
Algorithm 3 (“Exchange”) can improve on classical quicksort and shows very good memory
behavior for three or five pivots. For a large number of pivots, Algorithm 1 (“Permutey”) improves
over classical quicksort and over Algorithm 3 in general. However, for a large number of pivots it
incurs many TLB misses. Algorithm 2 (“Copyy”) uses a simpler partitioning strategy that avoids
problems regarding the TLB even for a large number of pivots, but has worse cache behavior
than Algorithm 1.

In the next section, we will consider running time measurements of multi-pivot quicksort algo-
rithms and try to explain our findings by linking them to the theoretical cost measures considered
here.

85

7. The Cost of Rearranging Elements

0.14 | e
—eo— Permute; 27 —8— Permute/ o, o
0.12 —e— Permute;5 —— Permute]; |
01l ——Permutes 2 - o - Permutef » .
-&- Permute/, - - Exchange; /

0.08 + -+- Exchangeg --+-- COPY/127 ’
0.06 |-
0.04

TLB load misses/n Inn [ns]

0.02 -

16 17 18 19 20 21 22 23 24 25 26 27 28
Items [logsy(n)]

Figure 7.8.: TLB misses for Algorithms 1-3. Each data point is averaged over 500 trials, TLB load
misses are scaled by n1nn.

86

8. Running Time Experiments

We have implemented the methods presented in this thesis in C++. Details about the ma-
chine used in our experiments can be found in Section 1. For compiling C++ code, we used
gec in version 4.8. We did no manual tweaking to the produced assembler code. We used
the compiler flags -O3 and -funroll-loops. The option -funroll-loops tells the compiler to “op-
timize” loop statements, e.g., by unrolling the loop body for loops which consist only of a
few iterations. (In general this might slow an algorithm down.) In all settings, we used -
march=native, which means that the compiler tries to optimize for the specific CPU architec-
ture we use during compilation. We remark that these optimization flags have a big impact
on observed running times. While there is only a small difference between the settings -O2
and -O3 in our setup, some algorithms benefit significantly from unrolling loops. The influence
will be described later in more detail. However, we stress that our results do not allow final
statements on the running time behavior of quicksort variants. (Since such a small compiler
flag has such an impact on running time.) The source code of our algorithms can be found
athttp://eiche.theoinf.tu-ilmenau.de/maumueller-diss/. The experimental frame-
work to measure running time and generate inputs is based on source code written by Timo
Bingmann.

Since we consider many different algorithms, we structure this section as follows: First, we
consider the dual-pivot quicksort strategies from Section 4. Next, we consider k-pivot quicksort
algorithms based on the partitioning algorithm “Exchange;” (Algorithm 3). Subsequently, we
will compare k-pivot quicksort algorithms based on algorithm “Permute;” (Algorithm 1) and
“Copyy” (Algorithm 2). At the end, we will summarize our findings with respect to the running
time of multi-pivot quicksort algorithms.

In each experiment, we sort random permutations of {1,...,n}. Usually, we test input sizes
n = 2¢, for 17 < i < 27, and average our results over 500 trials. We consider the significance of
running time differences by letting each algorithm sort the same 500 inputs containing 227 items.
This allows us to compare running times in more detail, for example, by saying that algorithm A
was faster than algorithm B for at least 95% of the inputs.

Detailed experimental data has been moved to the appendix to keep this section readable.
Appendix B contains exact measurements for all algorithms considered here.

8.1. Running Times of Dual-Pivot Quicksort Algorithms

For better readability, the algorithms considered in this section are presented in Table 8.1. Pseu-
docode for the dual-pivot methods is provided in Appendix A. In the following, we use a calli-

87

http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/

8. Running Time Experiments

Abbreviation Full Name Strategy Pseudocode
Yy Yaroslavskiy’s Algorithm || Section 4.1 || Algorithm 6 (Page 207)
L Larger Pivot First Section 4.1 || Algorithm 7 (Page 208)
SP Sample Algorithm Section 4.2 || Algorithm 10 (Page 212)
C Counting Algorithm Section 4.2 || Algorithm 11 (Page 213)

Table 8.1.: Overview of the dual-pivot quicksort algorithms considered in the experiments.

graphic letter both for the classification strategy and the actual dual-pivot quicksort algorithm.

The running time results we obtained are shown in Figure 8.1. We see that Yaroslavskiy’s
algorithm and the simple strategy £ (“Always compare to the larger pivot first’) are the fastest
algorithms. The comparison-optimal sampling algorithm SP cannot compete with these two
algorithms with respect to running time. On average it is about 5.1% slower than algorithm).
The slowest algorithm is the counting algorithm C; on average it is about 14.3% slower than).
We see that only the running time of strategy SP seems to be affected by the input size. This is
due to the fact that it sorts inputs that contain at most 1024 items with Yaroslavskiy’s algorithm,
which makes it faster for small inputs. (For such small inputs, the sampling step adds too much
overhead.) We note that our implementations of dual-pivot quicksort algorithms did not benefit
from loop unrolling.

Now, we consider the significance of differences in running time. In Table 8.2 we consider the
number of cases which support the hypothesis that an algorithm is a given percentage faster than
another algorithm. The table shows that the difference in running time is about 1% smaller than
the average running time suggested if we consider only “significant” running time differences,
i. e., differences that were observed for at least 95% of the inputs. In particular, we conclude that
there is no significant difference in running time between £ and). This result surprises, for
algorithm) makes fewer comparisons (1.9n1Inn vs. 2nlnn) than algorithm £. Furthermore,
both algorithms require the same number of assignments and have similar cache behavior. From
Table B.4 (in Appendix B) we conclude that £ executes about 10% fewer instructions than).
This is mainly caused by avoiding the test whether or not the two pointers that move towards
each other have crossed more often in £. (See Line 2 in Algorithm 6 on Page 207 and the same
line in Algorithm 7.) Since these instructions are fairly simple and predictable, the difference in
instruction count does not translate into significantly better running time.

8.2. Running Times of k-Pivot Quicksort Algorithms based on
“Exchange;,”

We now consider the running times of k-pivot quicksort algorithms implementing the partition-

ing strategy “Exchange;” (Algorithm 3), for k& € {1,2,3,5,7,9}. We use classical quicksort for
k = 1, we use strategy L for k = 2. For k = 3, we use the recently discovered algorithm of

88

8.2. Running Times of k-Pivot Quicksort Algorithms based on “Exchangey,”

a6l T T T T T T T T T T T .
5 — & s 5 5 w8
4.5 N
E 441)-8 (C—o-SP—+L N
I
s 43r |
<
~
.E 4.2 ’—__—."".-ﬂ—'____‘____._#__.____.__——0————1———-4 |
=
4.1 8
41 % ® & —®— —o———@ N
| | | | | | | | | | |

16 17 18 19 20 21 22 23 24 25 26 27 28
Items [logy(n)]

Figure 8.1.: Running time experiments for dual-pivot quicksort algorithms. Each data point is the
average over 500 trials. Times are scaled by nInn.

Kushagra et al. [Kus+14], which combines Algorithm 3 with the symmetrical comparison tree l5
from Figure 6.3. For 5, 7, and 9 pivots, we use Algorithm 3 with the comparison trees depicted
in Figure 8.2. We remark that the source code becomes quite complicated for algorithms based
on Exchangey, for large k. For example, the implementation of “Exchangeg” with the comparison
tree from Figure 8.2 has about 400 lines of C++ code.

The results of our experiments can be seen in Figure 8.3. With respect to the average running
time, we see that the 3-pivot algorithm of Kushagra et al. and the dual-pivot algorithm £ are
the fastest algorithms. All other algorithms are significantly slower. Among the remaining al-
gorithms, classical quicksort is slightly faster than 5-pivot quicksort. The 7-pivot algorithm and
the 9-pivot algorithm are slowest. With respect to significant differences in running time, i.e.,
running times observed for at least 95% of the test inputs, we cannot spot a difference between
the 2- and 3-pivot algorithm. Classical quicksort, the 5-pivot algorithm, the 7-pivot algorithm,
and the 9-pivot algorithm are 6.5%, 7.7%, 13.7%, and 16.5% slower than the 3-pivot algorithm,
respectively. The scaled times are almost constant for all algorithms.

89

8. Running Time Experiments

4.8

4.6 |- e ., 0 o — |

E —o— Exchange; —#— Exchange, —e— Exchanges

S ual —— Exchanges —— Exchangey -e-- Exchangeg |
g .

— **——W“ N o

= ‘ ¢ ‘

Py % O o o o —O0——0—°

£

o 420 -

16 17 18 19 20 21 22 23 24 25 26 27 28
Items [logy(n)]

Figure 8.3.: Running time experiments for k-pivot quicksort algorithms based on the “Exchange,”
partitioning strategy. Each data point is the average over 500 trials. Times are scaled

by nlnn.

90

8.3. Running Times of k-Pivot Quicksort Algorithms based on “Permutey,” and “Copyy,”

Y L SP C
Y — -/-10.5% | 4.5%/5.1%/5.9% | 13.4%/14.3%/15.6%
L -/0.1%/0.7% — 4.2%/5.1%/6.8% | 13.3%/14.3%/15.9%
SP — — — 7.8%1/8.6%/9.9%
c — — — —

Table 8.2.: Comparison of the actual running times of the algorithms on 500 different inputs
of size 227. A table cell in a row labeled “A” and a column labeled “B” contains a
string “z%/y%/2%” and is read as follows: “In about 95%, 50%, and 5% of the cases
algorithm A was more than z, y, and 2 percent faster than algorithm B, respectively””

8.3. Running Times of k-Pivot Quicksort Algorithms based on
“Permute;” and “Copy;”

Here we consider the running times of k-pivot quicksort algorithms implementing the partition-
ing strategies “Permutey,” (Algorithm 1) and “Copy},” (Algorithm 2), respectively. We first remark
that both algorithms are only competitive when element groups are stored during the classifica-
tion phase. When classifying each element twice, the running times of all these algorithms are a
factor of at least 1.7 higher than the running time of classical quicksort. One byte per element
suffices to store the outcome of the classification for fewer than 256 pivots. When sorting 64-
bit integers as in our experiments, the memory overhead is thus roughly 12.5%. In the further
discussion, we assume element groups to be stored. We refer to the algorithms by Permute), and
Copy}-

In our experiments, variants of Permute) and Copy) which use fewer than seven pivots were
much slower than the algorithms based on Exchangey. Consequently, we omit the results here
and report on the results we obtained for k € {7,15,31, 127,255, 511}. The group of an element
is determined using the obvious symmetrical comparison tree for 2% — 1 pivots, for K > 1,
in which all leaves are on the same level. For the implementation of this strategy, we used a
nice trick due to Sanders and Winkel [SW04] communicated to us with source code by Timo
Bingmann. We store the symmetrical classification tree implicitly in an array as it is known
from binary heaps, i.e., the left and right child of a node stored at position j in the array is
at positions 25 and 25 + 1 in the array, respectively. For the classification of an element, we
use a standard binary search in this implicit representation. Suppose for a specific element this
binary search ended at position j with j > k. The group the element belongs to is then j —
k. This classification strategy does incur only few branch mispredictions on modern CPU’s,
because the decision whether to continue at array position 2j or 25 + 1 after comparing an
element with the pivot at array position j can be implemented by a predicated move. (This
was done automatically by the compiler in our experiments.) We used the source code of Timo
Bingmann for the implementation of the classification strategy. We remark that algorithms based
on “Permute;” and “Copyy” strongly benefit from loop unrolling.

91

8. Running Time Experiments

—o—Permute’,, —#— Permute’; —e— Permute);
—— Permutef;; ——Permutef,, - - Permute’,

T T T T T T T T T
45| 2
R]
I
=
S
~
5} — -
£ 3.5
[_1
3, -
| | | | | | | | | |

18 19 20 21 22 23 24 25 26 27
Items [logy(n)]

Figure 8.4.: Running time experiments for k-pivot quicksort algorithms based on the “Permute;”
partitioning algorithm. Fach data point is the average over 500 trials. Times are scaled
by n Inn.

Figure 8.4 shows the results of our experiments with respect to algorithms based on Permute)..
We see that the variant using 127 pivots provides the best running times. For n = 227, it is about
10.5%, 12.5%, 17.5%, 31%, and 34% faster, for at least 95% of the inputs, than the variants
using 255, 31, 15, 511, and 7 pivots, respectively. Furthermore, the 15-pivot variant becomes
faster for larger n. On the other hand, the 31-pivot variant becomes slightly slower. The 127-
and 255-pivot algorithms and especially the 511-pivot algorithm become slower for larger inputs.
We suspect that this is due to misses in the TLB, as studied in the previous section. From that
section we also known that TLB misses do not have a strong impact for algorithms based on
Copy},.. Our experiments show that for this variant, using 127 pivots is also the best choice.

Last of all, we compare Copy’,-, which is the super scalar sample sort algorithm of Sanders
and Winkel [SW04], with the fastest algorithm based on the Exchangey, strategy (“Exchanges”)
and the fastest algorithm based on the Permutey, strategy (“Permute’,,”). For reference to library
algorithms, we also show the results we got with respect to the well-engineered quicksort variant
in the C++ standard library (std: : sort). (This algorithm is a variant of introsort, a quicksort
variant with worst-case O(n logn) running time [Mus97].)

The result of this experiment is shown in Figure 8.5. The super scalar sample sort algorithm
of Sanders and Winkel is fastest in our setup. For n = 227 it is on average about 17.3% faster

92

8.3. Running Times of k-Pivot Quicksort Algorithms based on “Permutey,” and “Copyy,”

4.5+ 4‘#_#__.____H’/,/aoggggakggggo -
&
:; 4 = o o —a n o = = = B
=

. / /

£ 35} —e—std: :sort —a— Exchange3 —e— Copy’o; —— Permute’,- .
9]
2
=

18 19 20 21 22 23 24 25 26 27
Items [logy(n)]

Figure 8.5.: Final Running time experiments for k-pivot quicksort algorithms based in C++. Each
data point is the average over 500 trials. Times are scaled by nInn.

than Permute],,, which needs roughly half the space. (Only classification results are stored.)
Since our implementation of Copy’,; and Permute],; only differ in the partitioning phase, this
strongly supports the hypothesis that the running time of Permute/,, is strongly influenced by
TLB misses. Exchanges needs no additional space and is about 23.4% slower than Permute/ 5.
Both Copy’ 57 and Permute],, benefit from using Exchanges for handling small subarrays of size
at most 1024. std: : sort is the slowest algorithm, being about 13.3% slower than Exchanges.

In summary, the answer to the question “Which is the fastest quicksort variant?” strongly
depends on the amount of additional space one is willing to allocate. Only considering variants
that work in-place (except for the recursion stack), the three-pivot algorithm of Kushagra et al.
[Kus+14] seems to be the best choice. In our setup, there is almost no difference in running time
to the dual-pivot algorithms) and L. If we allow an additional overhead of one byte per item,
running times greatly improve by using Permute/,,. However, we suspect that the behavior of
this strategy with regard to TLB misses could make it slower than algorithms based on Exchangey,
on some architectures. Furthermore, it is important that the CPU supports the predicated move
instruction to save branch mispredictions. Finally, if space is no limiting factor, then Copy/ 7,
i. e., the super scalar sample sort algorithm of Sanders and Winkel from [SW04] is the method of
choice. With such a large space overhead other sorting methods, e. g., radix sort variants, should
also be considered when sorting integers. ([Big+08] report that on their setup a radix sort variant
was faster than classical quicksort.) We did not test these methods due to time constraints.

In the last section, we try to link our experimental findings to our theoretical cost measures.

93

8. Running Time Experiments

8.4. Do Theoretical Cost Measures Help Predicting Running Time?

The running time experiments showed that multi-pivot quicksort makes it possible to achieve
a better running time than classical quicksort, as observed in Java with the introduction of
Yaroslavskiy’s algorithm as the standard sorting algorithm in Java 7, and in the paper [Kus+14].
We now evaluate how the theoretical performance of an algorithm coincidences with its running
time in practice.

Combining the theoretical cost measures “comparisons”, “assignments”, and “memory ac-
cesses”, algorithms using the “Permute;” partitioning strategy should—for % large enough—
outperform algorithms based on the “Exchangey,” partitioning strategy. We have observed this in
our experiments. However, it was necessary to store the element groups. For a large number of
pivots, the TLB adds a significant overhead to the running time of algorithms based on Permutey,.

With respect to differences in running times of the “Exchangey,”-based algorithms, the theoret-
ical cost measures “memory accesses” and “assignments” show disadvantages of this partitioning
strategy for larger k. This agrees with our measurements from Figure 8.3. So, these cost measures
make us believe that the “Exchange;,” partitioning strategy is only fast for a small number of piv-
ots. However, for small values of k these cost measures cannot explain specific observations, e. g.,
(i) why “Exchangeg” is significantly slower than classical quicksort (“Exchange;”), and (ii) why
there is no significant difference between the 2- and 3-pivot quicksort algorithm.

In our tests, we also counted the average number of instructions and the average number of
branch mispredictions, see Table B.4 on Page 219 for details. We believe that a theoretical study
on the average number of instructions in the style of Wild et al. [WNN13] would have been
beneficial to explain our findings. From our measurements, “Exchanges” executes fewest instruc-
tions, closely followed by L. Also, Permute},, and Copy/,; executes the fewest instructions
of the tested algorithms based on the strategies Permute) and Copy), which nicely reflects the
empirical running time behavior.

With respect to branch mispredictions, we see that implementing the binary search in the
symmetrical classification tree by predicated moves decreases the average number of branch
mispredictions. (Variants based on the Exchange; strategy incur almost four times as much
branch mispredictions as algorithms based on Permutey, and Copyy.) From differences in branch
mispredictions, one might also find reasons for Exchange; being faster than Exchangeg. (In our
experiments, Exchange; makes 0.1nInn fewer branch mispredictions than Exchangeg, while
having almost the same average instruction count.)

Linking our measurements of cache misses and TLB misses with the often known penalties
for these events, we can also speculate about the number of CPU cycles the algorithm has to
wait for memory. Dividing these numbers by the total number of CPU cycles needed to sort the
input gives us an idea of how much of the sorting time is mandatory, i.e., cannot be avoided.
The exact description of the methodology and detailed results of this approach can be found in
Appendix B. Our basic results are as follows. Copy’),, shows the highest ratio of CPU cycles
necessary for memory accesses divided by the total number of CPU cycles needed for sorting.
In this algorithm, about 92% of the CPU cycles needed for sorting the input are necessary for

94

8.4. Do Theoretical Cost Measures Help Predicting Running Time?

memory accesses anyway. (This is achieved by “decoupling” the classifications, because each
element can be classified independently in the first pass.) In comparison, only 47% of the CPU
cycles have to be used just for memory accesses by Exchanges. For classical quicksort, about
63% of the CPU cycles are mandatory for memory accesses.

95

9. Conclusion and Open Questions

In the first part of this thesis, we studied quicksort algorithms that use more than one pivot.
Motivated by the recently discovered dual-pivot algorithm of Yaroslavskiy [Yar09] and the three-
pivot algorithm of Kushagra et al. [Kus+14], we provided a detailed analysis of multi-pivot
quicksort algorithms w.r.t. three different cost measures: comparisons, assignments, and memory
accesses.

We have described natural strategies that achieve the minimal possible average comparison
count for k-pivot quicksort. These strategies either count the group sizes observed so far or use a
small sampling step to decide how to classify the next element. More generally, we showed how
to calculate the average comparison count of a multi-pivot quicksort algorithm. The calculation
turned out to be difficult and we were only able to estimate the minimal average comparison
count of multi-pivot quicksort for the case of using at most three pivots. For more than three
pivots, we resorted to experiments to obtain rough approximations of the minimum average
comparison count. This led us conjecture that optimal k-pivot quicksort is inferior to the stan-
dard median-of-k approach for classical quicksort. Already for four pivots, optimal classification
strategies were too complex to yield improvements in empirical running time.

Next, we studied the cost of the actual partitioning step with respect to the average assignment
count and the average number of memory accesses. We described three general partitioning al-
gorithms. The first two algorithms partitioned the input in two passes, classifying the input in the
first pass and producing the actual partition in the second pass. One of these strategies obtained
this partition with an in-place permutation, the other strategy allocated a new array. These
strategies turned out to make fewer assignments, memory accesses and L1 cache misses than
classical quicksort when used with many pivots. Our experiments showed that it is necessary to
store the element classifications after the first pass to make these algorithms competitive. Then,
both algorithms were much faster than classical quicksort in practice, on the cost of an additional
memory overhead. We also studied a partitioning strategy that produced the partition in a single
pass, generalizing the partitioning strategy of classical quicksort, Yaroslavskiy’s algorithm and
the three-pivot algorithm of Kushagra et al. [Kus+14]. This strategy showed very good cache
behavior when used with three or five pivots. In experiments, the variants using two and three
pivots were the fastest algorithms, but were slower than the two-pass algorithms. We saw that
memory accesses predicted the running time differences in many cases very well.

In addition to the open questions from Section 6.6, we pose the following directions for future
work:

1. Usually, pivots are chosen from a sample to balance the size of subproblems, as shown for

97

9. Conclusion and Open Questions

98

dual-pivot quicksort in Section 5. It would be interesting to see how the theoretical cost
measures change when using pivot sampling in a multi-pivot quicksort algorithm.

. Memory accesses could not explain the L2 and L3 cache behavior of our algorithms. It

would be interesting to see how this can be analyzed.

. Our partitioning algorithms were not optimal with respect to the average number of as-

signments they required to rearrange the input. (It is a simple exercise to describe inputs
in which Algorithm 1 requires too many assignments.) It would be interesting to describe
“assignment-optimal” multi-pivot quicksort algorithms. Here it seems like one should look
for permute sequence (in the sense of Algorithm 1) that are as long as possible.

. Our running time experiments were conducted on random permutations of {1,...,n}.

For practical purposes, other input distributions are also important, e. g., inputs with equal
keys or inputs with some kind of “presortedness”.

Part 11

Hashing

99

10. Introduction

Hashing is a central technique in the design of (randomized) algorithms and data structures. It
finds application in such diverse areas as hash tables, load balancing, data mining, and machine
learning. The basic idea of hashing is to map elements from a (usually very large) universe U
to some smaller range R. To simplify the analysis of a hashing-based algorithm or data struc-
ture, one traditionally assumes that a hash function is “fully random”, i.e., hash values are dis-
tributed uniformly and independently in the range R. Additionally, their use is “free of charge”,
i.e., a hash function consumes no space and its evaluation takes unit time. Unfortunately, such
functions are not efficient, since their representation takes |U| log | R| bits. Consequently, many
scientific papers were devoted to the construction of explicit hash functions, which are not fully
random, but usually just “good enough” for running a specific application. This part of the thesis
pursues exactly this goal.

While a considerable amount of CPU time is spent in storing and reading data from hash
tables—many programming languages implement associative arrays as a standard data structure
and recommended their use in most cases—, little effort is put into the calculation of hash values.
Often, hash values are deterministic and collisions are easy to find. According to Pagh [Pag14], in
Oracle’s Java 7 the hash value h(x) of a string x = a . . . a,, follows the recursion h(a; ... a,) =
ord(an) + 31 - h(aj...an—1), with h(e) = 0, in signed 32-bit arithmetic. Sets of elements that
all have the same hash value are easy to find: First, observe that the strings “Aa” and “BB”
collide. With this knowledge and the recursive formula from above, one can see that all strings
(Aa|BB)", for n > 1, collide as well. Since hash tables are often used by web servers to parse
packets, attackers were able to render servers unusable with little traffic, see, e. g., [CW03]. As
of today, at least three major programming languages adopted stronger hash functions (e. g.,
Murmur3 [App] or SipHash [AB12]). These hash functions are nowadays salted with a random
seed when starting the program to make it harder to find collisions among keys. In this thesis, we
do not further discuss such hash functions; we only consider them in the experimental evaluation
in the last section.

Hash functions considered in theory use randomization to avoid worst-case inputs, i.e., the
use of the hash function will have provable guarantees on every possible input, which is a funda-
mental difference to deterministic hashing. The aim is to find practical, i. e., fast hash functions
with provable theoretical guarantees. While researchers started to work on this task almost 35
years ago, many important open problems have only been solved recently. Selected results will
be discussed in the next paragraphs.

Traditionally, explicit hash function constructions build upon the work of Carter and Weg-
man [CW79]. They proposed a technique called universal hashing. In universal hashing, a hash

101

10. Introduction

function is picked at random from a set H C {h | h: U — R}. (We call such a set H a hash
family or hash class.) The influential notions in universal hashing are “universality” and “inde-
pendence”, introduced by Carter and Wegman in [CW79]. The rigorous mathematical definition
of these concepts will be provided in Section 11. Informally, H is called universal if choosing
a hash function h € H at random guarantees that the probability that for two distinct keys
x,y € U we have h(z) = h(y) is close to what we get in the fully random case. Universality
of a hash family suffices for applications such as chained hashing where the expected number of
colliding elements is central in the analysis. For a fixed integer k, we call H k-independent, if
for a randomly chosen h € H the hash values of each set of at most £ distinct keys are uniform
and independent. The canonical representation of a k-independent hash family is the family of
all degree k — 1 polynomials over some prime field. For the representation of such a polynomial,
we just store its k coefficients (k words). The evaluation is possible in time O(k). A large body
of work has been devoted to the applicability of k-independent hash families. One of the most
surprising results, due to Pagh, Pagh, and Ruciz [PPR09], is that 5-wise independence suffices for
running linear probing—the most often used hash table implementation—, where “suffices” will
always mean that the guarantees are close to what we would get when using fully random hash
functions. Interestingly, this degree of independence is also necessary, for Patrascu and Thorup
[PT10] constructed an artificial 4-wise independent hash family which does not allow running
linear probing robustly. Another example where a constant degree of independence is sufficient is
frequency estimation. In [AMS99], Alon, Matias, and Szegedy showed that 4-wise independence
suffices for Fy-estimation. For such applications, both storing and evaluating the polynomial is
possible in constant space and time. For many other applications, such as cuckoo hashing [PR04]
and e-minwise independent hashing [Ind01], we know that a logarithmic degree of independence
suffices (in the size of the key set for the former, in 1/¢ for the latter). In that case, polynomials
use logarithmic space and evaluation time. If one aims for constant evaluation time, there exist
the construction of Siegel [Sie04]—although Siegel states that his construction has constant albeit
impractical evaluation time—and, more recently, the simple yet powerful construction of Thorup
[Tho13].

Finding a proof that a certain degree of independence allows running a specific application has
the advantage that one can choose freely from the pool of available hash families that achieve
the necessary degree of independence. If a faster hash family becomes known in future research,
one can just switch to this hash function. For example, this has happened with the introduction
of Thorup and Zhang’s fast tabulation-hashing class [TZ04; TZ12]. On the other hand, lower
bounds on a certain degree of independence often use artificial constructions and do not rule
out the possibility that “weak hash functions” (based on their universality or degree of indepen-
dence) actually suffice for running a specific application. Notable exceptions are the analysis of
Dietzfelbinger and Schellbach [DS09a; DS09b], who showed that cuckoo hashing cannot be run
with the so-called class of linear hash functions and the class of multiplicative hash functions in
certain situation, and Patrascu and Thorup [PT10], who demonstrated that linear probing is not
robust when using the multiplicative class of hash functions.

Only in the last decade, the analysis of specific explicit hash families has been a fruitful re-

102

search area. Dietzfelbinger and Woelfel [DW03] showed in 2003 that a hash family introduced
by Dietzfelbinger and Meyer auf der Heide in [DM90] allows running cuckoo hashing. In 2006,
Woelfel [Woe06a] demonstrated that the same hash class could be used for running the GoLeft
allocation algorithm of Voecking [V6c03] in the area of load balancing. In 2011, Patragcu and
Thorup [PT11] (full version [PT12]) analyzed a simple tabulation class of hash functions known
at least since Zobrist’s use of it in the 1970-ies [Zob70]. They proved that it has sufficient ran-
domness properties in many applications, including static cuckoo hashing, linear probing, and &-
minwise independent hashing, despite of the fact that it is only 3-wise independent. In tabulation
hashing, each key is a tuple (x1, ..., z.) which is mapped to the hash value fi(z1)®---® fo(x.)
by ¢ uniform random hash functions fi, ..., f., each with a domain of cardinality U'/¢. Two
years later, the same authors introduced “twisted tabulation hashing” [PT13], which gives even
stronger randomness properties in many applications. Recently, Dahlgaard, Knudsen, Rotenberg,
and Thorup extended the use of simple tabulation to load balancing [Dah+14], showing that sim-
ple tabulation suffices for sequential load balancing with two choices. Furthermore, Dahlgaard
and Thorup proved that twisted tabulation is e-minwise independent [DT14]. While these hash
functions provide constant evaluation time, their description length is polynomial in the size of
the key set. With respect to description length, Celis, Reingold, Segev, and Wieder [Cel+13] pre-
sented a new hash class which is more concerned about space complexity. In 2014, Reingold,
Rothblum, and Wieder [RRW14] showed that this class of hash functions has strong enough
randomness properties for running a slightly modified version of cuckoo hashing and sequen-
tial allocation with two hash functions (“the power of two choices”). While it has non-constant
evaluation time, its description length is notably smaller than what one gets using the standard
polynomial approach (O (log nloglog n) vs. O(log? n) bits).

Several techniques to circumvent or justify the uniform hashing assumption have been pro-
posed. The most general one is to “simulate” uniform hashing. Suppose we want to construct
a hash function that takes on fully random values from R. The idea is to generate a family H
of hash functions at random such that with high probability H is “uniform” on S C U, which
means that a random hash function h € H restricted to the domain S is a true random function.
Such a simulation was presented by Pagh and Pagh in [PP08], by Dietzfelbinger and Woelfel in
[DW03], and by Dietzfelbinger and Rink in [DR09]. In this thesis, we will provide a simple al-
ternative construction which builds upon the work of [PP08]. However, such simulations require
at least a linear (in |.S| - log | R|) number of bits of additional space, which is often undesirable.
Another perspective on uniform hashing is to assume that the key set S = {z1,...,2,} CU'is
“sufficiently random”. Specifically, Mitzenmacher and Vadhan showed in [MV08] that when the
distribution that governs {z1, ..., x,} has a low enough collision probability, then even using a
hash function A from a 2-wise independent hash class H C {h | h: U — R} makes the sequence
(h, h(z1),...,h(x,)) distributed close to the uniform distribution on H x R™ (see also [Die12]).
An alternative is the so-called split-and-share technique [Fot+05; Die07; DR09; BPZ13], in which
S is first partitioned by a top-level hash function into smaller sets of keys, called bins. Then, a
problem solution is computed for each bin, but all bins share the same hash functions. Since the
size of each bin is significantly smaller than the size of S, it is possible to use a hash function that

103

10. Introduction

behaves like a true random hash function on each bin. Finally, the problem solution of all bins
is combined to a solution of the original problem. This technique cannot be employed uniformly
to all applications, as ad-hoc algorithms depending on the application are required to merge the
individual solutions for each bin to a solution of the original problem. In some scenarios, e. g.,
balanced allocation with high loads, the small deviations in the bin sizes incurred by the top-level
hash function are undesirable. Moreover, additional costs in space and time are caused by the
top-level splitting hash function and by compensating for a larger failure probability in each of
the smaller bins.

The Contribution. We generalize a hash family construction proposed by Dietzfelbinger and
Woelfel in [DW03]. To put our contribution in perspective, we first review some background.
Building upon the work of Dietzfelbinger and Meyer auf der Heide [DM90], Dietzfelbinger and
Woelfel showed in [DW03] that a class of simple hash functions has strong randomness properties
in many different applications, e.g., in standard cuckoo hashing [PR04], to simulate a uniform
hash function, and in the context of simulations of shared memory situations on distributed
memory machines. Their analysis is based on studying randomness properties of graphs built in
the following way: Consider a set S of n keys chosen from a finite set U and a pair (hy, hs) of
hash functions hj, ho: U — [m] = {0,...,m — 1} for some positive integer m. Then, S and
(h1, ho) naturally define a bipartite graph G(S, hy, he) := (V, E) with V' = V};, o, where V};,
is the union of two disjoint copies of [m] and E = {(h;(z), ha(z)) | x € S}. Dietzfelbinger and
Woelfel studied the randomness properties of G(S, h1, ho) when it is constructed using a certain
explicit hash family. They showed that the connected components of this graph behave, in some
technical sense, very close to what is expected of the graph G(S, h1, he) when hy, ho were to be
fully random. Later, Woelfel described in [Woe06a] how the construction from [DW03] extends
to hypergraphs and analyzed the allocation algorithm of Voecking [V6c03] using this hash class.

We extend the hash class described in [DW03; Woe06a] to a hash class we call Z. We provide
a general framework that allows us to analyze applications whose analysis is based on arguments
on the random graph described above when hash functions from Z are used instead of fully ran-
dom hash functions. To argue whether the hash class can run a certain application or not, only
random graph theory is applied, no details of the actual hash class are exposed. Using this frame-
work, we show that hash functions from Z have randomness properties strong enough for many
different applications, e. g., cuckoo hashing with a stash as described by Kirsch, Mitzenmacher,
and Wieder in [KMW09], generalized cuckoo hashing as proposed by Fotakis, Pagh, Sanders, and
Spirakis in [Fot+05] with two recently discovered insertion algorithms due to Khosla [Kho13] and
Eppstein, Goodrich, Mitzenmacher and Pszona [Epp+14] (in a sparse setting), the construction of
a perfect hash function of Botelho, Pagh and Ziviani [BPZ13], the simulation of a uniform hash
function of Pagh and Pagh [PP08], and different types of load balancing as studied by Schickinger
and Steger [SS00]. The analysis is done in a unified way which we hope will be of independent
interest. We will find sufficient conditions under which it is possible to replace the full random-
ness assumption of a sequence of hash functions with explicit hash functions. Furthermore, our

104

small modification of the construction of [DW03; Woe06a] makes the analysis easier and the hash
functions faster in practice.

The General Idea. We will describe the class Z of hash function tuples h = (hy, ..., hq),
hi: U — [m]. For each key x € U, the hash function values h;(x) can be computed with a
small (constant) number of arithmetic operations and lookups in small (cache-friendly) tables.
For a set S C U we then consider properties of the random graph G(.S, ﬁ), which is the obvious
hypergraph extension of G(S, h1,h2) to d > 3 hash functions, motivated by the following
observation.

The analysis of hashing applications is often concerned with bounding (from above) the prob-
ability that random hash functions A1, . . ., hg map a given set S C U of keys to some “bad” hash
function values. Those undesirable events can often be described by certain properties exhibited
by the random graph G(S, E) For example, in the dictionary application cuckoo hashing, a bad
event occurs when G(S, h1, ho) contains a very long simple path or a connected component with
at least two cycles.

If hy, ..., hq are uniform hash functions, then often a technique called first moment method
(see, e.g., [Bol85]) is employed to bound the probability of undesired events: In the standard
analysis, one calculates the expectation of the random variable X that counts the number of
subsets 7" C S such that the subgraph G (T, E) forms a “bad” substructure, as e.g., a connected
component with two or more cycles. This is done by summing the probability that the subgraph
G(T, E) forms a “bad” substructure over all subsets 77 C S. One then shows that E(X) =
O(n™?) for some a > 0 and concludes that Pr(X > 0)—the probability that an undesired event
happens—is at most O(n~%) by Markov’s inequality.

We give general sufficient conditions allowing us to replace uniform hash functions h1, ..., hq
with hash function sequences from Z without significantly changing the probability of the oc-
currence of certain undesired substructures GG (T, E) On a high level, the idea is as follows: We
assume that for each 7' C U we can split Z into two disjoint parts: hash function sequences
being T'-good, and hash function sequences being 7T-bad. Choosing h = (hi,...,hq) at ran-
dom from the set of T-good hash functions ensures that the hash values h;(z) with z € T and
1 <@ < d are uniformly and independently distributed. Fix some set S C U. We identify some
“exception set” Bg C Z (intended to be very small) such that for all T C S we have: If G(T, 1)
has an undesired property (e.g., a connected component with two or more cycles) and h is T-bad,
then h € Bg.

For T' C S, disregarding the hash functions from Bg will allow us to calculate the probability
that G(T, h) has an undesired property as if h were a sequence of uniform hash functions. It
is critical to find subsets Bg of sufficiently small probability. Whether or not this is possible
depends on the substructures we are interested in. However, we provide criteria that allow us to
bound the size of Bg from above entirely by using graph theory. This means that details about
the hash function construction need not be known to argue that random hash functions from Z
can be used in place of uniform random hash functions for certain applications.

105

10. Introduction

Outline and Suggestions. Section 11 introduces the considered class Z of hash functions and
provides the general framework of our analysis. Because of its abstract nature, the details of
the framework might be hard to understand. A simple application of the framework is provided
in Section 11.4. There, we will discuss the use of hash class Z in static cuckoo hashing. The
reader might find it helpful to study the example first to get a feeling of how the framework
is applied. Another way to approach the framework is to first read the paper [ADW14]. This
paper discusses one example of the framework with an application-specific focus, which might
be easier to understand.

The following sections then deal with applications of the hash function construction. Because
of the diverse applications, the background of each application will be provided in the respective
subsection right before the analysis.

Sections 12 and 13 deal with randomness properties of Z on (multi-)graphs. Here, Section 12
provides some groundwork for bounding the impact of using Z in our applications. Section 13
discusses the use of Z in cuckoo hashing (with a stash), the simulation of a uniform hash function,
the construction of a perfect hash function, and the behavior of Z on connected components of
G(S, h1, h2).

The next section (Section 14) discusses applications whose analysis builds upon hypergraphs.
As an introduction, we study generalized cuckoo hashing with d > 3 hash functions when
the hash table load is low. Then, we will discuss two recently described, alternative insertion
algorithms for generalized cuckoo hashing. Finally, we will prove that hash class Z provides
strong enough randomness properties for many different load balancing schemes.

In Section 15 we show how our analysis generalizes to the case that we use more involved
hash functions as building blocks of hash class Z, which lowers the total number of needed hash
functions and the space consumption.

As performance is a key component of a good hash function, we evaluate the running time of
hash functions from class Z and compare it to many other hash functions, e. g., simple tabulation
hashing [PT12] and deterministic hash functions such as Murmur3 [App] in Section 16.

Summary of Results. The most important result of this part of the thesis is the general frame-
work developed in Section 11. It states sufficient (and often “easy to check”) conditions when
one can use hash class Z in a specific application. Its usefulness is demonstrated by analyzing
many different, sometimes very recent algorithms and data structures. In some cases, we are the
first to prove that an explicit construction has good enough randomness properties for a specific
application. In some applications, we get guarantees that match what one would get in the fully
random case, e. g., for cuckoo hashing (with a stash). In other cases, the analysis does only allow
to get close to what one achieves with fully random hash functions, e. g., in the construction of a
perfect hash function. Sometimes, our theoretical bounds are far away from what we get in the
fully random case, e. g., for generalized cuckoo hashing. The results of our experiments suggest
that variants of hash class Z are quite fast while providing theoretical guarantees not known
from other hash function constructions.

106

11. Basic Setup and Groundwork

Let U and R be two finite sets with 1 < |R| < |U|. A hash function with range R is a mapping
from U to R. In our applications, a hash function is applied on some key set S C U with
|S| = n. Furthermore, the range of the hash function is the set [m| = {0,...,m — 1} where
often m = O(n). In measuring space, we always assume that log |U]| is a small enough term that
vanishes in big-Oh notation when compared with terms depending on n. If this is not the case,
one first applies a hash function to collapse the universe to some size polynomial in n [Sie04].
We say that a pair x,y € U, x # y collides under a hash function g if g(z) = g(y).

The term universal hashing introduced by Carter and Wegman in [CW77] refers to the tech-
nique of choosing a hash function at random from a set #,,, C {h | h: U — [m]}. Here, H,,
is an indexed family {h;};cs. Such an indexed family is called a hash class or hash family, and
selecting a hash function from #,, means choosing its index ¢ € I uniformly at random. Next,
we define two important notions for such hash families: universality and independence.

Definition 11.0.1 [CW77; CW79]
For a constant ¢ > 1, a hash class 7 with functions from U to [m)] is called c-universal if for
an arbitrary distinct pair of keys x,y € U we have

Pryey (h(z) = h(y)) < ¢/m.

We remark that there exists the concept of optimal universality, where two distinct keys collide
with probability at most (|U| — m)/(|U| - m — m), see [Woe99]. However, 2-universal hash
classes suffice for our applications. Examples for c-universal hash families can be found in, e. g.,
[CW77; Die+97; Woe99]. In the following, F, denotes an arbitrary c-universal hash family with
domain U and range [m].

Definition 11.0.2 [WC79; WC81]
For an integer x > 2, a hash class H with functions from U to [m] is called a k-wise
independent hash family if for arbitrary distinct keys x1,...,2, € U and for arbitrary

J1,-- - Jr € [m] we have
Prpen (h(.’I}l) =7 NA...A h((L‘H) = j,@) = l/m”.

In other terms, choosing a hash function uniformly at random from a x-wise independent class
of hash functions guarantees that the hash values are uniform in [m] and that each key from

107

11. Basic Setup and Groundwork

an arbitrary set of at most k keys from the universe is mapped independently. The classical &-
wise independent hash family construction is based on polynomials of degree x — 1 over a finite
field [WC79]. Other constructions are based on combining values that are picked from small
tables filled with random elements from [m] with bitwise exclusive or (tabulation-based hashing).
To pick these values, we can, e. g., split a key z into characters z1,...,z. over some alphabet
and pick as the i-th value the value in cell x; in table ¢ [PT12] (and, with a small twist, [PT13]).
However, this scheme is only 3-wise independent. To achieve a higher degree of independence,
one needs to derive additional keys. See [DW03; TZ12; KW12; PT12] for constructions using this
approach. Tabulation-based constructions are often much faster in practice than polynomial-
based hashing (c¢f. [TZ12]) on the cost of using slightly more memory. Throughout this thesis,
H! denotes an arbitrary x-wise independent hash family with domain U and range [m].

11.1. The Hash Class

The hash class presented in this work draws ideas from many different papers. So, we first give
a detailed overview of related work and key concepts.

Building upon the work on k-independent hash families and two-level hashing strategies, e. g.,
the FKS-scheme of Fredman et al. [FKS84], Dietzfelbinger and Meyer auf der Heide studied
in [DM90; DM92] randomness properties of hash functions from U to [m] constructed in the
following way: For given ky, ko, m,n > 2, and 6 with 0 < 6 < 1,set £ = n%. Let f: U — [m]
be chosen from a k;-wise independent hash family, and let g: U — [¢] be chosen from a ka-wise
independent hash family. Fill a table z[1..¢] with random values from [m]. To evaluate a key =,
evaluate the function

h(z) = f(z) + z[g(x)] mod m. (11.1)

The idea is as follows: The g-function splits a key set S into buckets S; = {z € S | g(z) = j},
for 0,...,¢ — 1. To an element x from bucket S}, the hash functions f(z) + z[j] is applied. So,
all elements in one row are rotated with the same random offset. Since these offsets are chosen
randomly, collisions of keys that lie in different buckets happen like the hash values would be
fully random, and one has only to care about the dependency of keys in a fixed bucket. Here,
the focus of the analysis was the behavior of the hash class with regard to collisions of keys. The
data structure needs O(n?) words and can be evaluated in time O(max{k;, k2}).

For m = n, the hash class of [DM90] had many randomness properties that were only known
to hold for fully random hash functions: When throwing n balls into n bins, where each candi-
date bin is chosen by “applying the hash function to the ball”, the expected maximum bin load is
O(logn/loglogn), and the probability that a bin contains ¢ > 1 balls decreases exponentially
with 4. Other explicit hash families that share this property were discovered by Patrascu and
Thorup [PT12] and Celis et al. [Cel+13] only about two decades later.

In 2003, Dietzfelbinger and Woelfel [DW03] generalized the construction from [DM90] to pairs
(h1, he) of hash functions with h;: U — [m], for i € {1,2}. Naively, one could just duplicate

108

11.1. The Hash Class

the construction of [DM90]. They showed, however, that one should choose two f-functions,
two z-tables, but only one g-function that is shared among h; and hy. The key idea of the
analysis was that when the g-function distributes a fixed set T C S “well enough”, then hy
and hg can be seen as fully random hash functions on 7". They used this insight to study the
randomness properties of the graph G(S, h1, hy) whose vertex set consists of two copies of [m)]
and whose edge set is {(h1(x), ha(z)) | = € S}. They showed that this graph behaves “almost
fully randomly”, in some technical sense, inside its connected components. Using this result, they
proved that this explicit hash family has strong enough randomness properties that allows us to
use it in, e. g., cuckoo hashing, the simulation of a uniform hash function, and the simulation of
shared memory situations.

In 2006, Woelfel [Woe06a] generalized this construction from two to d > 2 hash functions
using d f-functions, d z-tables and one shared g-function. He showed that it can run the GoLeft
algorithm of Vocking [V6c03] for sequential balanced allocation where each ball can choose from
d > 2 bins.

We modify the construction of the hash class in two different ways: First, we restrict f and
g to be from very simple, two-independent and two-universal, resp., hash classes. Second, we
compensate for this restriction by using ¢ > 1 g-functions and d-c z-tables. This modification has
two effects: it makes the analysis simpler and it seems to yield faster hash functions in practice,
as we shall demonstrate in Section 16.

Definition 11.1.1

Letc > 1and d > 2. For integers m, ¢ > 1,and given f1,..., fg: U = [m], 91,...,9c: U —
4], and d two-dimensional tables z()[1..¢, 0..¢ — 1] with elements from [m] fori € {1,...,d},
we let h = (hi,... hg) = (he, .. ha)(f1 ooy fan g1y Ger 20,0 2D, where

hi(z) = (fz(ac) + I;Cz(i)[j,gj(x)]) mod m, forx € U,i € {1,...,d}.

Let 77 be an arbitrary two-universal class of hash functions from U to [¢], and let H2, be
an arbitrary two-wise independent hash family from U to [m]. Then ngi(]: 2 G2) is the

family of all sequences (hi, ..., hq){(f1,---s farg1s---r9e, 20, .. 2 D) for f; € H2, with
1<i<dandg; € F} with1 <j <c.

Obviously, this hash class can be generalized to use arbitrary x-wise independent hash families
as building blocks for the functions f;, for 1 < i < d, and g;, for 1 < j < c. However, the
simpler hash functions are much easier to deal with in the proofs of this section. We defer the
discussion of such a generalization to Section 15.

While this is not reflected in the notation, we consider (hy, ..., hq) as a structure from which
the components g, ..., g. and fi, 20, i e {1,...,d}, can be read off again. It is family
Z = Zz’i(fz, G2)) for some ¢ > 1 and d > 2, made into a probability space by the uni-
form distribution, that we will study in the following. We usually assume that c and d are fixed

109

11. Basic Setup and Groundwork

and that m and ¢ are known. Also, the hash families F, ZQ and G2, are arbitrary hash families (pro-
viding the necessary degree of universality or independence) and will be omitted in the further
discussion.

Definition 11.1.2
For T' C U, define the random variable dr, the “deficiency” of h = (h1, ..., hq) with respect

-

to T, by dp(h) = |T| — max{|g1(T)|, ..., |gc(T)|}. Further, define
(i) badr as the event that dp > 1;
(i) good as badr, i. e., the event that dp < 1;
(iii) crity as the event that dp = 1.

Hash function sequences (hy, ..., hy) in these events are called “T'-bad”, “T'-good”, and “T -
critical”, respectively.

It will turn out that if a function g; is injective on a set 7" C U, then all hash values on T are
independent. The deficiency dr of a sequence h of hash functions measures how far away the
hash function sequence is from this “ideal” situation. If h is T-bad, then for each component g;
there are at least two collisions on 7. If /2 is T -good, then there exists a g;-component with at
most one collision on 7. A hash function £ is T-critical if there exists a function g; such that
exactly one collision on 7" occurs, and for all other functions there is at least one collision. Note
that the deficiency only depends on the gj-components of a hash function. In the following, we
will first fix these gj-components when choosing a hash function. If d(7") < 1 then the yet
unfixed parts of the hash function (i. e., the entries in the tables 2() and the f-functions) are
sufficient to guarantee strong randomness properties of the hash function on 7T'.

Our framework will build on the randomness properties of hash class Z that are summarized
in the next lemma. It comes in two parts. The first part makes the role of the deficiency of a hash
function sequence from Z precise, as described above. The second part states that for a fixed set
T C S three parameters govern the probability of the events crity or badr to occur: The size of
T, the range [¢] of the g-functions, and their number. To be precise, this probability is at most
(|T|%/£)¢, which yields two consequences. When |T'| is much smaller than , the factor 1/¢¢ will
make the probability of a hash function behaving badly on a small key set vanishingly small. But
when |T'| is larger than /, the influence of the failure term of the hash class is significant. We will
see later how to tackle this problem.

110

11.2. Graph Properties and the Hash Class

Lemma 11.1.3
Assume d > 2 and ¢ > 1. For T' C U, the following holds:

(a) Conditioned on good; (or on crity), the hash values (hi(z),...,hq(x)), € T, are

distributed uniformly and independently in [mn]?.

(b) Pr(badr U critr) < (|T]* /¢)°.

Proof. Part (a): If |T| < 2, then hq, ..., hq are fully random on 7" simply because f1,..., fq
are drawn independently from 2-wise independent hash classes. So suppose |T'| > 2. First,
fix an arbitrary g-part of (hy,. .., hq) so that crity occurs. (The statement follows analogously
for good.) Let jo € {1,...,c} be such that there occurs exactly one collision of keys in 7'
using gj,. Let x,y € T,z # y, be this pair of keys (i.e., gj,(x) = gj,(y)). Arbitrarily fix all
values in the tables z()[j, k] with i € {1,...,d},j # jo, and 0 < k < ¢ — 1. Furthermore,
fix 2 [jo, gjo(x)] with i € {1,...,d}. The hash functions (hy,...,h,) are fully random on
x and y since f1, ..., fq are 2-wise independent. Furthermore, the function g;, is injective on
T — {x,y} and for each ' € (T — {x,y}) the table cell 2 [jo, g;,(x')] is yet unfixed, for
i € {1,...,d}. Thus, the hash values hy(z),...,hqg(x), z € T — {x,y}, are distributed fully
randomly and are independent of the hash values of x and y.

Part (b): Assume |T| > 2. (Otherwise the events crity or bady cannot occur.) Suppose crity
(or badr) is true. Then for each component g;, 1 < ¢ < ¢, there exists a pair z,y € T, x # v,
such that g;(z) = g¢;(y). Since g; is chosen uniformly at random from a 2-universal hash class,
the probability that such a pair exists is at most ('g‘) -2/4 < |T|?/¢. Since all g;-components are
chosen independently, the statement follows. O

11.2. Graph Properties and the Hash Class

We assume that the notion of a simple bipartite multigraph is known to the reader. A nice
introduction to graph theory is given by Diestel [Die05]. We also consider hypergraphs (V, E)
which extend the notion of a graph by allowing edges to consist of more than two vertices. For
an integer d > 2, a hypergraph is called d-uniform if each edge contains exactly d vertices. It is
called d-partite if V' can be split into d sets V1, ..., Vg such that no edge contains two vertices
of the same class. A hypergraph (V’, E’) is a subgraph of a hypergraph (V, E) if V! C V and
for each edge ¢/ € F’ there exists an edge e € F with ¢/ C e. More notation for graphs and
hypergraphs will be provided in Section 11.4 and Section 14, respectively.

We build graphs and hypergraphs from a set of keys S = {z1,...,z,} and a sequence of
hash functions & = (h1, ..., ha), h; : U — [m], in the following way: The d-partite hypergraph
G(S,h) = (V, E) has d copies of [m] as vertex set and edge set £ = {(h1(z),...,hq(x)) |

111

11. Basic Setup and Groundwork

x € S}t! Also, the edge (h1(x;),. .., ha(x;)) is labeled “i”? Since keys correspond to edges,
the graph G(S, h) has n edges and d - m vertices, which is the standard notation from a “data
structure” point of view, but is a non-standard notation in graph theory. For a set S and an

edge-labeled graph G, we let T'(G) = {z; | x; € S, G contains an edge labeled i}.

In the following, our main objective is to prove that with high probability certain subgraphs
do not occur in G(S, l_i) Formally, for n,m,d € N,d > 2, let ggm denote the set of all d-
partite hypergraphs with vertex set [m] in each class of the partition whose edges are labeled
with distinct labels from {1,...,n}. Aset A C ggm is called a graph property. If for a graph G
we have that G € A, we say that G has property A. We shall always disregard isolated vertices.

For a key set S of size n, a sequence h of hash functions from Z, and a graph property
A C fow, we define the following random variables: For each G € A, let I be the indicator
random variable that indicates whether G is a subgraph of G(S, E) or not. (We demand the edge
labels to coincide.) Furthermore, the random variable N ? counts the number of graphs G € A
which are subgraphs of G(S,), i. e., NE = cealc.

Let A be a graph property. Our main objective is then to estimate (from below) the probability
that no subgraph of G(S, h) has property A. Formally, for given S C U we wish to bound (from
above)

Pricz (V8 >0). (11.2)
In the analysis of randomized algorithm, bounding (11.2) is often a classical application of the
first moment method, which says that

Pricz (V8 > 0) <Brez (N8) = 3 Prie; (fo = 1). 19
GeA

However, we cannot apply the first moment method directly to bound (11.2), since hash functions
from Z do not guarantee full independence on the key set, and thus the right-hand side of (11.3)
is hard to calculate. However, we will prove an interesting connection to the expected number of
subgraphs having property A when the hash function sequence his fully random.

To achieve this, we will start by collecting “bad” sequences of hash functions. Intuitively, a
sequence h of hash functions is bad with respect to a key set S and a graph property A if G(S, h)

has a subgraph G with G € A and for the keys T' C S which form G the g-components of h
distribute T" “badly”. (Recall the formal definition of “bad” from Definition 11.1.2.)

'In this thesis, whenever we refer to a graph or a hypergraph we mean a multi-graph or multi-hypergraph, i. e., the
edge set is a multiset. We also use the words “graph” and “hypergraph” synonymously in this section. Finally,
note that our edges are tuples instead of sets to avoid problems with regard to the fact that the hash functions use
the same range.

? We assume (w.l.o.g.) that the universe U is ordered and that each set S C U of n keys is represented as S =
{z1,...,zn}withz; <z2 < -+ < zp.

112

11.2. Graph Properties and the Hash Class

Definition 11.2.1
For S C U and a graph property A let Bé C Z be the event

U ({Ie = 1} Nbadr)) -
GeA

This definition is slightly different to the corresponding definition in the paper [ADW 14, Defini-
tion 3], which considers one application of hash class Z with an application-specific focus.?

In addition to the probability space Z together with the uniform distribution, we also consider
the probability space in which we use d fully random hash functions from U to [m], chosen
independently. From here on, we will denote probabilities of events and expectations of random
variables in the former case by Pr and E; we will use Pr* and E* in the latter. The next lemma
shows that for bounding Pr (N Q > 0) we can use E* (N Q), i.e., the expected number of sub-
graphs having property A in the fully random case, and have to add the probability that the event
Bé occurs. We call this additional summand the failure term of Z on A.

Lemma 11.2.2
Let S C U be given. For an arbitrary graph property A we have

Pr(N§ >0) <Pr(BS)+E (NE). (11.4)

Proof. We calculate:
Pr(N§ >0) <Pr(B2)+Pr({N§ >0} nBE).

We only have to focus on the second term on the right-hand side. Using the union bound, we

*In [ADW14] we defined B§ = U, {{G’(T, h) has property A} N badT}. This works well in the case that we
only consider randomness properties of the graph G(S, h1, h2). During the preparation of this thesis, however, it
turned out that in the hypergraph setting this approach was cumbersome. In that setting, “important” subgraphs
of G(S,) often occurred not in terms of the graph G(T',), for some set T' C S, but by removing some vertices
from the edges of G(T, 1). In Definition 11.2.1, we may consider exactly such subgraphs of G(T', 1) by defining
A properly. The edge labels of a graph are used to identify which keys of .S form the graph.

113

11. Basic Setup and Groundwork

continue as follows:

Pr ({N§ >O}ﬁBig‘) <) Pr (UGI 1}ﬂ§§>

GeA

~ 3 Pr ({[G =1}n (U ({1 = 01U goodT(G,)>>>
GeA G'eA

< > Pr({Ie =1} Ngoody g)
GeA

< Z Pr (IG =1] goodT(G))
GeA

0N Pre(lg=1)=E* <N§> ,
GeA

where (i) holds by Lemma 11.1.3(b). O

This lemma encapsulates our overall strategy for bounding Pr(/V ? > (). The second summand
in (11.4) can be calculated assuming full randomness and is often well known from the literature
in the case that the original analysis was conducted using the first moment method. The task of
bounding the first summand is tackled separately in the next subsection.

11.3. Bounding the Failure Term of Hash Class Z

As we have seen, using hash class Z gives an additive failure term (cf. (11.4)) compared to the case
that we bound Pr * (N § > O) by the first moment method in the fully random case. Calculating
Pr (Bé) looks difficult since we have to calculate the probability that there exists a subgraph G
of G(S, h) that has property A and where is T((G)-bad. Since we know the probability that
h is T(G)-bad from Lemma 11.1.3(b), we could tackle this task by calculating the probability
that there exists such a subgraph GG under the condition that h is T'(G)-bad, but then we cannot
assume full randomness of 72 on T (G) to obtain a bound that a certain subgraph is realized by
the hash values. Since this is hard, we will take another approach. We will find suitable events
that contain B4 and where his guaranteed to behave well on the key set in question.
Observe the following relationship that is immediate from Definition 11.2.1.

Lemma 11.3.1
Let S C U,|S| =n,andlet A C A’ C G .. Then Pr (Bg) < Pr (Bé’) . O

We will now introduce two concepts that will allow us to bound the failure probability of Z for
“suitable” graph properties A.

114

11.3. Bounding the Failure Term of Hash Class Z

Definition 11.3.2 Peelability
A graph property A is called peelable if for all G = (V, E) € A, |E| > 1, there exists an edge
e € E such that (V, E — {e}) € A.

A peelable graph property for bipartite graphs, i. e., in the case d = 2, is the set of all connected
bipartite graphs (disregarding isolated vertices), because removing an edge that lies on a cycle or
an edge incident to a vertex of degree 1 does not destroy connectivity.

Peelable graph properties will help us in the following sense: Assume that Bé occurs, i.e.,
for the chosen i € Z there exists some graph G € A that is a subgraph of G(.S, ﬁ) and h is
T(G)-bad. Let T = T(@). In terms of the “deficiency” dy of h (cf. Definition 11.1.2) it holds
that dT(ﬁ) > 1. If A is peelable, we can iteratively remove edges from G such that the resulting
graphs still have property A. Let G’ be a graph that results from G by removing a single edge.
Then dp(c) — dpgry € {0,1}. Eventually, because dy = 0, we will obtain a subgraph G € A
of G such that is T(G')-critical. In this case, we can again make use of Lemma 11.1.3(b) and
bound the probability that G’ is realized by the hash function sequence by assuming that the
hash values are fully random.

However, peelability does not suffice to obtain low enough bounds for failure terms Pr (Bé);
we need the following auxiliary concept, whose idea will become clear in the proof of the next
lemma.

Definition 11.3.3 Reducibility

Let ¢ € N, and let A and B be graph properties. A is called B-2c-reducible if for all graphs
(V,E) € A and sets E* C FE the following holds: if | E*| < 2c¢ then there exists an edge set
E' with E* C E' C E such that (V, E’) € B.

If a graph property A is B-2c-reducible, we say that A reduces to B. The parameter ¢ shows the
connection to hash class Z: it is the same parameter as the number of g;-functions in hash class
Z.

To shorten notation, we let

JTARES Z Pr*(Ig =1)

GEA,|E(G)|=t

be the expected number of subgraphs with exactly ¢ edges having property A in the fully random
case. The following lemma is the central result of this section and encapsulates our overall
strategy to bound the additive failure term introduced by using hash class Z instead of fully
random hash functions.

115

11. Basic Setup and Groundwork

Lemma 11.3.4
Letc > 1,5 C U with |S| = n, and let A, B, and C be graph properties such that A C B, B is
a peelable graph property, and B reduces to C. Then

A B —c - e
Pr(BS>§Pr<BS)§€ tZQR u.

Proof. By Lemma 11.3.1 we have Pr (B§) < Pr(Bf) = Pr(Ugeg({Ie = 1} Nbadyq)))-
Assume that & is such that BE occurs. Then there exists a subgraph G of G(S, i_i) such that
G € Band dT(G)(l_i) > 1. Fix such a graph.

Since B is peelable, we iteratively remove edges from G until we obtain a graph G’ = (V, E')

such that G’ € B and critp(gry occurs. The latter is guaranteed, for d@(ﬁ) = 0 and for two

—

graphs G and G, where G’ results from G by removing a single edge, it holds that dT(G) (h) —
dT(Gz)(f_i) € {0,1}. Since crity) happens, for each g;-component of h,1 < i < c, there is
at least one collision on 7'(G’). Furthermore, there exists one component g;,, jo € {1,...,c},
such that exactly one collision on T'(G") occurs. For each g;, i € {1,...,c}, let {e;, e}, e; # €,
be two edges of G’ such that the keys x;, y; which correspond to ¢; and €/ collide under g;. Let
Er = U1§z‘gc{€i> e;}.

By construction |E*| < 2¢. Since B reduces to C, there exists some set E” with E* C E” C
E’ such that G” = (V, E”) € C. By construction of E*, each g;-component has at least one
collision on T'(G"). Moreover, g;, has exactly one collision on T'(G"). Thus, h is T(G")-critical.

We calculate:

Pr(BSA> gPr(BE):Pr (Ul =1} ﬂbadT(G))> 2 py (U ({Ie =130 critT(G/))>

GeB G'eB

(if)
S PI’(U ({IG” = 1} N critT(G//))> S ZPI‘({IG// = 1} N CritT(G//))

G"eC G"eC
< Z Pr (IGW =1| critT(Gu)) - Pr (critT(Gn))
G"eC
(iii)
<0703 Prt ({Igr = 1)) - |T(G")*
G"eC
n n
= Y Prr({Ier=1}) | =)l
t=2 G"eC t=2
|E(G")|=t

where (i) holds for B is peelable, (ii) is due to reducibility, and (iii) follows by Lemma 11.1.3. [J

116

11.3. Bounding the Failure Term of Hash Class Z

We summarize the results of Lemma 11.2.2 and Lemma 11.3.4 in the following lemma.

Lemma 11.3.5
Letc > 1,m > 1, S C U with |S| = n, and let A, B, and C be graph properties such that
A C B, B is a peelable graph property, and B reduces to C. Assume that there are constants
«, (3 such that

E* <N§\> = ;,utA =0 (n_o‘) , (11.5)

and

n

> #uf =0 <n’3) . (11.6)

t=2

Then setting £ = n(®+#)/¢ and choosing h at random from Zg’i yields

Pr(N§>0) =0 (n™).

Proof. Follows immediately by plugging the failure probability bound from Lemma 11.3.4 into
Lemma 11.2.2. O

Remark 11.3.6. In the statement of Lemma 11.2.2 and Lemma 11.3.5 graph properties B and C
can be the same graph properties, since every graph property reduces to itself.

Lemma 11.3.5 shows the power of our framework. The conditions of this lemma can be checked
without looking at the details of the hash functions, only by finding suitable graph properties
that have a low enough expected number of subgraphs in the fully random case. Let us compare
properties (11.5) and (11.6). Property (11.5) is the standard first moment method approach. So, it
can often be checked from the literature whether a particular application seems suitable for an
analysis with our framework or not. Property (11.6) seems very close to a first moment method
approach, but there is one important difference to (11.5). The additional factor ¢3¢, coming from
the randomness properties of the hash class, means that to obtain low enough bounds for (11.6),
the average number of graphs with property C must decrease rapidly, e. g., exponentially, fast in
t. This will be the case for almost all graph properties considered in this thesis.

In the analysis, we will use Lemma 11.2.2 and Lemma 11.3.4 instead of Lemma 11.3.5. Often,
one auxiliary graph property suffices for many different applications and we think it is cleaner to
first bound the failure term of Z on this graph property using Lemma 11.3.4; then we only have
to care about the fully random case and apply Lemma 11.2.2 at the end.

At the end of this section we discuss one generalization of the notion of “reducibility”.

117

11. Basic Setup and Groundwork

Definition 11.3.7 Generalized Reducibility
Let ¢ € N, and let A and B be graph properties. A is called weak B-2c-reducible if for all
graphs (V, E) € A and sets E* C FE the following holds: if |[E*| < 2c then there exists a

subgraph (V, E') € B of (V, E) such that for each edge e* € E* there exists an edge ¢’ € F’
with ¢/ C e* having the same label as e*.

In difference to Definition 11.3.3, we can remove vertices from the edges in edge set E*. This
notion will be used in applications of our framework to hypergraphs. A proof analogous to

the proof of Lemma 11.3.4 shows that the statement of Lemma 11.3.4 is also true if B is weak
C-2c-reducible.

This constitutes the theoretical basis of the second part of this thesis.

118

11.4. Step by Step Example: Analyzing Static Cuckoo Hashing

Graph Notation. We start by fixing graph-related notation: We call an edge that is incident to
a vertex of degree 1 a leaf edge. We call an edge a cycle edge if removing it does not disconnect
any two nodes. A connected graph is called acyclic if it does not contain cycles. It is called
unicyclic if it contains exactly one cycle. The 2-core of a graph G is the maximal subgraph of
G in which each vertex has minimum degree 2. For a (hyper-)graph G = (V, E), a function
f: E — V is a l-orientation of G if f is injective. (For each edge we pick one vertex such that
each vertex is picked at most once.)

Background. Cuckoo hashing [PR04] is a dictionary algorithm that stores a (dynamically
changing) set S C U of size n in two hash tables, 71 and 75, each of size m > (1 + &)n
for some £ > 0. It employs two hash functions hq and hg with hy, he: U — [m]. A key x can
be stored either in 71 [h1(z)] or in Th[ha(z)], and all keys are stored in distinct table cells. Thus,
to find or remove a key it suffices to check these two possible locations.

Cuckoo hashing deals with collisions by moving keys between the two tables. A new key x is
always inserted into T} [h1(x)]. If this cell is occupied by some key 2/, then that key is evicted
from the hash table and becomes “nestless” before x is inserted. Whenever a key 2’ has been
evicted from T;[h;(2')], i € {1,2}, it is afterwards reinserted in the other table, T5_;[hs_;(z')],
after possibly evicting the element stored there. This process continues until an empty cell is
found, i. e., no eviction is necessary. The procedure may cycle forever, so if it does not terminate
after a given number, MaxLoop = ©(logn), of steps, new hash functions h; and hs are chosen,
and the data structure is rebuilt from scratch.

In this section, we deal with the static setting whether or not a key set .S of size n can be stored
in the two tables of size (1 + ¢)n each, for some ¢ > 0, using a pair of hash functions (hy, ho)
according to the cuckoo hashing rules. To this end, we look at the bipartite graph G(S, h1, ha)
built from S and (h1, ha). Recall that the vertices of G are two copies of [m] and that each key
x; € S gives rise to an edge (h1(z), ho(z)) labeled i. If (h1, ho) allow storing .S according to
the cuckoo hashing rules, i.e., independent of the actual insertion algorithm, we call (hj, ho)
suitable for S.

This section is meant as an introductory example. Already Pagh and Rodler showed in [PR04]
that using a O (log n)-wise independent hash class suffices to run cuckoo hashing. Dietzfelbinger
and Woelfel showed in [DWO03] that this is also possible using a specific variant of hash class Z.
Since standard cuckoo hashing is a special case of cuckoo hashing with a stash, the results here
can also be proven using the techniques presented in the author’s diploma thesis [Aum10] and
the paper [ADW14]. However, the proofs here are notably simpler than the proofs needed for the
analysis of cuckoo hashing with a stash, as we shall see in Section 12 and Section 13.

Result. We will prove the following theorem:

11. Basic Setup and Groundwork

Figure 11.1.: The minimal obstruction graphs for cuckoo hashing.

Theorem 11.4.1

Lete > 0and 0 < § < 1 be given. Assume ¢ > 2/§. For n > 1 consider m > (1 + £)n and
¢ =n’. Let S C U with |S| = n. Then for (hy, h) chosen at random from Z = Zg’fn the
following holds: ’

Pr ((h1, h2) is not suitable for S) = O(1/n).

In the following, all statements of lemmas and claims use the parameter settings of Theorem 11.4.1.

By the cuckoo hashing rules, the pair (h1,h2) of hash functions is suitable if and only if
G(S, h1, h2) has a 1-orientation, i.e., if every edge can be directed in such a way that each
vertex has in-degree at most 1. It is not hard to see that (hq, ho) is suitable for S if and only if
every connected component of G(.S, h1, ho) has at most one cycle [DMO03]. So, if (h1, h2) is not
suitable, G(S, h1, ha) has a connected component with more than one cycle. This motivates to
consider the following graph property.

Definition 11.4.2

Let MOG (“minimal obstruction graphs”) be the set of all labeled graphs from Gfmn (disregard-
ing isolated vertices) that form either a cycle with a chord or two cycles connected by a path
of length ¢ > 0.

These two types of graphs form minimal connected graphs with more than one cycle, see Fig-
ure 11.1. So, if (h1, he) is not suitable for S, then G(S, h1, ho) contains a subgraph with property
MOG. We summarize:

Pr ((h1, h2) is not suitable for S) = Pr <NgAOG > O) . (11.7)

According to Lemma 11.2.2, we can bound the probability on the right-hand side of (11.7) as
follows

Pr (NgAOG > 0) < Pr (Bg"OG> +E (Ng/'OG> . (11.8)

We first study the expected number of minimal obstruction graphs in the fully random case.

120

11.4. Step by Step Example: Analyzing Static Cuckoo Hashing

Bounding E* (N g/IOG)‘ The expected number of minimal obstruction graphs in the fully ran-
dom case is well known from other work, see, e. g., [PR04; DM03]. For completeness, we give a
full proof, which can also be found in [Aum10].

Lemma 11.4.3

E* (Ng”OG) = 0(1/m).

Proof. We start by counting unlabeled graphs with exactly ¢ edges that form a minimal obstruc-
tion graph. Every minimal obstruction graphs consists of a simple path of exactly ¢ — 2 edges
and two further edges which connect the endpoints of this path with vertices on the path. Since
a minimal obstruction graph with ¢ edges has exactly t — 1 vertices, there are no more than
(t — 1)? unlabeled minimal obstruction graphs having exactly ¢ edges. Fix an unlabeled minimal
obstruction graph G. First, there are two ways to split the vertices of G into the two parts of the
bipartition. When this is fixed, there are no more than m!~! ways to label the vertices with labels
from [m], and there are no more than n**! ways to label the edges with labels from {1,...,n}.
Fix such a fully labeled graph G’

Now draw t labeled edges* at random from [m]2. The probability that these edges realize G’
is exactly 1/m?'. We calculate:

n

E (NS) _Z m2t “m mt m (1+¢e)t _O(%)’
t=3 t=3 t=3

where the last step follows from the convergence of the series Y ;o t%/¢" for every ¢ > 1. [

We summarize:

Pr (Ng"OG > 0) < Pr (BgAOG) +0 (;) . (11.9)

It remains to bound the failure term Pr (Bg/'OG).

Bounding Pr (BgAOG). In the light of Definition 11.3.2, we first note that MOG is not peelable.
So, we first find a peelable graph property that contains MOG. Since paths are peelable, and a
minimal obstruction graph is “almost path-like” (¢f. proof of Lemma 11.4.3), we relax the notion
of a minimal obstruction graph in the following way.

“The labels of these edges are equivalent to the edge labels of G'.

121

11. Basic Setup and Groundwork

Definition 11.4.4

Let RMOG (“relaxed minimal obstruction graphs”) consist of all graphs in gfn’n that form
either (i) a minimal obstruction graph, (ii) a simple path, or (iii) a simple path and exactly one
edge which connects an endpoint of the path with a vertex on the path, disregarding isolated
vertices.

By the definition, we obviously have that MOG C RMOG.

Lemma 11.4.5
RMOG is peelable.

Proof. Let G € RMOG. We may assume that GG has at least two edges. We distinguish three
cases:

Case 1: G is a minimal obstruction graph. Let G’ be the graph that results from G when we
remove an arbitrary cycle edge incident to a vertex of degree 3 in G. Then G’ has property (iii)
of Definition 11.4.4.

Case 2: G has property (iii) of Definition 11.4.4. Then, let G’ be the graph that results from G
when we remove an edge in the following way: If G contains a vertex of degree 3 then remove
an arbitrary cycle edge incident to this vertex of degree 3, otherwise remove an arbitrary cycle
edge. Then G’ is a path and thus has property (ii) of Definition 11.4.4.

Case 3: (G is a simple path. Let G’ be the graph that results from G when we remove an endpoint
of G with the incident edge. G’ is a path and has property (ii) of Definition 11.4.4. d

Standard cuckoo hashing is an example where we do not need every component of our frame-
work, because there are “few enough” graphs having property RMOG to obtain low enough
failure probabilities.

Lemma 11.4.6
Pr (BgAOG)) (;) .

Proof. We aim to apply Lemma 11.3.4, where MOG takes the role of A and RMOG takes the role
of B and C (c¢f Remark 11.3.6), respectively, in the statement of that lemma.

Claim 11.4.7
For t > 2, we have

6mit2
RMOG

< —
He ~(1+4e)t

122

11.4. Step by Step Example: Analyzing Static Cuckoo Hashing

Proof. We first count labeled graphs with exactly ¢ edges having property RMOG. From the
proof of Lemma 11.4.3, we know that there are fewer than 2 - t? - n* . m!~! labeled graphs which
form minimal obstruction graphs ((i) of Def. 11.4.4). Similarly, there are not more than 2-nf-mf*!
labeled paths ((ii) of Def. 11.4.4), and not more than 2 - ¢ - n’ - m! graphs having property (iii) of
Def. 11.4.4. Fix a labeled graph G with property RMOG having exactly ¢ edges. Draw ¢ labeled
edges at random from [m]2. The probability that these ¢ edges realize G is exactly 1/m?. We
calculate:

rRMoG . 6t2ntmitt 6mt?
A s
O]
Using Lemma 11.3.4, we proceed as follows:
Pr (B%”OG) < Ectz:t?c . RMOG < o= Z 6”;’i C;l ~0 (;) .
O]

Putting Everything Together. Plugging the results of Lemma 11.4.3 and Lemma 11.4.6 into
(11.8) gives:

Pr (N1 > 0) < Pr (BYOS) +E* (NYO¢) =0 (2) +0 <m>

Using that m = (1 +)n and setting £ = n° and ¢ > 2/ yields Theorem 11.4.1.

Remarks and Discussion. As mentioned in the background remarks at the beginning of this
section, the actual insertion algorithm only tries to insert a new key for ©(logn) steps, and
declares the insertion a failure if it did not finish in that many steps. This means that an insertion
could fail although G(S, hi,hg) did not contain a component with more than one cycle. To
analyze this situation, one also has to consider the existence of paths of logarithmic length in
G(S, h1, h2). The analysis is a generalization of what we did here. In particular, long paths are
included in the graph property RMOG, so we can use Lemma 11.4.6 to bound the failure term of
Z on long paths. Calculations very similar to the ones in the proof of Claim 11.4.7 show that the
expected number of paths having at least a certain logarithmic length in the fully random case
can be made as small as O(n~%), for a > 1.

This example also gives detailed insight into the situation in which our framework can be ap-
plied. The graph property under consideration (MOG) had the property that the expected number
of subgraphs with this property is polynomially small in n. The peeling process—however—yields

123

11. Basic Setup and Groundwork

graphs which are much more likely to occur, e. g., paths of a given length. The key in our analysis
is finding suitable graph properties of “small enough” size. (That is the reason why the concept
of “reducibility” from Definition 11.3.3 is needed in other applications: It makes the number of
graphs that must be considered smaller.) The g-components of the hash functions from Z pro-
vide a boost of /~¢, which is then used to make the overall failure term again polynomially small
in n.

The reader might find it instructive to apply Lemma 11.3.5 directly. Then, graph property

MOG plays the role of graph property A in that lemma; graph property RMOG plays the role of
B and C.

124

12. Randomness Properties of Z on Leafless
Graphs

In this section we study the additive failure term of hash functions from Z on a graph property
that will be a key ingredient in future applications. First, we present a basic counting argument
for unlabeled graphs. (The graphs we shall consider here are much more complicated than the
minimal obstruction graphs of the previous section.) Subsequently, we study the failure term of
Z on the class of graphs which contain no leaf edges.

We note that the counting argument below already appeared in [Aum10]. We give the proof
for completeness. It is also present in [ADW14].

12.1. A Counting Argument

The cyclomatic number 7(G) is the dimension of the cycle space of a graph G. 1t is equal to the
smallest number of edges we have to remove from G such that the remaining graph is a forest
(an acyclic, possibly disconnected graph) [Die05]. Also, let ((G) denote the number of connected
components of G (ignoring isolated vertices).

Definition 12.1.1
Let N(t, 4,7, () be the number of unlabeled (multi-)graphs with ¢ connected components and
cyclomatic number v that have ¢ — £ inner edges and ¢ leaf edges.

The following lemma generalizes a result of Dietzfelbinger and Woelfel [DW03] with regard to
the number of unlabeled connected graphs with a given cyclomatic number and a given number

of leaf edges.

Lemma 12.1.2
N(t,£,7,¢) = 19U+,

Proof. We will proceed in three steps:
1. N(t,£,0,1) =0
2. N(t, 0,~,1) =0+

3. N(t,4,7,¢) = t0++0

125

12. Randomness Properties of Z on Leafless Graphs

Part 1. We first consider the case v = 0, thus we consider trees. For ¢ = 2, the tree is a path of
length ¢. We refer to this tree with G2 (the index refers to the number of leaf edges in the graph).
For ¢ = 3,...,¢, G; is constructed using G;_1 by taking a new path of length ¢; > 1 such that
to + -+ t; < t— (¢£—1i) and identify one endpoint of the path with a vertex in G;_1. The
length of the last path is uniquely determined by ¢y =t — to — - -- — ty_1. There are fewer than
=2 choices for picking these lengths. Furthermore, there are at most t~2 choices for the inner
vertex a new path is connected to. It follows

N(t,£,0,1) = tO©).

Part 2. Assume cyclomatic number v > 1 and ¢ > 0 leaf edges. In this case, removing 7 cycle
edges yields a tree. There are not more than t*7 choices for the endpoints of these edges and the
remaining tree has at most ¢ + 2+ leaf edges. Thus,

N(t,0,7,1) =t90) N (t —~,0+27,0,1) = tO0) . (O — O,

Part 3. Each graph G with cyclomatic number ~, { connected components, ¢t — ¢ non-leaf
edges, and / leaf edges can be obtained from some connected graph G’ with cyclomatic number
v, t — £ + ¢ — 1 non-leaf edges, and / leaf edges by removing ¢ — 1 non-leaf, non-cycle edges.
There are no more than (¢ — £ + ¢ — 1)S~! ways for choosing the edges to be removed. This
implies:

< (E+)P (1 4 ¢)F = (t +)OUE+1TO) — Ob+C),

12.2. The Leafless Part of G(S, hy, ho)

We let LL C Q,%%n consist of all bipartite graphs that contain no leaf edge. It will turn out that
for all our applications LL will be a suitable “intermediate” graph property, i.e., for the graph
property A interesting for the application it will hold A C LL, which will allow us to apply
Lemma 11.3.1. (For example, graph property LL could have been used instead of graph property
RMOG in the example of the previous section.) Hence our goal in this section is to show that
there exists a constant & > 0, which depends on the parameters ¢ and c of the hash class Zé’i,
such that

Pr(hth)Ez (BEL) = O (n_o‘) .

Luckily, bounding Pr (BgL) is an example par excellence for applying Lemma 11.3.4. To use this
lemma we have to find a suitable peelable graph property (note that LL is not peelable) and a

126

12.2. The Leafless Part of G(S, h1, h2)

suitable graph property to which this graph property reduces.

We let LC consist of all graphs G from anyn that contain at most one connected component
that has leaves, disregarding isolated vertices. If such a component exists, we call it the leaf
component of G.

Lemma 12.2.1
LC is peelable.

Proof. Suppose G € LC has at least one edge. If G has no leaf component then all edges are cycle
edges, and removing an arbitrary cycle edge creates a leaf component. So, the resulting graph
has property LC. If G has a leaf component C, remove a leaf edge. This makes the component
smaller, but maintains property LC. So, the resulting graph has again property LC. O

We will also need the following auxiliary graph property:

Definition 12.2.2
Let K € N. Let LCY() C Q’fnm be the set of all bipartite graphs G = (V| F) with the
following properties (disregarding isolated vertices):

1. at most one connected component of (G contains leaves (i. e., LCY (&) C LC);
2. the number ((G) of connected components is bounded by K;
3. if present, the leaf component of G contains at most K leaf and cycle edges;

4. the cyclomatic number v(G) is bounded by K.

Lemma 12.2.3
Lete > 1. LCis LCY) -2¢-reducible.

Proof. Choose an arbitrary graph G = (V, E)) € LC and an arbitrary edge set E* C E with
|E*| < 2¢. We say that an edge that belongs to E* is marked. G satisfies Property 1 of graphs
from LCY(®). We process G in three stages:

Stage 1: Remove all components of G without marked edges. Afterwards at most 2¢ compo-
nents are left, and (G satisfies Property 2.

Stage 2: If G has a leaf component C, repeatedly remove unmarked leaf and cycle edges from
C, while C has such edges. The remaining leaf and cycle edges in C' are marked, and thus their
number is at most 2¢; Property 3 is satisfied.

Stage 3: If there is a leaf component C' with z marked edges (where z < 2¢), then y(C) < z—1.
Now consider a leafless component C’ with cyclomatic number z. We need the following graph
theoretic claim:

127

12. Randomness Properties of Z on Leafless Graphs

Claim 12.2.4
Every leafless connected graph with ¢ marked edges has a leafless connected subgraph with
cyclomatic number < ¢+1 that contains all marked edges.

Proof. Let G = (V, E') be a leafless connected graph. If 7(G) < i + 1, there is nothing to prove.
So suppose 7(G) > i + 2. Choose an arbitrary spanning tree (V, Ey) of G.

There are two types of edges in G: bridge edges and cycle edges. A bridge edge is an edge
whose deletion disconnects the graph, cycle edges are those whose deletion does not disconnect
the graph.

Clearly, all bridge edges are in Ejy. Let Epp C FEy denote the set of marked bridge edges. Re-
moving the edges of Ey, from G splits V' into | Eiyp|+ 1 connected components Vi, ..., Vig, | 1415
removing the edges of Ey, from the spanning tree (V, Ey) will give exactly the same compo-
nents. For each cyclic component V; we choose one edge e; ¢ Ej that connects two nodes in
Vj. The set of these | Eyp| + 1 edges is called Ey. Now each marked bridge edge lies on a path
connecting two cycles in (V, Eg U E7).

Recall from graph theory [Die05] the notion of a fundamental cycle: Clearly, each edge e €
E — Ej closes a unique cycle with Ej. The cycles thus obtained are called the fundamental cycles
of G w.r.t. the spanning tree (V, Ey). Each cycle in G can be obtained as an XOR-combination
of fundamental cycles. (This is just another formulation of the standard fact that the fundamental
cycles form a basis of the “cycle space” of GG, see [Die05].) From this it is immediate that every
cycle edge of G lies on some fundamental cycle. Now we associate an edge ¢’ ¢ E with each
marked cycle edge e € Fy.. Given e, let ¢’ ¢ Ej be such that e is on the fundamental cycle of
¢’. Let F be the set of all edges ¢’ chosen in this way. Clearly, each e € Ey, is a cycle edge in
(Vv, EyU Ez).

Now let G/ = (V, EyUFE] U EQ). Note that |E1 U E2| < (|Emb| + 1) + |Emc| <:i+1
and thus 7(G’) < i+ 1. In G, each marked edge is on a cycle or on a path that connects two
cycles. If we iteratively remove leaf edges from G’ until no leaf is left, none of the marked edges
will be affected. In this way we obtain the desired leafless subgraph G* with v(G*) = v(G’) <
1+ 1. O

This claim gives us a leafless subgraph C” of C’ with v(C”) < z + 1 that contains all marked
edges of C’. We remove from G all vertices and edges of C’ that are not in C”. Doing this
for all leafless components yields the final graph GG. Summing contributions to the cyclomatic
number of G over all (at most 2¢) connected components, we see that v(G) < 4c¢; Property 4 is
satisfied. g

We now bound the additive failure term Pr (BEL).

128

12.2. The Leafless Part of G(S, h1, h2)

Lemma 12.2.5
Let S C U with |S| =mn,e > 0,¢c > 1,and let £ > 1. Consider m > (1 + ¢)n. If (hy, ho) are

chosen at random from Z; En then

Pr(B§") < Pr(B§%) = O (n/t°).

Proof. According to Lemma 11.3.4 and Lemma 12.2.3 it holds that

n
Pr (BEL) < Pr (BEC) < /<. Z tQC . MI{CY(4C>.
t=2

Claim 12.2.6

LCY(4C) . 2n . tO(l)
He (14t

Proof. By Lemma 12.1.2, there are at most t°(¢) = tO(1) ways to choose a bipartite graph G' in
LCY“) with ¢ edges. Graph G cannot have more than ¢ + 1 nodes, since cyclic components
have at most as many nodes as edges, and in the single leaf component, if present, the number
of nodes is at most one bigger than the number of edges. In each component of G, there are two
ways to assign the vertices to the two sides of the bipartition. After such an assignment is fixed,
there are at most m**! ways to label the vertices with elements of [m], and there are not more
than n ways to label the ¢ edges of G with labels from {1, ...,n}. Assume now such labels have
been chosen for G. Draw ¢ labeled edges according to the labeling of G' from [m]? uniformly
at random. The probability that they exactly fit the labeling of nodes and edges of G is 1/m?’.
Thus,

t

= m2t S A +e)p U
O
We use this claim and prove the lemma by the following calculation:
t=2 t=2
O

129

13. Applications on Graphs

In this section, we will study different applications of our hash class in algorithms and data
structures whose analysis relies on properties of the graph G(S, hy, ha). We shall study four
different applications:

e A variant of cuckoo hashing called cuckoo hashing with a stash introduced by Kirsch,
Mitzenmacher, and Wieder in [KMW08].

e A construction for the simulation of a uniform hash function due to Pagh and Pagh [PP08].

e A construction of a (minimal) perfect hash function as described by Botelho, Pagh, and
Ziviani [BPZ13].

e The randomness properties of hash class Z on connected components of G(S, hy, ha).

As in the example from Section 11.4, each section will be divided into three parts. In the first part
“Background”, the data structure or algorithm will be introduced and other related work will be
mentioned. The subsequent part “Result” will state the main result and give its proof. At the end,
the part “Remarks and Discussion” will provide pointers to other results and discuss future work.

13.1. Cuckoo Hashing (with a Stash)

Background. The starting point of the ESA 2008 paper [KMWO08] by Kirsch, Mitzenmacher,
and Wieder was the observation that the rehash probability in cuckoo hashing is as large as
©(1/n) (see Section 11.4), which can be too large for practical applications. They proposed
adding a stash, an additional segment of storage that can hold up to s keys for some (constant)
parameter s, and showed that this change reduces the rehash probability to ©(1/n*t1). For
details of the algorithm, see [KMW09]. The analysis given by Kirsch et al. requires the hash
functions to be fully random. In the journal version [KMWO09] Kirsch et al. posed “proving
the above bounds for explicit hash families that can be represented, sampled, and evaluated
efficiently” as an open problem.

Remark: The analysis of cuckoo hashing with a stash with a hash class similar to Z was the
main topic of the author’s diploma thesis [Aum10]. The full analysis of cuckoo hashing with a
stash using hash class Z has been published in the paper [ADW14]. Here, it mainly serves as an
example for the power of the framework developed in Section 11 in connection with the results
of Section 12.

131

13. Applications on Graphs

We focus on the question whether the pair (hi, he) allows storing the key set S in the two
tables with a stash of size s. This is equivalent to the question whether or not G(S, h1, h2) is
1-orientable if we are allowed to remove not more than s edges from it.

It is known from [KMW09; Aum10] that a single parameter of G = G(S, h1, he) determines
whether a stash of size s is sufficient to store S using (h1, hg), namely the excess ex(G).

Definition 13.1.1
The excess ex(G) of a graph G is defined as the minimum number of edges one has to remove
from G so that all connected components of the remaining graph are acyclic or unicyclic.

The following lemma shows how the excess of a graph can be calculated.

Lemma 13.1.2 [KMW09]
Let G = (V, E) be a graph. Then

eX(G) = ’Y(G) - Ccyc(G)a
where (eyc(G) is the number of cyclic connected components in G.

Lemma 13.1.3 [KMW09]
The keys from S can be stored in the two tables and a stash of size s using (h1, h2) if and only

if ex(G(S, h1,h2)) <s.

Result. The following theorem shows that one can replace the full randomness assumption of
[KMW09] by hash functions from hash class Z.

Theorem 13.1.4 [Aum10; ADW14]
Lete > 0and 0 < 6 < 1,let s > 0 be given. Assume ¢ > (s + 2)/d. For n > 1 consider
m > (1 +e&)nand £ = n’. Let S C U with |S| = n. Then for (hq, hy) chosen at random
from Z = Zg’fn the following holds:

Pr(ex(G(S, hy1, o)) > s+ 1) = O(1/n).

In view of Lemma 13.1.3, we identify minimal graphs with excess s + 1.

Definition 13.1.5
An excess-(s + 1) core graph is a leafless graph G with excess exactly s + 1 in which all
connected components have at least two cycles. By CG**! we denote the set of all excess-

(s + 1) core graphs in G2, ..

132

13.1. Cuckoo Hashing (with a Stash)

Figure 13.1.: An example of a graph that contains an excess-3 core graph (bold edges). This
subgraph certifies that a stash of size at most 2 does not suffice to accommodate the
key set. This figure can also be found in [Aum10].

An example for an excess-(s + 1) core graph is given in Figure 13.1.

Lemma 13.1.6
Let G = G(S, hi, ho) with ex(G) > s + 1. Then G contains an excess-(s + 1) core graph as
a subgraph.

Proof. We obtain the excess-(s+ 1) core graph by a peeling process, i. e., by repeatedly removing
edges or connected components. Since ex(G) > 0, G contains a connected component that is
neither acyclic nor unicyclic (see Definition 13.1.1). Removing a cycle edge in such a component
decreases the cyclomatic number by 1, but leaves the component cyclic. By Lemma 13.1.2, this
decreases the excess by 1. We remove cycle edges in this way until the remaining graph has
excess exactly s + 1. Subsequently we remove components that are trees or unicyclic. It is clear
from Lemma 13.1.2 that this keeps the excess at s 4 1. Finally we remove leaf edges one by one
until the remaining graph is leafless. Again by Lemma 13.1.2, this does not change the excess.
The resulting graph has excess exactly s + 1, no tree or unicyclic components, and is leafless.
Thus, it is an excess-(s + 1) core graph. O

133

13. Applications on Graphs

Hence, to prove Theorem 13.1.4, it suffices to show that Pr <N§GS+1 > 0) =0 (1/n5+1). By
Lemma 11.2.2, we know that

Pr(N§T™ > 0) <Pr(BSST) B (NSO, (13.1)
Since CG*T! C LL, we may apply Lemma 12.2.5 and write
s+1 n * s+1
Pr(N§T > 0) <0 (?) +E (N§OT)
1 * [A7CGeT!
=0 <n8+1> +E (NS)) (13.2)

for the parameters used in Theorem 13.1.4. Thus, it remains to analyze the fully random case.

Lemma 13.1.7 [Aum10; ADW14]
Let e > 0 and let s > 0. Furthermore, let S C U with |S| = n be given. Set m = (1 + ¢)n.

Then
B (N5) =0 (1)

Before starting with the proof of this lemma, we remark that plugging its result into (13.2) proves
Theorem 13.1.4. The following calculations also give an alternative, simpler proof of [KMWO08,
Theorem 2.1] for the fully random case, even if the effort needed to prove Lemma 12.1.2 is taken
into account.

Proof of Lemma 13.1.7. We start by counting (unlabeled) excess-(s+ 1) core graphs with ¢ edges.
By Lemma 13.1.2, a connected component C' of such a graph G with cyclomatic number (C')
(which is at least 2) contributes (C') — 1 to the excess of G. This means that if G has { = ((G)
components, then s + 1 = v(G) — (and (< s+ 1, and hence v = v(G) < 2(s + 1). Using
Lemma 12.1.2, there are at most N (¢,0,7,() = tO0+0 = tO0) guch graphs G. If from each
component C of such a graph G we remove v(C') — 1 cycle edges, we get unicyclic components,
which have as many nodes as edges. This implies that G has t — (s + 1) nodes.

Now fix a bipartite (unlabeled) excess-(s + 1) core graph G with ¢ edges and (components.
There are 2¢ < 251! ways of assigning the t — s — 1 nodes to the two sides of the bipartition,
and then at most m!~*~1 ways of assigning labels from [m] to the nodes. Thus, the number of
bipartite graphs with property CG**!, where each node is labeled with one side of the bipartition
and an element of [m], and where the ¢ edges are labeled with distinct elements from {1,...,n}
is smaller than n? - 2571 . pt=s=1.¢0(s),

Now if a labeled (s + 1)-core graph G is fixed, and we choose ¢ edges with the labels used
in G from [m]? uniformly at random, the probability that all edges match the labeling is 1/m?".

134

13.1. Cuckoo Hashing (with a Stash)

For constant s, this yields the following bound:

1, ,t—s—1_ t +O(s) s+1 t . 1+0O(s)
w [~rCGSHL 25t .m n' -t 2 n' -t
E<NS)S > 2t Snsﬂ'ZT
s+3<t<n s+3<t<n
9s+1 1O(s) 1
— el Z 1+e)f 0 <n5+1> : (13.3)
s+3<t<n

Remarks and Discussion. As in the previous example, our result only shows that the key set
can be stored according to the rules of cuckoo hashing with a stash with a failure probability
as low as in the fully random case. The analysis of the insertion algorithm has to consider the
probability that there exist paths of length ©((s + 1) - logn) in G(S, h1, h2). The exact analysis
can be found in [ADW14] and can be summarized as follows. For bounding the impact of using
hash class Z when considering long paths, graph property LC from the previous section shows
that the failure term of using hash class Z can be made as low as O(1/n*1). (The graph
property LC contains such long paths.) Then, only the fully random case must be analyzed,
but the calculations are quite similar to standard calculations for cuckoo hashing, as already
presented in [PR04; DM03; DW03].

Using the result that all simple paths in G (.S, h1, h2) have length ©((s + 1) log n) with high
probability also makes it possible to show that ((3 + 1)2 log n)-wise independence suffices to

run cuckoo hashing with a stash, which can be achieved with constant evaluation time using
the construction of Siegel [Sie04] or Thorup [Tho13]. In a nutshell, the reason for this degree of
independence being sufficient is that the edges of an excess-(s + 1) core graph can be covered
by s + 1 simple paths and at most 2(s + 1) additional edges. Since the length of a simple path is
O ((s + 1) logn) with high probability, the required degree of independence follows. (The sum
in (13.3) must only consider values t < ¢ - (s + 1)2 log n for a suitable constant c.) Details can
also be found in [ADW 14, Section 5.3].

In another line of research, Goodrich and Mitzenmacher [GM11] considered an application
whose analysis required certain properties of cuckoo hash tables with a stash of non-constant
size. We can establish these properties even in the case of using hash class Z. The calculations
are analogous, but the failure bound we get is only O(1/n/2). For a rough idea of the proof,
consider the calculations made in (13.3). There the t9() term requires special care, because s is
non-constant. In [ADW 14, Section 5.2], we approached this issue by splitting the n°*! term into
two terms being roughly n®/2. One such term in the denominator of the calculations in (13.3) is
sufficient to make the fraction with nominator (%) in the sum small enough.

135

13. Applications on Graphs

13.2. Simulation of a Uniform Hash Function

Background. Consider a universe U of keys and a finite set R. Suppose we want to construct
a hash function that takes on fully random values from R on a key set S C U of size n. The naive
construction just assigns a random hash value to each key x € S and stores the key-value pair in
a hash table that supports lookup in constant time and construction in expected time O(n), e. g.,
cuckoo hashing (with a stash). For information theoretical reasons, this construction needs space
at least nlog |R|. (See, e.g., [Rin14, Lemma 5.3.1].) We will now see that we can achieve much
more in (asymptotically) almost the same space.

By the term “simulating uniform hashing for U and R” we mean an algorithm that does the
following. On input n € N, a randomized procedure sets up a data structure DS,, that represents
a hash function h: U — R, which can then be evaluated efficiently for keys in U. For each
set S C U of cardinality n there is an event Bg that occurs with small probability such that
conditioned on Bg the values h(x), z € S, are fully random. So, in contrast to the naive
construction from above, one h can be shared among many applications and works on each set
S C U of size n with high probability. The quality of the algorithm is determined by the space
needed for DS,,, the evaluation time for A, and the probability of the event Bg, which we call
the failure probability of the construction. It should be possible to evaluate h in constant time.
Again, the information theoretical lower bound implies that at least n log | R| bits are needed to
represent DS,,.

The first randomized constructions which matched this space bound up to constant factors
were proposed independently by Dietzfelbinger and Woelfel [DW03] and Ostlin and Pagh [OP03].
For S C U and a pair (h1, ha) of hash functions, both constructions rely on properties of the
bipartite graph G(S, h1, h2). Next, we sketch these constructions. In the following, let R be the
range of the hash function to be constructed, and assume that (R, &) is a commutative group.
(For example, we could use R = [t] with addition mod ¢.)

For the construction of Dietzfelbinger and Woelfel [DW03], let V' and W be the vertex sets
on the two sides of the bipartition of G(.S, h1, he). In the construction phase, choose a pair
(h1, ha) from Z. Next, for an integer s > 2, with each vertex v € V associate a hash function
hy: U — R chosen at random from an s-independent hash family. With each vertex w € W
associate a random element x,, from R. The evaluation of the function on a key x € U works as
follows. Let (v, w) = (hi(x), ha(x)) be the edge that corresponds to = in G(S, h1, h2). Then the
hash value of x is just h(x) = hy(z) @ x,,. Dietzfelbinger and Woelfel showed that for any given
S C U of size at most n this function is fully random on S with probability 1 — O(n~*/2), uses
(1+¢)nlog|R|+1.55%(1+¢)nlogn + O(loglog |U|) + o(n) bits of space! and has evaluation
time O(s). The construction runs in time O(n).

The construction of Ostlin and Pagh [OP03] works as follows: Each vertex v of G(S, h1, h2)
is associated with a random element x, from R. The construction uses a third hash function

"Here, we applied the technique collapsing the universe, see, e.g., [DW03, Section 2.1] or [Rin14, Section 5.4.1], to
reduce the universe to size n***)/2_ The o(n) term comes from the description length of a hash function from Z.

136

13.2. Simulation of a Uniform Hash Function

hs: U — R. All three hash functions have to be chosen from a n°-wise independent class of

hash functions. (When this construction has been proposed, only Siegel’s class of hash functions
from [Sie04] achieved this degree of independence with constant evaluation time. Nowadays, one
can use the construction of Thorup [Tho13] to make the evaluation more efficient.) Let z € U be
an arbitrary key and let (v, w) be the edge that corresponds to x in G(S, h1, h2). The hash value
of x is h(z) = x, @ xy ® ha(x). This construction uses 8n - log | R| + o(n) + O(log log |U|) bits
of space ([OP03] assumed that m > 4n in their analysis) and achieves a failure probability of
O(1/n?) for each s > 1. (The influence of s on the description length of the data structure is in
the o(n)+O(loglog |U|) term. It is also in the construction time of the hash functions hy, ha, h3.)
The evaluation time is dominated by the evaluation time of the three highly-independent hash
functions. The construction of [OP03] runs in time O(n). In their full paper [PP08], Pagh and
Pagh (the same authors as of [OP03]) introduced a general method to reduce the description
length of their data structure to (1+¢)nlog |R|+o(n)+ O(loglog |U|) bits, which is essentially
optimal. This technique adds a summand of O(1/22) to the evaluation time.

Another construction was presented by Dietzfelbinger and Rink in [DR09]. It is based on results
of Calkin [Cal97] and the “split-and-share” approach. Without going into details too much, the
construction can roughly be described as follows: Choose d > 1, § with 0 < § < 1, and A with
A > 0. Setm = (1+¢)-n°. Then, choose n'~° random tables t;[1..m], for i € [n'~?], filled with
random elements from R"™ and two hash functions A : U — [nl_(s] and hmap: U — ([ZL}).
The hash value of a key © € U is then i€ humap () Phspi () [7]. A detailed overview over the
construction and the involved hash functions can be found in [Rin14]. (Note that hgp;; uses a
variant of Z.) This construction has the currently asymptotically best performance parameters:
(1+¢)nlog | R|+o(n)+O(loglog |U]|) bits of space and evaluation time O (max{log?(1/¢), s>})
for failure probability O(n!~(5+2)/9),

Our construction essentially duplicates the construction in [PP08] by replacing the highly in-
dependent hash functions with functions from hash class Z. The data structure consists of a
hash function pair (h1, h2) from our hash class, two tables of size m = (1 + €)n each, filled
with random elements from R, a two-wise independent hash function with range R, O(s) small
tables with entries from R, and O(s) two-independent hash functions to pick elements from
these tables. The evaluation time of h is O(s), and for S C U, |S| = n, the event Bg occurs
with probability O(1/n*1). The construction requires roughly twice as much space as the most
space-efficient solutions [DR09; PP08]. However, it seems to be a good compromise combining
simplicity and fast evaluation time with moderate space consumption.

Result. The following result is also present in [ADW12].

137

13. Applications on Graphs

Theorem 13.2.1
Givenn > 1,0 < d < 1,e > 0,and s > 0, we can construct a data structure DS,, that allows
us to compute a function h: U — R such that:
(i) For each S C U of size n there is an event Bg of probability O(1/n*!)
such that conditioned on Bg the function A is distributed uniformly on S.
(ii) For arbitrary = € U, h(z) can be evaluated in time O(s/¢).
(iii) DS, comprises 2(1 + ¢)nlog |R| + o(n) + O(loglog |U|) bits.

Proof. Choose an arbitrary integer ¢ > (s + 2)/J. Given U and n, set up DS,, as follows. Let
m = (14 ¢)n and £ = n%, and choose and store a hash function pair (h1, ho) from Z = ZZ’;,
with component functions g1, . . ., g. from F7. In addition, choose two random vectors t1, 3 €
R™, ¢ random vectors y1,...,y. € R, and choose f at random from a 2-wise independent
family of hash functions from U to R.

Using DS,,, the mapping h: U — R is defined as follows:

h(z) = t1[h1(z)] ® talha(z)] @ f(2) B y1[g1(z)] ® . .. & yelge(x)].

DS,, satisfies (ii) and (iii) of Theorem 13.2.1. (If the universe is too large, it must be collapsed to
size n*T3 first.) We show that it satisfies (i) as well. For this, let S C U with |S| = n be given.

First, consider only the hash functions (h1, h2) from Z. By Lemma 12.2.5 we have Pr(B§") =
O(n/t¢) = O(1/n*t1). Now fix (hi,h2) ¢ BY, which includes fixing the components
J1s---,9c. Let T C S be such that G(T, hy, ha) is the 2-core of G(S, hy, hg). The graph
G(T, h1, h2) is leafless, and since (h1,h2) ¢ BY-, we have that (hq, hs) is T-good. Now we
note that the part f(z) @ @, ;<. y;lgj(2)] of h(z) acts exactly as one of our hash functions /;
and hg, where f and y1, ..., y. are yet unfixed. So, arguing as in the proof of Lemma 11.1.3 we
see that h is fully random on T'.

Now assume that f and the entries in the tables y1, ..., y. are fixed. Following [PP08], we
show that the random entries in ¢; and 5 alone make sure that h(z), z € S —T, is fully random.
For the proof, let (z1,...,xp) be the keys in S\ T', ordered in such a way that the edge corre-
sponding to z; is a leaf edge in G(T U {x1,...,z;}, hi, he), foreach i € {1,...,p}. (To obtain
such an ordering, repeatedly remove leaf edges from G = G(5, h1, h2), as long as this is possible.
The sequence of corresponding keys removed in this way is x,, ..., 1.) By induction, we show
that % is uniform on 7'U {1, ..., x,}. In the base case, we consider the set 7" and reasoning as
above shows that h is fully random on 7. For the step, we first observe that, by construction, the
edge which corresponds to the key x; is a leaf edge in G(T'U{x1,...,2;}, hi1, ha). Without loss
of generality we may assume that h(z;) is the leaf. By the induction hypothesis, A is fully ran-
domon T U{z1,...,2;—1} andnokey in T"U {x1,...,x;_1} depends on the value t1[h1(z;)].
Fix all values t1[hi(z)] for x € T U {x1,...,xi_1} and taha(x)] for z € T U {x1,...,z;}.
Then h(x;) is uniformly distributed when choosing ¢ [h1(x;)] at random. O

138

13.3. Construction of a (Minimal) Perfect Hash Function

Remarks and Discussion. When this construction was first described in [ADW12], it was
the easiest to implement data structure to simulate a uniform hash function in almost optimal
space. Nowadays, the construction of Pagh and Pagh can use the highly-independent hash family
construction of Thorup [Tho13] instead of Siegel’s construction. However, in the original analysis
of Pagh and Pagh [PP08], the hash functions are required to be from an n’-wise independent
hash class. It needs to be demonstrated by experiments that the construction of Pagh and Pagh
in connection with Thorup’s construction is efficient. We believe that using hash class Z is much
faster.

Applying the same trick as in [PP08], the data structure presented here can be extended to use
only (1 + €)n words from R. The evaluation time of this construction is O (max{a%, s})

13.3. Construction of a (Minimal) Perfect Hash Function

S. A perfect hash function is minimal if | S| = m. Here, S is assumed to be a static set. Perfect
hash functions are usually applied when a large set of items is frequently queried and allows fast
retrieval and efficient memory storage in this situation.

We start by giving a short overview over the history of perfect hashing. The content is mostly
based on the survey papers of Czech, Havas and Majewski [CHM97] (for an extensive study
of the developments until 1997) and Dietzfelbinger [Die07] (for developments until 2007), and
the recent paper [BPZ13] of Botelho, Pagh, and Ziviani. For a given key set S C U with size
n and m = n?, several constructions are known to build a perfect hash function with con-
stant evaluation time and space consumption O(logn + loglog|U]|), see, e.g., [JEB86]. With
respect to minimal perfect hash functions, Fredman and Komlds [FK84] proved that at least
nloge + loglog |U| — O(logn) bits are required to represent a minimal perfect hash function
when |U| > n® for some constant « > 2. Mehlhorn [Meh84] showed that this bound is es-
sentially tight by providing a construction that needs at most n loge + loglog |U| + O(logn)
bits. However, his construction has setup and evaluation time exponential in n, so it is not
practical. Hagerup and Tholey [HT01] showed how to improve this construction using a ran-
domized approach. Their construction achieves space consumption n log e + loglog |U| 4+ O(n -
(loglogn)?/logn+logloglog |U|), with constant evaluation time and O(n +log log |U|) con-
struction time in expectation. However, for values of n arising in practice, it is not practical, as
discussed in [BPZ13].

In their seminal paper, Fredman, Komlés, and Szemerédi [FKS84] introduced the FKS scheme,
which can be used to construct a minimal perfect hash function that has description length
O(nlogn +loglog |U|) bits and constant evaluation time. Building upon [FKS84], Schmidt and
Siegel [SS90] gave the first algorithm to construct a minimal perfect hash function with constant
evaluation time and space O(n + loglog|U|) bits. According to [BPZ13], high constants are
hidden in the big-Oh notation.

There exist many constructions that are (assumed to be) more practical. Majewski, Wormald,

139

13. Applications on Graphs

Havas and Czech [Maj+96] proposed a family of algorithms to construct a minimal perfect hash
function with constant evaluation time and description length O(n logn) bits based on a hy-
pergraph approach. Other hypergraph approaches that achieve essentially the same description
length (up to a constant factor) are [CHM92] and [BKZ05]. A different approach was described
in Pagh [Pag99]. His approach used a method called hash-and-displace and achieved constant
evaluation time with space O(nlogn) bits, as well. The constant in the description length of
his construction was decreased by about a factor of two by Dietzfelbinger and Hagerup [DHO1].
Later, Woelfel [Woe06b] extended this construction to use only O(n loglogn) bits. Finally, Be-
lazzougui, Botelho and Dietzfelbinger [BBD09] showed how to decrease the space further to only
O(n) bits with a practical algorithm.

The first explicit practical construction of a (minimal) perfect hash function which needs only
O(n) bits is due to Botelho, Pagh, and Ziviani [BPZ07] (full version [BPZ13]) and is again based
on the hypergraph approach. The idea of their algorithm was discovered before by Chazelle,
Kilian, Rubinfeld, and Tal [Cha+04], but without a reference to its use in perfect hashing. Fur-
thermore, Botelho et al. discovered that acyclic hypergraphs admit a very efficient algorithm for
the construction of a perfect hash function, a connection that was not described in [Cha+04].
We will focus our work on their construction. In [BPZ13], explicit hash functions based on the
“split-and-share” approach were used. This technique builds upon a general strategy described
by Dietzfelbinger in [Die07] and Dietzfelbinger and Rink in [DR09] to make the “full randomness
assumption” feasible in the construction of a perfect hash function. Botelho et al. showed in ex-
periments that their construction is very practical, even when realistic hash functions are used.
Our goal is to show that hash functions from class Z can be used in a specific version of their
construction as well. In the remarks at the end of this section, we will speculate about differences
in running time between the split-and-share approach of [BPZ13] and hash class Z.

We start by explaining the construction of [BPZ13] to build a perfect hash function from S to
[2m]. We restrict the discussion to graphs to show its simplicity. The first step in the construction
is to pick two hash functions hy, he: U — [m] and build the graph G(S, hy, ho). If G(S, h1, ha)
contains cycles, choose a new pair of hash functions (hj, he) and rebuild the graph. This is
iterated until G(S, h1, ha) is acyclic. Then build a perfect hash function from S to [2m] from
G = G(S,h1,hg) as follows: First, obtain a 1-orientation of G by iteratively removing leaf
edges. Now, initialize two bit vectors g;[1..m] and g,[1..m]. Our goal is to set the bits in such a
way that for each edge (u, v) in G, given the 1-orientation, we have that

0, (u,v) points towards u,

ul + golv] mod 2 =
g1(u] + gy[v] {1, otherwise.

The perfect hash function & from S to [2m] is defined by the mapping

x = j-m+ higj(z), forx € S, (13.4)
with j < gy [h1(x)] + go[h2(z)] mod 2.

140

13.3. Construction of a (Minimal) Perfect Hash Function

1
O
(&)

1

0
()
O

1

Figure 13.2.: Example for the construction of a perfect hash function for S = {a,b,c,d, e, f}
from acyclic G(S, h1, h2). The peeling process peels the labeled edges in the order
b, f, ¢, e, d, a. The g-value of each node is written next to it. The reader is invited
to check that the hash function described in (13.4) uses the mapping “a — 1, b — 2,
c—7,d—3,e— 38, f— 4"

Setting the bits for each vertex can be done very efficiently when G(S, h1, h2) is acyclic and
thus can be “peeled” by iteratively removing leaf edges. It works in the following way: Initialize

both bit vectors to contain only 0-entries. Mark all vertices as being “unvisited”. Let eq, ..., e,
be the sequence of removed edges in reversed order, i.e., e, is the edge that was removed first
when obtaining the 1-orientation, and so on. Next, consider each edge in the order ey, ..., ep,.

For an edge e¢; = (u,v) do the following: If u is already visited, set go[v] < 1 — g;[u]. (The
hash value of the key associated with the edge is fixed to be m + ho(z).) If v is already visited,
set g,[u] < go[v]. (The hash value of the key associated with the edge is fixed to be hi(z).)
Next, mark u and v as being visited and proceed with the next edge. Note that by the ordering
of the edges it cannot happen that both vertices have been visited before. Figure 13.2 gives an
example of the construction. To build a minimal perfect hash function, Botelho et al. use a
compression technique called “ranking” well-known from succinct data structures to compress
the perfect hash function further. (See References [40,42,45] in [BPZ13].)

In [BPZ13] it is shown that the probability of G(S, hi, h2) being acyclic, i. e., the probability
that the construction succeeds, for fully random hy, ho and m = (1 4 ¢)|S]| is

1 2
1— <1+€> . (13.5)

Result. We will show that for a key set S C U of size n, and for m > 1.08n, we can build
a perfect hash function for a key set S by applying the construction of Botelho et al. a constant
number of times (in expectation). To see this, we only have to prove the following lemma.

141

13. Applications on Graphs

Success probability

Figure 13.3.: Comparison of the probability of a random graph being acyclic and the theoretical
bound following from a first moment approach for values ¢ € [0.08, 4].

Lemma 13.3.1

Let S C U with S = n. Lete > 0.08, and let m > (1 + €)n. Set £ = nd and ¢ > 1.25/4. For

a randomly chosen pair (h1, ho) € Z 72n we then have

2
m@wmummxmmzl+;no_<]->>_du (13.6)

1+e¢

Figure 13.3 depicts the difference between the functions (13.5) and (13.6). The theoretical bound
using a first moment approach is close to the behavior in a random graph when ¢ > 1.

Proof of Lemma 13.3.1. For the proof, we let CYC be the set of all cycles in g?n’n. (Note that
all these cycles have even length, since we consider bipartite graphs.) By Lemma 11.2.2, we
may bound Pr(NSYC > 0) by Pr(BSYC) + E*(NSYC). Since CYC C LL, we know that
Pr(B§YC) = O(n/¢), see Lemma 12.2.5. For the parameter choices £ = n° and ¢ > 1.25/3 we
have Pr(BSYC) = o(1). We now focus on the second summand and calculate (as in [BPZ13]):

n/2 n/2 n
E* (NSCYC) ZMCYC Z

n/2

_ZQt 1+5

142

R R

- (2t)! n
:Z 22tt-m2t §Z2t~m2t

t=1 t=1

ad 1 1 \?
Z ;=—n|1-)
2 - 1+5 2 1+e

where the last step is Maclaurin expansion.

13.4. Connected Components of G(S, h1, ha) are small

Remarks and Discussion. According to Lemma 13.3.1, we can build a perfect hash function
with range [2.16n] with a constant number of constructions of G (.S, h1, ha) (in expectation). To
store the data structure we need 2.16n bits (to store g; and g,), and o(n) bits to store the pair
(h1, h2) from Z. For example, for a set of n = 232 keys, i.e., about 4.3 billion keys, the pair
(h1, ha) may consist of ten tables with 256 entries each, five 2-universal hash functions, and
two 2-independent hash functions, see Lemma 13.3.1 with parameters ¢ = 5 and 6 = 1/4. This
seems to be more practical than the split-and-share approach from [BPZ13] which uses more
and larger tables per hash function, cf. [BPZ13, Section 4.2]. However, it remains future work to
demonstrate in experiments how both approaches compare to each other. To obtain a minimal
perfect hash function, one has to compress the perfect hash function further. This roughly doubles
the description length, see [BPZ13] for details.

In their paper [BPZ13], Botelho et al. showed that minimal space usage is achieved when using
three hash functions hy, ha, hs to build the hypergraph G(S, h1, he, hs). In this case, one can
construct a perfect hash function with range [1.23n] with high probability. Since the g-values
must then index three hash functions, 1.23n - logy 3 =~ 1.95n bits are needed to store the bit
vectors. According to [BPZ13], the minimal perfect hash function needs about 2.62n bits.

In Section 14.1, we will consider the orientability of the hypergraph G(S, hy, ha, h3) when
hash functions are picked from ZZ’SI. Our result will be far away from the result of Botelho et
al: We can prove the construction to work (with high probability) only when we aim to build
a perfect hash function with range of size at least 6(1 + &)n, for € > 0, which is inferior to the
construction with only two hash functions discussed here.

13.4. Connected Components of G(S, hq, hs) are small

Background. As is well known from the theory of random graphs, for a key set S C U of
size n and m = (1 4 €)n, for ¢ > 0, and fully random hash functions hi, he : U — [m] the
graph G(S, hy1, h2) contains w.h.p. only components of at most logarithmic size which are trees
or unicyclic. (This is the central argument for standard cuckoo hashing to work.) We show here
that hash class Z can provide this behavior if one is willing to accept a density that is smaller
by a constant factor. Such situations have been considered in the seminal work of Karp, Luby,
and Meyer auf der Heide [KLM96] on the simulation of shared memory in distributed memory
machines.

Result. We give the following result as a corollary. It has first appeared in [KLM96].

143

13. Applications on Graphs

Corollary 13.4.1 [KLM96, Lemma 6.3]
Let S C U with |S| = n. Let m > 6n. Then for each o > 1, there are 3, ¢, ¢, s > 1 such that
for G = G(S, h1, ha) with (hy, ha) € 252 we have that

(a) Pr(G has a connected component with at least 5 log n vertices) = O(n™%).

(b) Pr(G has a connected component with k vertices and > k + s — 1 edges) = O(n™%).

Proof. We start with the proof of (b). If G = G(S, h1, ha) has a connected component A with
k vertices and at least k + s — 1 edges, then ex(G) > s — 1. According to Theorem 13.1.4, the
probability that such a component appears is O(1/n®), for s = a and ¢ > 2(a + 1). The proof
of Part (a) requires more care.

To prove (a) we may focus on the probability that G contains a tree with k = (§logn vertices.
We let T consist of all trees with £ vertices in G,,, 5, and apply Lemma 11.2.2 to get

Pr (Ng > 0) < Pr (Bg) +E (Ng) . (13.7)

Since T C LCY, we have that Pr(Bl) = O(n/(¢), see Lemma 12.2.5. We now bound the
second summand of (13.7). Note that the calculations are essentially the same as the ones made
in [KLM96] to prove their Lemma 6.3. By Caley’s formula we know that there are k*~2 labeled
trees with vertex set {1, ..., k}. Fix such a tree 7. We can label the edges of T* with k — 1 keys

from S in (kﬁl) - (k — 1)! many ways. Furthermore, there are two ways to fix which vertices
2m

of T™ belong to which side of the bipartition. After this, there are not more than (.) ways to
assign the vertices of T to vertices in the bipartite graph G(S, h1, ha). Once all these labels of
T* are fixed, the probability that the hash values of (hy, hy) realize T* is 1/m>* 1. We can
thus calculate:

(n).kk—2.2.(k4,1)g.(%7) - ok+1 2 . k=2

* T k—1
E*(Ng) < m2(k—1) = 6k . k!
k+1 02 k=2 k
< 2 m* -k < om?. (E)
6% - V2rk - (k/e)k 3
Part (a) follows for £ = Q(logn). O

Remarks and Discussion. The authors of [KLM96] use a variant of hash class Z combined
with functions from Siegel’s hash class to obtain a hash class with high (1/n-wise) independence.
They need this high level of independence in the proof of their Lemma 6.3, which states properties
of the connected components in the graph built from the key set and this highly independent
hash functions. Replacing Lemma 6.3 in [KLM96] with our Corollary 13.4.1 immediately implies

144

13.4. Connected Components of G(S, h1, ha) are small

that the results of [KLM96], in particular, their Theorem 6.4, also hold when (only) using hash
functions from Z. In particular, in [KLM96] the sparse setting where m is at least 6n was
considered as well.

Moreover, this result could be applied to prove results for cuckoo hashing (with a stash), and
de-amortized cuckoo hashing of Arbitman et al. [ANS09]. However, note that while in the fully
random case the statement of Corollary 13.4.1 holds for m = (1 + ¢)n, here we had to assume
m > 6n, which yields only very low hash table load. We note that this result cannot be im-
proved to (1 + €)n using the first moment approach inherent in our approach and the approach
of [KLM96] (for \/n-wise independence), since the number of unlabeled trees that have to be
considered in the first moment approach is too large [Ott48]. It remains open to show that graphs
built with our class of hash functions have small connected components for all € > 0.

145

14. Applications on Hypergraphs

In this chapter we discuss some applications of hash class Z in the setting that we use more than
two hash functions, i.e., each edge of G(S, i_i) contains at least three vertices. We will study
three different applications: Generalized cuckoo hashing with d > 3 hash functions as proposed
by Fotakis, Pagh, Sanders, and Spirakis [Fot+05], two recently described insertion algorithms for
generalized cuckoo hashing due to Khosla [Kho13] and Eppstein, Goodrich, Mitzenmacher, and
Pszona [Epp+14], and different schemes for load balancing as studied by Schickinger and Steger
[SSo00].

For applications regarding generalized cuckoo hashing, we will study the failure term of Z on
the respective graph properties directly. We will show that Z allows running these applications
efficiently. However, we have to assume that the load of the hash table is rather low. For the
application with regard to load balancing schemes, the failure term of Z will be analyzed by
means of a very general graph property. However, it requires higher parameters when setting up
a hash function from Z, which degrades the performance of these hash functions. We will start
by introducing some notation.

Hypergraph Notation. A hypergraph extends the notion of an undirected graph by allowing
edges to consist of more than two vertices. We use the hypergraph notation from [SPS85; KL02].
A hypergraph is called d-uniform if every edge contains exactly d vertices. Let H = (V, E') be a
hypergraph. A hyperpath from u tov in H is a sequence (u = uy, €1, U2,€2,...,€_1,U = V)
such that e; € F and u;, u;4+1 € e;, for 1 < ¢ <t — 1. The hypergraph H is connected if for
each pair of vertices u, v € V there exists a hyperpath from u to v.

The bipartite representation of a hypergraph H is the bipartite graph bi(H) where vertices of
H are the vertices on the right side of the bipartition, the edges of H correspond to vertices on
the left side of the bipartition, and two vertices are connected by an edge in the bipartite graph if
the corresponding edge in the hypergraph contains the corresponding vertex.

We will use a rather strict notion of cycles in hypergraphs. A connected hypergraph is called
a hypertree if bi(H) is a tree. A connected hypergraph is called unicyclic if bi(H) is unicyclic.
A connected hypergraph that is neither a hypertree nor unicyclic is called complex. Using the
standard formula to calculate the cyclomatic number of a graph® [Die05], we get the following
(in)equalities for a connected d-uniform hypergraph H with n edges and m vertices: (d—1)-n =
m — 1if H is a hypertree, (d — 1) -n = m if H is unicyclic, and (d—1) -n > m if H is complex.

We remark that there are different notions with respect to cycles in hypergraphs. In other

'The cyclomatic number of a connected graph G with m vertices and n edges is n — m + 1.

147

14. Applications on Hypergraphs

papers, e.g., [CHM97; Die07; BPZ13], a hypergraph is called acyclic if and only if there exists
a sequence of repeated deletions of edges containing at least one vertex of degree 1 that yields
a hypergraph without edges. (Formally, we can arrange the edge set E = {ej,...,e,} of the
hypergraph in a sequence (e, . . ., e},) such that €’ — (J,_; €5 # 0, for 1 < j < n.) We will call
this process of repeatedly removing edges incident to a vertex of degree 1 the peeling process,
see, e.g., [Mol05]. With respect to this definition, a hypergraph H is acyclic if and only if the
2-core of H is empty, where the 2-core is the maximal subgraph of H in which each vertex has
minimum degree 2. An acyclic hypergraph, according to this definition, can have unicyclic and
complex components according to the definition from above. In the analysis, we will remark why
it is important for our work to use the notation introduced above.

14.1. Generalized Cuckoo Hashing

Background. The obvious extension of cuckoo hashing is to use a sequence h= (hiy...,hq)
of d > 3 hash functions. For a given integer d > 3 and a key set S C U with |S| = n, our hash
table consists of d tables 77, . . ., Ty, each of size m = O(n), and uses d hash functions hy, . .., hyq

with h;: U — [m], fori € {1,...,d}. Akey x can be stored either in T} [h1 ()], T2[ho(2)], . . .,
or Tyy[hq(x)]. Each table cell contains at most one key. Searching and removing a key works in
the obvious way. For the insertion procedure, note that evicting a key y from a table 7 leaves,
in contrast to standard cuckoo hashing, d — 1 other choices where to put the key. To think about
insertion procedures, it helps to introduce the concept of a certain directed graph. Given a set
S of keys stored in a cuckoo hash table with tables 77, . .., Ty using h, we define the following
(directed) cuckoo allocation graph G = (V, E), see, e.g., [Kho13]: The vertices V' correspond
to the memory cells in 77, ...,T,. The edge set E consists of all edges (u,v) € V x V such
that there exists a key € S so that x is stored in the table cell which corresponds to vertex
u (x occupies u) and v corresponds to one of the d — 1 other choices of key z. If u € V has
out-degree 0, we call u free. (The table cell which corresponds to vertex u does not contain a
key.) Traditionally, see [Fot+05], the following strategies were suggested for inserting a key z:

e Random Walk: Test whether one of the d possible table cells for key x is empty or not. If
this is the case, then store z in such a cell; the insertion terminates successfully. Otherwise
pick one out of the d table cells at random. Let y be the key that occupies this table cell. The
key y is evicted before x is stored into the cell. Now the insertion continues analogously
with the key y. This strategy corresponds to a random walk in the cuckoo allocation graph.
The insertion fails if the number of evicted keys is larger than a given threshold, e. g., after
poly-logarithmically many steps, see [FPS13].

e Breadth-First Search: Starting from the d choices of z, use breadth-first search in the

cuckoo allocation graph to systematically scan all possible eviction sequences of length
1,2,... until a free vertex, i.e., an empty cell, has been found. If such a cell exists, move

148

14.1. Generalized Cuckoo Hashing

elements along the path in the cuckoo allocation graph to accommodate z. Otherwise the
insertion fails.

(In the next section, we will study two alternative insertion strategies that were suggested re-
cently.) If an insertion fails, a new sequence of hash functions is chosen and the data structure is
built anew.

In the original analysis, Fotakis et al. [Fot+05] proved that for given ¢ > 0, d > 2(1 +
¢)1In(e/e) fully random hash functions suffice to store n elements into (1 + £)n table cells with
high probability according to the cuckoo hashing rules. Later, it was fully understood what table
sizes m makes it possible to store w.h.p. a key set according to the cuckoo hashing rules for a
given number of hash functions. In 2009, this case was settled independently by Dietzfelbinger
et al. [Die+10], Fountoulakis and Panagiotou [FP10], and Frieze and Melsted [FM12]. Later, the
random walk insertion algorithm was partially analyzed by Frieze, Melstedt, and Mitzenmacher
[FMM11] and Fountoulakis, Panagiotou, and Steger [FPS13].

Here, we study the static setting in which we ask if h allows accommodating a given key set
S C U in the hash table according to the cuckoo hashing rules. As in the case of standard cuckoo
hashing, this is equivalent to the question whether the hypergraph G(S, f_i) built from S and £
is 1-orientable or not, recall the definition in Section 11.4. If G(.S, E) is l-orientable, we call h
suitable for S.

We now discuss some known results for random hypergraphs. As for simple random graphs
[ER60] there is a sharp transition phenomenon for random hypergraphs [KL02]. When a random
hypergraph with m vertices has at most (1 —e)m/(d(d—1)) edges, all components are small and
all components are hypertrees or unicyclic with high probability. On the other hand, when it has
at least (1 +¢)m/(d(d — 1)) edges, there exists one large, complex component. We will analyze
generalized cuckoo hashing under the assumption that each table has size m > (1+¢)(d — 1)n,
for € > 0. Note that this result is rather weak: The load of the hash table is at most 1/(d(d — 1)),
i. e., the more hash functions we use, the weaker our bounds for provable working hash functions
are. At the end of this section, we will discuss whether this result can be improved or not with
the methodology used here.

Result. We will show the following theorem.

Theorem 14.1.1

Lete > 0,0 < § < 1,d > 3 be given. Assume ¢ > 2/§. For n > 1, consider m >
(14¢)(d—1)nand £ = n’. Let S C U with |S| = n. Then for h = (hi,...,hq) chosen at
random from Z = Zz’;i the following holds:

Pr (i_i is not suitable for S) =0(1/n).

? Technical report versions of all these papers were published at www.arxiv.org. We refer to the final publications.

149

www.arxiv.org

14. Applications on Hypergraphs

Lemma 14.1.2
Let H be a hypergraph. If H contains no complex component then H is 1-orientable.

Proof. We may consider each connected component of H separately. We claim that a hypertree
and a unicyclic component always contains an edge that is incident to a vertex of degree 1. By
contraposition, we will show that if every vertex in a connected hypergraph with m vertices and
n edges has degree at least 2, then (d — 1) - n > m, i.e., the hypergraph is complex. So, let C'
be an arbitrary connected hypergraph with m vertices and n edges, and let ¢* be the minimum
degree of a vertex in C. By assumption, it holds that d - n > ¢* - m, and we may calculate:

!
(d—l)-n2m+(c*—1)-m—n(>)m.

So, all we have to do is to show that (¢* — 1)m > n. This follows since n > ¢*m/d and
c*(1—=1/d) > 1ford > 3 and ¢* > 2. So, every hypertree or unicyclic component contains a
vertex of degree 1.

Suppose C' is such a hypertree or a unicyclic component. A 1-orientation of C is obtained
via the well-known “peeling process”, see, e. g., [Mol05]. It works by iteratively peeling edges
incident to a vertex of degree 1 and orienting each edge towards such a vertex. d

In light of Lemma 14.1.2 we bound the probability of G(.S, i_i) being 1-orientable by the prob-
ability that G(S, ﬁ) contains no complex component. A connected complex component of H
contains at least two cycles in bi(G). So, minimal obstruction hypergraphs that show that
a hypergraph contains a complex component are very much like the obstruction graphs that
showed that a graph contains more than one cycle, see Figure 11.1 on Page 120. For a clean
definition of obstruction hypergraphs, we will first introduce the concept of a strict path in
a hypergraph. A sequence (ei,...,e¢),t > l,e; € E,1 < i < t,is a strict path in H if
leiNei1]=1,1<i<t—1,and|e;Nej| =0forj >i+2and1 < i<t — 2. According to
[KL02], a complex connected component contains a subgraph of one of the following two types:

Type 1: A strict path ey, ..., e, t > 1, and an edge f such that [f Ney| > 1,

t
fn Uei
i=1

fNe)>1,and

> 3.

Type 2: Astrict pathey,...,e;—1,t > 2,and edges f1, fo such that |f; Nej| > 1,

and
t—1
fin U €
i=1

f2 r_]et71| Z 17

>2, forje{1,2}.

150

14.1. Generalized Cuckoo Hashing

Hypergraphs of Type 1 have a cycle with a chord in their bipartite representation, hypergraphs
of Type 2 contain two cycles connected by a path of length ¢ > 0 in their bipartite representation.
We call a hypergraph H in g;fw which is of Type 1 or Type 2 a minimal complex obstruction
hypergraph. Let MCOG denote the set of all minimal complex obstruction hypergraphs in gffw.
In the following, our objective is to apply Lemma 11.2.2, which says that

Pr (N§'CC > 0) < Pr (BYO°) +E* (N§'<09). (14.1)

Bounding E* (N SMCOG). We will now prove the following lemma:

Lemma 14.1.3
Let S C U with |S| =n,d > 3, and € > 0 be given. Set m > (1 + ¢)(d — 1)n. Then

E* (N§'°°%) = O(1/n).

Proof. The proof follows [KL02]. We begin by counting the number w1 (d, t 4 1) of fully labeled
hypergraphs of Type 1 having exactly ¢ + 1 edges. There are not more than dm?® - ((d — 1)m)*~!
ways to choose a strict path ey, . .., e;. When such a path is fixed, there are at most td° - m?—3
ways to choose the additional edge f from the definition of Type 1 minimal complex obstruction
hypergraphs. So, we obtain the bound

wi(d,t+1) <dm?- ((d —1). md—l)t s, (14.2)

By a similar argument, for the number ws(d, t+ 1) of fully labeled hypergraphs of Type 2 having
exactly t + 1 edges we get

t—2
wy(d, t +1) < dm? - <(d -1)- md_l) 2d - mPd2), (14.3)

In total, the number of fully labeled minimal complex obstruction hypergraphs with exactly £+ 1
edges not larger than

((til) e+ 1)’) (wi(d,t+ 1) + wy(d, 1 +2))

t—2
<t dmd. ((d _ 1)md71> 200 ((d e T mz(da))
=t @8 @D 2 g 1)t2

< D=1 g6 g2 () L (=D)L (g py(d-D D43

— pdt+1) =1 g6 42 1+ E)(d—1)(t+1)—1 (- 1)d(t+1)—4'

151

14. Applications on Hypergraphs

Let H be a fully labeled minimal complex obstruction hypergraph with ¢ 4 1 edges.

Draw ¢ + 1 edges at random from [m]? according to the labels in H. The probability that the
hash values realize H is 1/m4**1) < 1/((1+¢) (d — 1) n)d(tﬂ).

We calculate

LINP R (1+ E)(d—1)~(1:+1)—1 (d - 1)d-(t+1)f4 . pd- (1)1

E* (Ng/\coc) < tzl (e @-1 n)d(t“)

t+1

Bounding Pr (BgACOG). We will now prove the following lemma.

Lemma 14.1.4
Let S C U with |S| = n,d > 3, and € > 0 be given. Set m > (1 +¢)(d — 1)n. Let £,¢ > 1.
Choose h € Zg ’ndl at random. Then

Pr (BY%) = 0 () -

To use our framework from Section 11, we have to find a suitable peelable hypergraph property
that contains MCOG. Since minimal complex obstruction hypergraphs are path-like, we relax
their notion in the following way.

Definition 14.1.5

Let P* be the set of all hypergraphs H from g,gim which have one of the following properties:
1. H has property MCOG.
2. H is a strict path.
3. H consists of a strict path ey, ...,e;, ¢ > 1, and an edge f such that |f N (e; Ues)| > 1

and

> 2.

t
/n Uei
i=1

152

14.1. Generalized Cuckoo Hashing

Note that property 3 is somewhat artificial to deal with the case that a single edge of a minimal
complex obstruction hypergraph of Type 2 is removed. Obviously, MCOG is contained in P* and
P* is peelable. We can now prove Lemma 14.1.4.

Proof of Lemma 14.1.4. We apply Lemma 11.3.4 which says that

NP .
Pr (Bg) < K—Cthcuf .
t=1

We start by counting fully labeled hypergraphs G € P* having exactly ¢ + 1 edges. For the
hypergraphs having Property 1 of Definition 14.1.5, we may use the bounds (14.2) and (14.3) on
wi(d,t 4+ 1) and wa(d, t + 1) in the proof of Lemma 14.1.3. Let wq(d, ¢t + 1) be the number of
such hypergraphs which are strict paths, i. e., have Property 2 of Definition 14.1.5. We obtain the
following bound:

wo(d, t + 1) <dm? - ((d ~1). mdfl)t.

Let w3(d, t+1) be the number of hypergraphs having Property 3 of Definition 14.1.5. We observe
that

t—1
ws3(d, t + 1) <dm?- ((d -1) -md_1> 2d% -t -m®2

So, the number of fully labeled hypergraphs having exactly ¢t + 1 edges is at most

((:J (4 1)!> (wo(d,t + 1) +wi(d, t + 1) + wa(d, t + 1) + ws(d, t + 1))

t—2
<n'tl.dmd. <(d -1)- md*1> .

(deQ(d—n 4 @m2d=2) 4 42, 2(d-2) o 2d3tm2d_3)
< 4.d0 42ttt d-DE+)+1 (d—1)2

<4 P2 AR (] g)DL (g q)de+) =2,

We may thus calculate:

. " 42 d-D@+1)+1 | (g _ 1)dt+1)—2 | pd(t+1)+1
pe(p) < L 3o, LT e e
P (1 +2)(d = 1)n)de+D)
n n 4 - d5 . t2+20 n
< — = — .
)

153

14. Applications on Hypergraphs

Putting Everything Together. Substituting the results of Lemma 14.1.3 and Lemma 14.1.4 into
(14.1) yields

1 n
MCOG < - .
Pr (Ng'“°¢ > 0) _O<n> +O(€C)
Theorem 14.1.1 follows by setting ¢ > 2/6 and £ = n°.

Remarks and Discussion. Our result shows that with hash functions from Z there exists
w.h.p. an assignment of the keys to memory cells (according to the cuckoo hashing rules) when
each table has size at least (1+¢)(d — 1)n, where n is the size of the key set. Thus, the load of the
hash table is smaller than 1/(d(d—1)). In the fully random case, the load of the hash table rapidly
grows towards 1, see, e. g., the table on Page 5 of [Die+10]. For example, using 5 hash functions
allows the hash table load to be ~ 0.9924. The approach followed in this section cannot yield
such bounds for the following reason. When we look back at the proof of Lemma 14.1.2, we notice
that it gives a stronger result: It shows that when a graph does not contain a complex component,
it has an empty two-core, i.e., it does not contain a non-empty subgraph in which each vertex
has minimum degree 2. It is known from random hypergraph theory that the appearance of
a non-empty two-core becomes increasingly likely for d getting larger.®> So, we cannot rely on
hypergraphs with empty two-cores to prove bounds for generalized cuckoo hashing that improve
for increasing values of d.

However, one can also approach orientation thresholds by means of matchings in random
hypergraphs. It is well known from Hall’s theorem that a bipartite graph G(L, R, F) has an L-
perfect matching if and only if every set of vertices X C L has at least | X | adjacent vertices in
R [Die05]. (An L-perfect matching is a matching M C E that contains every vertex of L.) Now,
think of the hypergraph G = G(S, &) as a bipartite graph bi(G) = (L, R, E) in the standard
way. An L-perfect matching M induces a 1-orientation of GG in the obvious way.

The statement of Hall’s theorem in hypergraph terminology is: There exists a 1-orientation
of G(S,h) if and only if for every T C S the graph G(T,) (disregarding isolated vertices)
has at least as many vertices as it has edges. For the analysis, let D (“dense”) contain all con-
nected hypergraphs from ggm which have more edges than vertices. Then G(5, ﬁ) contains a
1-orientation if and only if N SD = (. As before, we apply Lemma 11.2.2 and obtain the bound

Pr(NB>0) <Pr(BR)+E (NB). (14.4)
The calculations from the proof in [Fot+05, Lemma 1] show that for d > 2(1 + ¢) In(e/e) we

have that E* (N SD) = O(n*~24). To bound the failure term of hash class Z, we first need to find
a peelable graph property. For this, let C denote the set of all connected hypergraphs in fow.

* According to [MM09, p. 418] (see also [Maj+96]) for large d the 2-core of a random d-uniform hypergraph with m
vertices and n edges is empty with high probability if m is bounded from below by dn/ log d.

154

14.2. Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing

Of course, D C C, and C is peelable. However, it remains an open problem to find good enough
bounds on Pr (Bg) Section 14.3 will contain some progress towards achieving this goal. There
we will prove that when considering connected hypergraphs with at most O (logn) edges, we
can bound the failure term of Z by O(n~%) for an arbitrary constant o > 0 which depends on
d and the parameters of the hash class. However, the successful analysis of generalized cuckoo
hashing requires this result to hold for connected hypergraphs with more edges. The situation is
much easier in the sparse setting, since we can compensate for the additional label choices of a
d-partite hypergraph with the d — 1 factor in the number of vertices, see, e. g., the calculations in
the proof of Lemma 14.1.4.

Another approach is the one used by Chazelle, Kilian, Rubinfeld, and Tal in [Cha+04, Section
4]. They proved that a 1-orientation of the hypergraph G(.S, i_i) can be obtained by the simple
peeling process, if for each set 7' C S the graph G(T, E) (disregarding isolated vertices) has at
most d/2 times more edges than it has vertices. This is weaker than the requirement of Hall’s
theorem, but we were still not able to prove low enough failure terms for hash class Z.

14.2. Labeling-based Insertion Algorithms For Generalized
Cuckoo Hashing

In the previous section we showed that when the tables are large enough, the hash functions
allow storing S according to the cuckoo hashing rules with high probability. In this section we
prove that such an assignment can be obtained (with high probability) with hash functions from
Z using two recently described insertion algorithms.

Background. Inthe last section, we pointed out two natural insertion strategies for generalized
cuckoo hashing: breadth-first search and random walk, described in [Fot+05]. Very recently,
Khosla [Kho13] (2013) and Eppstein et al. [Epp+14] (2014) gave two new insertion strategies,
which will be described next. In both algorithms, each table cell 7 in table 7} has a label (or
counter) [(j,7) € N, where initially {(j,i) = O forall j € {1,...,d} andi € {0,...,m — 1}.
The insertion of a key = works as follows: Both strategies find the table index

j = argmin{l(j, hj(x))}.
je{1,....d}

If Tj[hj(x)] is free then x is stored in this cell and the insertion terminates successfully. Other-
wise, let y be the key which resides in T}[h;(x)]. Store z in Tj[h;(x)]. The difference between
the two algorithms is how they adjust the labeling. The algorithm of Khosla sets

104, hj(2)) = min{l(j", hy(x)) | /" € ({1,....d}\ {i})} + 1,

while the algorithm of Eppstein et al. sets I(j, h;j(x)) + I(j, hj(x)) + 1. Now insert y in the
same way. This is iterated until an empty cell is found or it is noticed that the insertion cannot be

155

14. Applications on Hypergraphs

performed successfully. In Khosla’s algorithm, the content of the label /(3,) is a lower bound
for the minimal length of an eviction sequences that allows to store a new element into 77 i]
(moving other elements around)[Kho13, Proposition 1]. In the algorithm of Eppstein et al., the
label I(j, %) contains the number of times the memory cell T} [i] has been overwritten. According
to [Epp+14], it aims to minimize the number of write operations to a memory cell. This so-called
“wear” of memory cells is an important issue in modern flash memory. In our analysis, we show
that in the sparse setting with m > (1 + £)(d — 1)n, the maximum label in the algorithm of
Eppstein et al. is log log n + O(1) with high probability and the maximum label in the algorithm
of Khosla is O(log n) with high probability.

Result. Our result when using hash functions from Z is as follows. We only study the case
that we want to insert the keys from a set S sequentially without deletions.

Theorem 14.2.1
Lete > 0,0 < 0 < 1,d > 3 be given. Assume ¢ > 2/§. For n > 1 consider m >
(1+¢)(d—1)nand £ = nd. Let S C U with |S| = n. Choose h € ch’gl at random. Insert all

keys from S in an arbitrary order using the algorithm of Khosla using h. Then with probability
O(1/n) (i) all key insertions are successful and (ii) max{l(j,4) | ¢« € {0,...,m — 1},j €
{1,...,d}} = O(log n).

Theorem 14.2.2

Lete > 0,0 < 6 < 1,d > 3 be given. Assume ¢ > 2/6. For n > 1 consider m >
(1+ée)(d—1Dnand ¢ = nd. Let S C U with |S| = n. Choose h € Zz’;i at random.
Insert all keys from S in an arbitrary order using the algorithm of Eppstein et al. using h.
Then with probability O(1/n) (i) all key insertions are successful and (ii) max{l(j,i) | i €
{0,...,m—1},5€{1,...,d}} =loglogn + O(1).

For the analysis of both algorithms we assume that the insertion of an element fails if there exists
a label of size n + 1. (In this case, new hash functions are chosen and the data structure is built
anew.) Hence, to prove Theorem 14.2.1 and Theorem 14.2.2 it suffices to show that statement (ii)
holds. (An unsuccessful insertion yields a label with value > n.)

Analysis of Khosla’s Algorithm. We first analyze the algorithm of Khosla. We remark that
in our setting, Khosla’s algorithm finds an assignment with high probability. (In [Kho13, Section
2.1] Khosla gives an easy argument why her algorithm always finds an assignment when this

* Neither in [Epp+14] nor in [Kho13] it is described how this should be done in the cuckoo hashing setting. From
the analysis presented there, when deletions are forbidden, one should do the following: Both algorithms have a
counter MaxLabel, and if there exists a label [(j,7) > MaxLabel, then one should choose new hash functions and
re-insert all items. For Khosla’s algorithm, MaxLabel = ©(log n); for the algorithm of Eppstein ef al., one should
set MaxLabel = O(loglogn).

156

14.2. Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing

is possible. In the previous section, we showed that such an assignment exists with probability
1 — O(1/n).) It remains to prove that the maximum label has size O(logn). We first introduce
the notation used by Khosla in [Kho13]. Recall the definition of the cuckoo allocation graph from
the beginning of Section 14.1. Let G be a cuckoo allocation graph. Let Fi; C V consist of all free
vertices in G. Let dg(u, v) be the distance between v and v in G. Define

da(u, F) := min ({dg(u,v) | v € F}U{oc0}).

Now assume that the key set .S is inserted in an arbitrary order. Khosla defines a move as every
action that writes an element into a table cell. (So, the ¢-th insertion is decomposed into k; > 1
moves.) The allocation graph at the end of the p-th move is denoted by G, = (V, E},). Let M

denote the number of moves necessary to insert S. (Recall that we assume that % is suitable for
S.) Khosla shows the following connection between labels and distances to a free vertex.

Proposition 14.2.3 [Kho13, Proposition 1]
For each p € {0,1,..., M} and each v € V it holds that

d, (v, Fa,) 2 1(7, 1), (14.5)
where T} [i] is the table cell that corresponds to vertex v.
Now fix an integer L > 1. Assume that there exists an integer p, for 0 < p < M, and a vertex
v such that d(v, Fg,) = L. Let (v = vo,v1,...,vL—1,vr) be a simple path p of length L in G,

such that vy, is free. Let xq,...,zr—1 C S be the keys which occupy vy, ...,vr_1. Then the
hypergraph G(S, h) contains a subgraph H that corresponds to p in the obvious way.

Definition 14.2.4
For given integers L > 1,m > 1,n > 1,d > 3, let SP* (“simple path”) consist of all hyper-
graphs H = (V,{e1,...,er})in g;l,m with the following properties:

1. Foralli € {1,..., L} we have that |e;| = 2. (So, H is a graph.)

2. Forallie {l,...,L—1},

e; N 6i+1| = 1.

3. Forallie {1,...,L—2}andj € {i+2,...,L},

eiﬂej\ = 0.

Our goal in the following is to show that there exists a constant ¢ such that for all L > clogn
we have Pr (NgPL > 0) = O(1/n). From Lemma 11.2.2 we obtain the bound

Pr(NE* > 0) <B (NF) +Pr(BY). (14.6)

157

14. Applications on Hypergraphs

Bounding E* (N gPL). We show the following lemma.

Lemma 14.2.5
Let S C U with |S| =n,d > 3, and € > 0 be given. Consider m > (d — 1)(1 + ¢)n. Then

B (M) < (1TO£)L'

Proof. We count fully labeled hypergraphs with property SPY. Let P be an unlabeled simple
path of length L. There are d - (d — 1)* ways to label the vertices on P with {1,...,d} to fix
the class of the partition they belong to. Then there are not more than m”*! ways to label the
vertices with labels from [m)]. There are fewer than n ways to label the edges with labels from
{1,...,n}. Fix such a fully labeled path P’. Now draw 2L hash values from [m] according to
the labels of P’. The probability that these random choices realize P’ is 1/m?". We calculate:

* spL d-(d—l)L'mL+1'nL_ m'd'(d_l)L __md
B (35 < m2E S (@=n et (149t

O]

Bounding Pr (BgPL). Note that SP is not peelable. We relax SP¥ in the obvious way and
define RSPF = U0§i§ L SPL. Graph property RSP is peelable.

Lemma 14.2.6
Let S C U with |S| = n and d > 3 be given. Forane > 0, set m > (1 + ¢)(d — 1)n. Let
£,c > 1. Choose h € Zg’rdn at random. Then

Pr (BEPL) =0 (;) .

Proof. Since SPY C RSP% and RSP” is peelable, we may apply Lemma 11.3.4 and obtain the
bound

By the definition of RSP” and using the same counting argument as in the proof of Lemma 14.2.5,

158

14.2. Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing

we calculate:

() <5 T o)
(]

Putting Everything Together. Plugging the results of Lemma 14.2.5 and Lemma 14.2.6 into
(14.6) shows that

d n
Pr(Ng >0) < o).
P T (1+e)k TO\E
Setting L = 2logy, .(n),¢ = n’, and ¢ > 2/ finishes the proof of Theorem 14.2.1.

Analysis of the Algorithm of Eppstein et al. 'We now analyze the algorithm of Eppstein et al.
[Epp+14]. We use the witness tree technique to prove Theorem 14.2.2. This proof technique was
introduced by Meyer auf der Heide, Scheideler, and Stemann [HSS96] in the context of shared
memory simulations, and is one of the main techniques to analyze load balancing processes, see,
e. g., [Col+98a; Col+98b; Ste96; SS00; V6c03], which will be the topic of the next section.

Central to our analysis is the notion of a witness tree for wear k, for an integer k > 1. (Recall
that in the algorithm of Eppstein et al., the label [(j, i) denotes the number of times the algorithm
has put a key into the cell 77[¢]. This is also called the wear of the table cell.) For given values n
and m, a witness tree for wear k is a (d — 1)-ary tree with k + 1 levels in which each non-leaf
node is labeled with a tuple (j,7,x), for 1 < j < d,0 <i <m —1,and 1 < k < n, and each
leaf is labeled with a tuple (j,7), 1 < j < dand 0 < ¢ < m — 1. Two children of a non-leaf node
v must have different first components (j-values) and, if they exist, third components (x-values)
Also the x-values of a node and its children must differ.

We say that a witness tree is proper if no two different non-leaf nodes have the same labeling.
We say that a witness tree 7" can be embedded into G (.5, l_i) if for each non-leaf node v with label
(Jo, 0, k) with children labeled (ji,41), ..., (jg—1,%4—1) in the first two label components in T,
hj, (xy) = i, for each 0 < k < d — 1. We can think of a proper witness tree as an edge-labeled
hypergraph from ggm by building from each non-leaf node labeled (jo, 70, x) together with its
d—1 children with label components (j1, 1), ..., (ja—1,i4—1) a hyperedge (i, ..., i, ;) labeled
“k”, where i, . .., 1/, , are ordered according to the j-values.

Suppose that there exists a label [(j,4) with content & for an integer £ > 0. We now argue
about what must have happened that [(7, 7) has such a label. In parallel, we construct the witness
tree for wear k. Let 7" be an unlabeled (d — 1)-ary tree with k+ 1 levels. Let y be the key residing
in 7}[i]. Label the root of T" with (j, 4, <), where y = x,, € S. Then for all other choices of y
in tables T, 5" € {1,...,d},j # j, we have (', hj(y)) > k — 1. (When y was written
into T [i], I(j,) was k — 1 and this was minimal among all choices of key y. Labels are never

159

14. Applications on Hypergraphs

decreased.) Let x1,...,x4_1 be the keys in these d — 1 other choices of y. Label the children
of the root of T" with the d — 1 tuples (j', hj:(y)),1 < j < d,j" # j, and the respective key
indices. Arguing in the same way as above, we see that for each key z;,7 € {1,...,d — 1},
its d — 1 other table choices must have had a label of at least £ — 2. Label the children of the
node corresponding to key z; on the second level of T' with the d — 1 other choices, for each
i € {1,...,d — 1}. (Note that already the third level may include nodes with the same label.)
Proceeding with this construction on the levels 3, . .., k gives the witness tree T for wear k. By
construction, this witness tree can be embedded into G(.S, E)

So, all we have to do to prove Theorem 14.2.2 is to obtain a (good enough) bound on the
probability that a witness tree for wear k can be embedded into G(S, ﬁ) If a witness tree
is not proper, it seems difficult to calculate the probability that this tree can be embedded into
G(S, ﬁ), because different parts of the witness tree correspond to the same key in .S, which yields
dependencies among hash values. However, we know from the last section that when G(S, 1) is
sparse enough, i.e., m > (1 + ¢)(d — 1)n, it contains only hypertrees and unicyclic components
with probability 1 — O(1/n). Using a basic pruning argument, Eppstein et al. show that this
simplifies the situation in the following way.

Lemma 14.2.7 [Epp+14, Observation 2 & Observation 3]

Let H be a hypergraph that consists of only hypertrees and unicyclic components. Suppose
H contains an embedded witness tree for wear k. Then there exists a proper witness tree for
wear k — 1 that can be embedded into H.

Proof. Let T be a witness tree for wear £ that can be embedded into a unicyclic component of
H. (If it is embedded into a hypertree, there is nothing to prove.) Observe that 1" can have at
most one label that occurs at more than one non-leaf node, because the paths from the root to
a non-leaf node correspond to paths in G(S, f_i) So, two different labels that occur both more
than once in non-leaf nodes certify that the component would be complex. Now, traverse T'
using a breadth-first search and let v be the first non-leaf node that has a label which occurred
before. Observe that all other occurrences of that labeling are in nodes at the subtree rooted at v.
(Otherwise, the component would be complex.) Let p be the unique path from this node to the
root of T". Then removing the child of the root that lies on p (and the whole subtree rooted at that
child) makes 7" have distinct non-leaf labels. The tree rooted at each of its remaining children is
a witness tree for wear £ — 1 and there exists at least one such child. O

Let &5 be the event that there exists a witness tree for wear £ that can be embedded into
G(S, h). To prove Theorem 14.2.2, we have to show that for the parameter choices in the Theo-
rem

Pr(Esy) = O(1/n).

We separate the cases whether G(.S, H) contains a complex component or not. Let PWTy be
the set of all hypergraphs in Gfln’n which correspond to proper witness trees for wear k. Using

160

14.2. Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing

Theorem 14.1.1, we may bound:

PWTy_4

Pr(Egz) < Pr (NS > 0) + Pr (NMCOS >)

< Pr (BEWT;C,1> +E* (NSPWTk,l) 4 Pr (NSMCOG > 0) . (14.7)

The last summand on the right-hand side of this inequality is handled by Theorem 14.1.1, so we
may concentrate on the graph property PWT_;.

Bounding E* (N EWT’“”). We start by proving that the expected number of proper witness

trees in G(S, k) is O(1/n) for the parameter choices in Theorem 14.2.2. We use a different
proof method than Eppstein et al. [Epp+14], because we cannot use the statement of [Epp+14,
Lemma 1]. We remark here that the following analysis could be extended to obtain bounds of
O(1/n®), for s > 1. However, this does not help to obtain better bounds, because the last
summand of (14.7) is known to be only O(1/n).

Lemma 14.2.8
Let S C U with |S| = nand d > 3 be given. Foran e > 0, set m > (1 + ¢)(d — 1)n. Then
there exists a value k = log logn 4+ ©(1) such that

B (NEVT) =0 (i) .

Proof. We first obtain a bound on the number of proper witness trees for wear k — 1. Let T be
an unlabeled (d — 1)-ary tree with k levels. The number v;_1 of vertices of such a tree is

k—1
; (d—1DF -1
Vg1 :Z(d—l) = 7 -
pa d—2

For the number e;_1 of non-leaf nodes of such a tree, we have

k-2

i (d=1F' -1

S o PRIt it}
P d—2

There are n - d - m ways to label the root of T'. There are not more than n?~! - m4~1 ways to

label the second level of the tree. Labeling the remaining levels in the same way, we see that in
total there are fewer than

nek—1 . . mUe—1

161

14. Applications on Hypergraphs

proper witness trees for wear k — 1. Fix such a fully labeled witness tree 7. Now draw d-ep_1 =
Vg—1 + ex—1 — 1 values randomly from [m] according to the labeling of the nodes in 7. The
probability that these values realize 7" is exactly 1/mvVk-1+¢-1=1 We obtain the following
bound:

« [AfPWT n-1-d-((1+e)(d—1)n)*! n-d
(N < - -
(T2 (d= D)™ F5 7T 7 (A + o) (d— 1)+
< n-d
T (@1
which is in O(1/n) for k = loglogn + ©(1). O
Bounding Pr (BgTWk_l). We first relax the notion of a witness tree in the following way.

Definition 14.2.9
Let RWT* ™! (relaxed witness trees) be the set of all hypergraphs which can be obtained in the
following way:

1. Let T € PWT* bean arbitrary proper witness tree for wear &', k" < k — 1. Let ¢ denote
the number of nodes on level £’ — 1, i. e, the level prior to the leaf level of T'.

2. Arbitrarily choose ¢/ € Nwith ¢/ < /¢ — 1.

3. Choose k = |¢'/(d—1)] arbitrary distinct non-leaf nodes on level &’ — 2. For each such
node, remove all its children together with their d — 1 children from 7". Then remove
from a group of d — 1 siblings on level ¥’ — 1 the ¢’ — (d — 1) - & siblings with the largest
j-values together with their leaves.

Note that RWT*~1 is a peelable graph property, for we can iteratively remove non-leaf nodes
that correspond to edges in the hypergraph until the whole leaf level is removed. Removing these
nodes as described in the third property makes sure that there exists at most one non-leaf node
at level & — 2 that has fewer than d — 1 children. Also, it is clear what the first components in
the labeling of the children of this node are. Removing nodes in a more arbitrary fashion would
give more labeling choices and thus more trees with property RWT*~1,

Lemma 14.2.10
Let S C U with |S| = n and d > 3 be given. For ane > 0, set m > (14 ¢)(d — 1)n. Let
l,c > 1. Choose h € ngvlz at random. Then

e (57) <0 (7).

162

14.2. Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing

Proof. We apply Lemma 11.3.4, which says that

_ 1 & _
Pr (BEWTk 1) < = Zt%/ﬁfWTk b
t=2

Using the same line of argument as in the bound for E* (N SPWT’“>, the expected number of

witness trees with property RWTX~1 with exactly ¢ edges, i. e., exactly ¢ non-leaf nodes, is at
most n - d - / ((14¢)(d —1))"*. We calculate:

pr(B5VT) - elc;tzc(u + a)@i Tyt = ¢ (eﬁ) '

Putting Everything Together. Using the results from Lemma 14.2.8, Lemma 14.2.10, and The-
orem 14.1.1, we conclude that

Pr(&sy) < Pr (BEWTk) L E* <NSPWTk) 4+ Pr (Ngacoc > 0)
< O(1/n) + O(n/t°).

Theorem 14.2.2 follows for £ = n? and ¢ > 2/6.

Remarks and Discussion. In [Kho13], Khosla shows that her algorithm finds an assignment
whenever 7 is suitable for the key set .S. That means that her algorithm works up to the thresholds
for generalized cuckoo hashing. Our result is much weaker and provides only guarantees for a
load factor of 1/(d(d — 1)). Moreover, she proves that n insertions take time O(n) with high
probability. This is the first result of this kind for insertion procedures for generalized cuckoo
hashing. (For the random walk method, this result was conjectured in [FPS13]; for the BFS
method, n insertions take time O(n) in expectation.) We did not check if 7 insertions take time
O(n) w.h.p. when hash functions from Z are used instead of fully random hash functions.

With respect to the algorithm of Eppstein et al., our result shows that n insertions take time
O(nloglogn) with high probability when using hash functions from Z. With an analogous
argument to the one given by Khosla in [Kho13], the algorithm of Eppstein et al. of course finds
an assignment of the keys whenever this is possible. However, the bound of O(loglog n) on the
maximum label is only known for m > (1 + ¢)(d — 1)n and d > 3, even in the fully random
case. Extending the analysis on the maximum label size to more dense hypergraphs is an open
question. Furthermore, finding a better bound than O(n loglogn) (w.h.p.) on the insertion time
for n elements is open, too.

163

14. Applications on Hypergraphs

14.3. Load Balancing

In this section we apply hash class Z in the area of load balancing schemes. In the discussion
at the end of this section, we will present a link of our results w.r.t. load balancing to the space
utilization of generalized cuckoo hashing in which each memory cell can hold x > 1 items.

Background. In randomized load balancing we want to allocate a set of jobs J to a set of
machines M such that a condition, e. g., there exists no machine with “high” load, is satisfied
with high probability. To be consistent with the notation used in our framework and previous
applications, S will denote the set of jobs, and the machines will be numbered 1, ..., m. In this
section we assume |S| = n = m, i.e., we allocate n jobs to n machines.

We use the following approach to load balancing: For an integer d > 2, we split the n machines
into groups of size n/d each. For simplicity, we assume that d divides n. Now a job chooses d
candidate machines by choosing exactly one machine from each group. This can be modeled by
using d hash functions hy, ..., hg with h;: S — [n/d],1 < i < d, such that machine h;(j) is
the candidate machine in group ¢ of job j.

In load balancing schemes, the arrival of jobs has been split into two models: parallel and
sequential arrival. We will focus on parallel job arrivals and come back to the sequential case at
the end of this section.

In the parallel arrival model, all jobs arrive in parallel, i. e., at the same time. They communi-
cate with the machines in synchronous rounds. In these rounds, decisions on the allocations of
jobs to machines are made. The 7-collision protocol is one algorithm to find such an assignment.
This protocol was studied in the context of distributed memory machines by Dietzfelbinger and
Meyer auf der Heide [DM93]. In the context of load balancing, the allocation algorithm was an-
alyzed by Stemann in [Ste96]. The 7-collision protocol works in the following way: First, each
job chooses one candidate machine from each of the d > 2 groups. Then the following steps are
repeated until all jobs are assigned to machines:

1. Synchronously and in parallel, each unassigned job sends an allocation request to each of
its candidate machines.

2. Synchronously and in parallel, each machine sends an acknowledgement to all requesting
jobs if and only if it got at most 7 allocation requests in this round. Otherwise, it does not
react.

3. Each job that gets an acknowledgement is assigned to one of the machines that has sent an
acknowledgement. Ties are broken arbitrarily.

Note that the number of rounds is not bounded. However, we will show that w.h.p. the 7-collision
protocol will terminate after a small number of rounds.

There exist several analysis techniques for load balancing, e. g., layered induction, fluid limit
models and witness trees [Raj+01]. We will focus on the witness tree technique to analyze load

164

14.3. Load Balancing

balancing schemes. We use the variant studied by Schickinger and Steger in [SS00] in connection
with hash class Z. The main contribution of [SS00] is to provide a unified analysis for several
load balancing algorithms. That allows us to show that hash class Z is suitable in all of these
situations as well, with only little additional work.

The center of the analysis in [SS00] is the so-called allocation graph. In our setting, where
each job chooses exactly one candidate machine in each of the d groups, the allocation graph is
a bipartite graph G = ([n], [n], E'), where the jobs are on the left side of the bipartition, and the
machines are on the right side, split into groups of size n/d. Each job vertex is adjacent to its
d candidate machines. As already discussed in Section 14.1, the allocation graph is equivalent
to the hypergraph G(S, H) Recall that we refer to the bipartite representation of a hypergraph
G = (V, E) with bi(V, E'). We call the vertices on the left side job vertices and the vertices on
the right side machine vertices.

If a machine has high load we can find a subgraph in the allocation graph that shows the
chain of events in the allocation process that led to this situation, hence “witnessing” the high
load of this machine. (Similarly to the wear of a table cell in the algorithm of Eppstein et al. in
the previous section.) Such witness trees might differ greatly in structure, depending on the load
balancing scheme.

In short, the approach of Schickinger and Steger works as follows.

1. They show that high load leads to the existence of a “witness graph” and describe the
properties of such a graph for a given load balancing scheme.

2. For their analysis to succeed they demand that the witness graph from above is a tree in
the technical sense. They show that with high probability a witness graph can be turned
into a cycle-free witness tree by removing a small number of edges at the root.

3. For such a “real” tree (the “witness tree”), they show that it is unlikely to exist in the
allocation graph.

We will give a detailed description of this approach after stating the main result of this section.

Result. The following theorem represents one selected result from [SS00], replacing the full
randomness assumption with hash functions from Z to choose candidate machines for jobs. We
simplify the theorem by omitting the exact parameter choices calculated in [SS00]. All the other
examples considered in [SS00] can be analyzed in an analogous way, resulting in corresponding
theorems. We discuss this claim further in the discussion part of this section.

*This approach has much in common with our analysis of insertion algorithms for generalized cuckoo hashing.
However, the analysis will be much more complicated here, since the hypergraph G (S , l_i) has exactly as many

vertices as edges.

165

14. Applications on Hypergraphs

Theorem 14.3.1

For each constant o > 0,d > 2, there exist constants 3, ¢ > 0 (depending on « and d),
such that for each t with 2 < ¢t < 1/B8Inlnn, ¢ = n'/? and h = (hy,...,hg) € Zg’z, the
T-collision protocol described above with threshold 7 = (% Inn)/(Inlnn))Y/ (t_2)>

finishes after ¢ rounds with probability at least 1 — O(n™¢

We remark that Woelfel showed in [Woe06a] that a variant of hash class Z works well in the
case of randomized load balancing as modeled and analyzed by Voecking in [V6c03], even in
a dynamic version where balls may be removed and re-inserted again. Although showing a
slightly weaker result, we will use a much wider and more generic approach to the analysis of
randomized load balancing schemes and expand the application of hash functions from Z to
other load balancing schemes. Moreover, we hope that our analysis of the failure term of Z on
certain hypergraphs occurring in the analysis will be of independent interest.

We will now analyze the 7-collision protocol using hash functions from class Z. Most im-
portantly, we have to describe the probability of the event that the 7-collision protocol does not
terminate after ¢ rounds in the form of a graph property. To achieve this, we start by describing
the structure of witness trees.

In the setting of the 7-collision protocol in parallel arrival, a witness tree has the following
structure. Using the notation of [SS00], a machine is active in round t if there exists at least one
job that sends a request to this machine in round ¢. If no such job exists, the machine is inactive
in round t. Assume that after round ¢ the collision protocol has not yet terminated. Then there
exists a machine y that is active in round ¢ and that received more than 7 allocation requests.
Arbitrarily choose 7 of these requests. These requests were sent by 7 unallocated jobs in round
t. The vertex that corresponds to machine y is the root of the witness tree, the 7 job vertices are
its children. In round ¢, each of the 7 unallocated jobs sent allocation requests to d — 1 other
machines. The corresponding machine vertices are the children of each of the 7 job vertices in
the witness tree. By definition, these machines are also active in round ¢, and so they were active
in round ¢ — 1 as well. So, there are 7 - (d — 1) machines that are active in round ¢ — 1. We must
be aware that among these machines the same machine might appear more than once, because
unallocated jobs may have chosen the same candidate machine. So, there may exist vertices in
the witness tree that correspond to the same machine. For all these 7 - (d — 1) machines the same
argument holds in round £ — 1. Proceeding with the construction for rounds t —2,t—3, ..., 1, we
build the witness tree T with root y. It exhibits a regular recursive structure, depicted abstractly
in Figure 14.1. Note that all leaves correspond to machine vertices, since no allocation requests
are sent in round 0.

As we have seen, such regular witness trees do not need to be subgraphs of the allocation
graph since two vertices of a witness tree might be embedded to the same vertex. Hence, the
witness tree is “folded together” to a subgraph in the allocation graph. In the embedding of a
witness tree as a subgraph of the allocation graph, edges do not occur independently and the
analysis becomes difficult, even in the fully random case.

166

14.3. Load Balancing

T;
@ machine v
Level ¢
Ojeb 7\
-
A A A
d—1 d—1
Level t — 1

Ti—1 Ti

Figure 14.1.: Structure of a witness tree 7} with root v after ¢ rounds if the 7-collision protocol
with d candidate machines has not yet terminated.

Schickinger and Steger found the following way to analyze this situation. They introduced the
notion of a multicycle that describes an “almost tree-like” graph.

Definition 14.3.2

Let k,t > 1. Let G = (V, E) be an undirected graph. Let s € V and let d(v) denote the
distance between s and v in G, for each v € V. A (k,t)-multicycle of depth at most t at
node s in G is a connected subgraph G’ of G together with a spanning tree 7" of G’ with the
following properties:

1. G’ includes vertex s.

2. G’ has cyclomatic number k (cf. Section 12).

3. For each vertex v in 7", the distance between s and v in 7" is d(v).
4. All vertices v in T" have d(v) < t.

5. Each leaf in 7" is incident to an edge in G’ that is not in 7".

Multicycles will be used to reason in the following way: When GG does not contain a certain
(k,t)-multicycle at node s as a subgraph, removing only a few edges in G incident to node s
make the neighborhood that includes all vertices of distance at most ¢ of s in the remaining
graph acyclic. As we shall see, the proof that this is possible will be quite easy when using a
spanning tree that consists only of shortest paths from s to the other vertices. (Such a tree can be
obtained by starting a breadth-first search in G from s.)

167

14. Applications on Hypergraphs

One easily checks that a (k, t)-multicycle M with m vertices and n edges satisfies n = m +
k — 1, because the cyclomatic number of a connected graph is exactly n — m + 1 [Die05].
Furthermore, it has at most 2kt vertices, because there can be at most 2k leaves that each have
distance at most ¢ from s, and all vertices of the spanning tree lie on the unique paths from s to
the leaves. We will later see that for the parameters given in Theorem 14.3.1, a (k, t)-multicycle
is with high probability not a subgraph of the allocation graph.

Lemma 14.3.3 [SS00, Lemma 2]

Let k,t > 1. Assume that a graph G = (V, E) contains no (£, ¢)-multicycle, for k" > k.
Furthermore, consider the maximal induced subgraph H = (V' E’) of G for a vertex v € V'
that contains all vertices w € V that have distance at most ¢ from v in G. Then we can remove
at most 2k edges incident to v in H to get a graph H™* such that the connected component of
vin H* is a tree.

Proof. We follow the proof in [SS00]. Start a breadth-first search from v in H and let C be the
set of cross edges, i. ., non-tree edges with respect to the bfs tree. Let H' be the subgraph of H
that contains the edges from C' and the (unique) paths from v to each endpoint of the edges from
C. H' is a (|C|, t)-multicycle at node v. From the assumption we know that |C| < k. Let H* be
the subgraph of H that results from removing all edges in H’ from H. At most 2k edges incident
to v are removed in this way. By construction, the connected component that contains v in H*
is acyclic. O

In the light of this lemma, we set 7 > 2k + 1 and know that if the allocation graph contains
a witness tree after ¢ rounds, then it contains a (k, ¢t)-multicycle or a regular witness tree 7.
This observation motivates us to consider the following graph property:

Definition 14.3.4
Let k,t € N. Then MCWTK? C g;'f/d ,, is the set of all hypergraphs H such that bi(/) forms

either a (k, t)-multicycle or a witness tree T;_.

If we use hash class Z and set 7 > 2k + 1, for a set .S of jobs we have:
Pr(the 7-collision protocol does not terminate after ¢ rounds) < Pr (N QACWTk’t > O) . (14.8)

By Lemma 11.2.2 we may bound the probability on the right-hand side of (14.8) by

Pr (Ng/'CWT'“’t > 0) < Pr (BgACWTk't) FE (NQ"CWT'“‘t) . (14.9)

Bounding E*(N gACWTk’t) We first consider the fully random case. The following lemma is
equivalent to Theorem 1 in [SS00]. However, our parameter choices are slightly different because
in [SS00] each of the d candidate machines is chosen from the set [n], while in our setting we
split the n machines into d groups of size n/d.

168

14.3. Load Balancing

Lemma 14.3.5
Let« > land d > 2. Set § = 2d(av + 2Ind + 3/2) and k = « + 2. Consider ¢ with
2<t<(1/8)Inlnn. Let

1
1 tnn =2
T:max{(ﬁ n”) ,dd+1ed+1,2k+1}.

d—1\Inlnn

Then
E* (Ng”CWT’”) = O(n~).

Proof. For the sake of the analysis, we consider MCWT¥! to be the union of two graph prop-
erties MC®!, hypergraphs that form (k, t)-multicycles, and WT*~!, hypergraphs that form wit-

ness trees for the parameter ¢ — 1. We show the lemma by proving E* (Ng/'ck’t) = 0(n™%)

and E* (NgVTt_l> = O(n™%). In both cases, we consider the bipartite representation of hyper-
graphs. Our proofs follow [SS00, Section 4].

We start by bounding E* (N g"ck’t) As we have seen, a (k, t)-multicycle is a connected graph

that has at most 2kt vertices and cyclomatic number k. We start by counting (k, ¢)-multicycles
with exactly s vertices and s + k£ — 1 edges, for s < 2kt. In this case, we have to choose j and u
(the number of jobs and machines, resp.) such that s = j + u. By Lemma 12.1.2 there are at most
(s + k — 1)°%*) unlabeled (k,)-multicycles. Fix such an unlabeled (k, t)-multicycle G. There
are two ways to split the vertices of GG into the two sides of the bipartition. (G' can be assumed
to be bipartite since we consider (k, t)-multicycles that are subgraphs of the allocation graph.)
Once this bipartition is fixed, we have n’ ways to choose the job vertices and label vertices of G&
with these jobs. There are d**~! ways to label the edges of G with labels from 1, ..., d, which
represent the request modeled by an edge between a job vertex and a machine vertex. Once
this labeling is fixed, there are (n/d)"“ ways to choose machine vertices and label the remaining
vertices of G. Fix such a fully labeled graph G’.

For each request r of a job j, choose at random and independently a machine from [n/d]. The
probability that this machine is the same machine that j had chosen in G’ is (d/n). Thus, the
probability that G is realized by the random choices is (d/n)*T#~!. By setting k = a + 2 and

169

14. Applications on Hypergraphs

using the parameter choice ¢ = O(Inlnn) we calculate

2kt
* Mkt Cd . u | gstk—1 _ 1\O(k) . s+k—1
(M) 2 S 2w k)
2kt
s=1

< n'7F okt - akt - PCFTRD L (Qkt 4+ k — 1)OW)
<n' 7. (Inlnn)°W . (Inn)°M = 0(n**) = O(n™®).

. t—1
Now we consider E* (NgVT) By the simple recursive structure of witness trees, a witness

. T —1)t=2)_ | . Tt= —1)t—1—
tree of depth ¢ — 1 has j = o) job vertices and u = %

A== machine
vertices. Let T be an unlabeled witness tree of depth t — 1. 7" has r = d - j edges. There are
not more than n/ ways to choose j jobs from S and label the job vertices of 7. There are not
more than d” ways to label the edges with a label from {1,...,d}. Once this labeling is fixed,
there are not more than (n/d)" ways to choose the machines and label the machine vertices in
the witness tree. With these rough estimates, we over-counted the number of witness trees by at
least a factor of (1/71)7/7 . (1/(d — 1)!)7. (See Figure 14.1. For each job vertex, there are (d — 1)!
labelings which result in the same witness tree. Furthermore, for each non-leaf machine vertex,
there are 7! many labelings which yield the same witness tree.) Fix such a fully labeled witness
tree T".

For each request of a job j choose at random a machine from [n/d]. The probability that the
edge matches the edge in 7" is d/n. Thus, the probability that 7" is realized by the random
choices is (d/n)". We calculate

B (N <ol (nfa)"- (! >j/T . < ! '>j (d/n)"

<n.dr (j!)j/T' <<d_11)!>j <n [i <dil>d—1,d2d]j

Observe that

170

14.3. Load Balancing

For the parameter settings provided in the lemma we get

(r(d=1))"2))t 2
— ed-dd+1
g (W) <o (€00 -
T
Btlnn

2dInlnn
Sn(ed-dd+2 Blnlnn)
“tlnn

d dd+1) 2dlnlnn

Sn((dd+2 (511111171) AL
tinn

Blnn

ln Inn]_ 2dInlnn
- (dd+2 -
‘Inn

IN

< p3/2+2In d—ﬁ/Zd.

Setting 5 = 2d(« + 21nd + 3/2) suffices to show that E* (Ng"CWTk’t) =0(n=%). O

Bounding Pr(BgACWTk’t). To apply Lemma 11.3.4, we need a peelable graph property that
contains MCWT**, We will first calculate the size of witness trees to see that they are small for

the parameter settings given in Theorem 14.3.1.

The Size of Witness Trees. Let T} be a witness tree after ¢ rounds. Again, the number of job
vertices j; in T} of the 7-collision protocol is given by
id -1t -7

T(d—1)—1

Je =
We bound the size of the witness tree when exact parameters are fixed as in Lemma 14.3.5.

Lemma 14.3.6
Leta > 0,d > 2,3 = 2d(a +2Ind +3/2),k = a +2,and 2 < ¢ < Flnlnn. Let

Inlnn

_1
T = max {dll (ﬂ“n”) TP dited 41,9k + 1}. Then j; < logn.

Proof. Observe the following upper bound for the number of jobs in a witness tree after ¢ rounds

Tt(d — 1)t_1 T T(7(d — 1))t_1

T A1) -1 S 2r—1 < (r@d-1)7

Now observe that for a constant choice of the value 7 it holds

InT+Ind

(r(d— D)L < (r(d = 1))F™ ™" < (lnn) 7 <lnn,

171

14. Applications on Hypergraphs

since 11177- < 1 for the two constant parameter choices in Lemma 14.3.5. Furthermore, for the
non-constant choice of 7 it holds

(d-—1Dr)t < ptlnn <Inn

“Inlnn —

It follows j; < Inn < logn. O

A (k,t)-multicycle has at most 2kt + k — 1 edges. For t = O(loglogn) and a constant k£ > 1,
such multicycles are hence smaller than witness trees.

A Peelable Graph Property. To apply Lemma 11.3.4, we have to find a peelable graph property
that contains all subgraphs that have property MCWT*! (multicycles or witness trees for ¢ — 1
rounds). Since we know from above that witness trees and multicycles are contained in small
connected subgraphs of the hypergraph G(5, f_i), we will use the following graph property.

Definition 14.3.7
Let K > 0 and d > 2 be constants. Let Cg,,,(K, d) contain all connected d-partite hyper-
graphs (V, E) € G4 Jdn With |E| < K logn disregarding isolated vertices.

The following lemma shows how we can bound the failure term of Z.

Lemma 14.3.8
Let K > 0,¢>1,£ > 1,and d > 2 be constants. Let .S be the set of jobs with |.S| = n. Then

Pr (BgACWTk,t> < Pr (Bgm,l(K,d)> -0 <nK(d+1)1ogd+2>
vc

For proving this bound on the failure probability, we need the following auxiliary graph property.

Definition 14.3.9
Let K > 0,d > 2,and ¢ > 1 be constants. Let n > 1 be given. Then HT(K, d, £) (“hypertree”)
is the set of all d-partite hypergraphs G = (V, E) in G¢ Jdn with |E| < K logn for which
bi(G) (disregarding isolated vertices) is a tree, has at most ¢ leaf edges and has leaves only on
the left (job) side.

We will now establish the following connection between Cgy,q(K, d) and HT(K, d,).
Lemma 14.3.10

Let K > 0,d > 2 and ¢ > 1 be constants. Then Cgpq(K,d) is weak HT(K, d, 2¢)-2c-
reducible, cf. Definition 11.3.7.

172

14.3. Load Balancing

Proof. Assume G = (V, E) € Cgnai(K,d). Arbitrarily choose E* C E with |[E*| < 2¢. We
have to show that there exists an edge set E’ such that (V,E’) € HT(K,d,2c), (V,E’') is a
subgraph of (V, E) and for each edge e* € E* there exists an edge ¢’ € E’ such that ¢/ C e*
and €’ and e* have the same label.

Identify an arbitrary spanning tree 7" in bi(G). Now repeatedly remove leaf vertices with their
incident edges, as long as these leaf vertices do not correspond to edges from E*. Denote the
resulting tree by 7”. In the hypergraph representation, 7" satisfies all properties from above. []

From Lemma 11.3.4 we can use the bound

n
Pr (Bg'ACWTk‘t> S Pr (Bgsmall(Kd)) S ¢ Z tQC/J,I:T(KdQC) .
t=2

Lemma 14.3.11
Let K > 0,d > 2, and ¢ > 1 be constants. If ¢t < K - logn, then

M?T(K7d726) S to(l) ‘- d(d'f‘l)t.

HT(K,d,2c)

For t > K logn it holds that = 0.

Proof. 1t is trivial that ,u:j A2 0 for t > K log n, since a hypergraph with more than

K log n edges contains too many edges to have property HT(K, d, 2¢).

Now suppose ¢t < K logn. We first count labeled hypergraphs having property HT(X, d, 2¢)
consisting of ¢ job vertices and z edges, for some fixed z € {t, ..., dt}, in the bipartite represen-
tation.

There are at most 2929 = z0(1) ynlabeled trees with z edges and at most 2¢ leaf edges
(Lemma 12.1.2). Fix one such tree 7. There are not more than n’ ways to label the job vertices
of T, and there are not more than d* ways to assign each edge a label from {1,...,d}. Once
these labels are fixed, there are not more than (n/d)**!~* ways to assign the right vertices to
machines. Fix such a fully labeled tree T".

Now draw z hash values at random from [n/d] and build a graph according to these hash
values and the labels of 7”. The probability that these random choices realize T” is exactly
1/(n/d)?. Thus we may estimate:

(n/d)?

< dt- (dt)°W) . p. @@+t = O00) . gld+)t

dt 21—t LO(1) .t . gz dt
Mlt-lT(K,d,Qc) < Z (n/d) 29 -t d — Zzo(l) on - dFTIH
z=t

z=t

173

14. Applications on Hypergraphs

We can proceed with the proof our main lemma.

Proof (of Lemma 14.3.8). By Lemma 11.3.4, we now know that

n
Pr (Bg/ICWT“> < Z t2c'u|t—lT(K,d,2c)_
t=2

Applying the result of Lemma 14.3.11, we calculate

Klogn
Pr (Bg/lchk,z) <0 Z 126000 .y g+t — gy p=e L (K logn)O0) . d+DK logn
t=2
= 0(n2 7). K (d+1)logn _ O(nK(d+1)logd+2 070,

d

Putting Everything Together. Using the previous lemmas allows us to complete the proof of
our main theorem.

Proof of Theorem 14.3.1. We plug the results of Lemma 14.3.5 and Lemma 14.3.8 into (14.9) and

get
K(d+1)logd+2
Pr (NgACWT’” > 0) <0 <"> +0 <1> .
e ne

For the case of parallel arrival with d > 2 hash functions, we calculated that witness trees do
not have more than logn edges (Lemma 14.3.6). So, we set K = 1. Setting ¢ = n'/2 and
¢ =2(2+ a+ (d+1)logd) finishes the proof of the theorem. O

Remarks and Discussion. We remark that the graph property Cg,,u(K, d) provides a very
general result on the failure probability of Z on hypergraphs G(S, ﬁ) It can be applied for
all results from [SS00]. We will exemplify this statement by discussing what needs to be done
to show that Z works in the setting of Voecking’s “Go-Left” sequential allocation algorithm
[V6c03]. By specifying explicitly how to break ties (always allocate the job to the “left-most”
machine), Voecking’s algorithm decreases the maximum bin load (w.h.p.) in sequential load
balancing with d > 2 hash functions from InInn/In d+ O(1) (arbitrary tie-breaking) [Aza+99]
toInlnn/(d - In®4) + O(1), which is an exponential improvement in d. Here ®, is defined
as follows. Let Fy(j) = 0 for j < 0 and Fy(1l) = 1. For j > 2, Fy(j) = Z?:l Fy(j —1).
(This is a generalization of the Fibonacci numbers.) Then ®; = lim; o Fy(j)3 1t holds
that ®, is a constant with 1.61 < ®; < 2, see [V6c03]. (We refer to [SS00, Section 5.2] and
[V6c03] for details about the description of the algorithm.) In the unified witness tree approach
of Schickinger and Steger, the main difference between the analysis of parallel arrivals and the
sequential algorithm of Voecking is in the definition of the witness tree. Here, the analysis in

174

14.3. Load Balancing

[SS00] also assumes that the machines are split into d groups of size n/d. This means that we can
just re-use their analysis in the fully random case. For bounding the failure term of hash class Z,
we have to show that the witness trees in the case of Voecking’s “Go-Left” algorithm (see [SS00,
Fig. 6]) have at most O(logn) jobs, i. e., that they are contained in small connected components.
Otherwise, we cannot apply Lemma 14.3.8.

According to [SS00, Page 84], the number of job vertices j; in a witness tree for a bin with load

¢ is bounded by
Je < 4hy +1, (14.10)

where hy is the number of leaves in the witness tree. Following Voecking [V6c03], Schickinger
and Steger show that setting ¢ as large as Inlnn/(dIn ®4) + O(1) is sufficient to bound the
expected number of witness trees by O(n~%). Such witness trees have only O(log n) many job
nodes.

Lemma 14.3.12
Let o > 0 and £ = logg,, (41og n®)/d. Then j, < 33 logn.

Proof. Ttholds hy = Fy(d- ¢+ 1), see [SS00, Page 84], and Fy(d-¢+1) < (IJZ'EH, since Fy(5)'/7
is monotonically increasing. We obtain the bound

1 4logn®)+1
jf§4.he+1§4.<pg'“1+1§4.@jg‘pd(sy
=16-®P4-alogn+1 < 33alogn,
using @4 < 2 and assuming alogn > 1. O

Thus, we know that a witness tree in the setting of Voecking’s algorithm is contained in a con-
nected hypergraph with at most 33a:logn edges. Thus, we may apply Lemma 14.3.8 in the
same way as we did for parallel arrival. The result is that for given @ > 0 we can choose
(hi,...,hq) € Zg”g with £ =n?,0 < § < 1,and ¢ > (33a(d + 1) logd + 2 +)/ and know
that the maximum load is Inlnn/(d - In®4) + O(1) with probability 1 — O(1/n®). So, our
general analysis using small connected hypergraphs makes it very easy to show that hash class
Z suffices to run a specific algorithm with load guarantees. However, the parameters for setting
up a hash function are rather high when the constant in the big-Oh notation is large.

When we are interested in making the parameters for setting up a hash function as small as
possible, one should take care when bounding the constants in the logarithmic bound on the
number of edges in the connected hypergraphs. (According to [SS00], (14.10) can be improved
by a more careful argumentation.) More promising is a direct approach to witness trees, as we
did in the analysis of the algorithm of Eppstein et al. in the previous subsection, i.e., directly
peeling the witness tree. Using such an approach, Woelfel showed in [Woe06a, Theorem 2.1 and
its discussion] that smaller parameters for the hash functions Z are sufficient to run Voecking’s
algorithm.

175

14. Applications on Hypergraphs

crt\4] 3 4 5 6 7 8
2 |0.818[0.772 | 0.702 | 0.637 | 0.582 | 0.535
0.776 | 0.667 | 0.579 | 0.511 | 0.457 | 0.414
0.725 | 0.604 | 0.515 | 0.450 | 0.399 | 0.359
0.687 | 0.562 | 0.476 | 0.412 | 0.364 | 0.327
0.658 | 0.533 | 0.448 | 0.387 | 0.341 | 0.305

Y| O i~ | W

Table 14.1.: Space utilization thresholds for generalized cuckoo hashing with d > 3 hash func-
tions and k+1 keys per cell, for & > 1, based on the non-existence of the (k4 1)-core.
Each table cell gives the maximal space utilization achievable for the specific pair
(d, % 4 1). These values have been obtained using Maple® to evaluate the formula
from Theorem 1 of [Mol05].

We further remark that the analysis of the 7-collision protocol makes it possible to analyze the
space utilization of generalized cuckoo hashing using d > 2 hash functions and buckets which
hold up to x > 2 keys in each table cell, as proposed by Dietzfelbinger and Weidling in [DW07].
Obviously, a suitable assignment of keys to table cells is equivalent to a x-orientation of G(.S, ﬁ)
It is well-known that any graph that has an empty (k+1)-core, i. e., that has no subgraph in which
all vertices have degree at least x + 1, has a k-orientation, see, e. g., [DM09] and the references
therein. (The converse, however, does not need to be the case.) The (x+ 1)-core of a graph can be
obtained by repeatedly removing vertices with degree at most x and their incident hyperedges.
The precise study of this process is due to Molloy [Mol05]. The 7-collision protocol is the parallel
variant of this process, where in each round all vertices with degree at most 7 are removed with
their incident edges. (In the fully random case, properties of this process were recently studied by
Jiang, Mitzenmacher, and Thaler in [JMT14].) In terms of orientability, Theorem 14.3.1 with the
exact parameter choices from Lemma 14.3.5 shows that for 7 = max{e?, d?*led 4 1,2k + 1}
there exists (w.h.p.) an assignment of the n keys to n memory cells when each cell can hold
7 keys. (This is equivalent to a hash table load of 1/7.) It is open to find good space bounds
for generalized cuckoo hashing using this approach. However, we think that it suffers from the
same general problem as the analysis for generalized cuckoo hashing with d > 3 hash functions
and one key per table cell: Since the analysis builds upon a process which requires an empty
(k4 1)-core in the hypergraph to succeed, space utilization seems to decrease for d and « getting
larger. Table 14.1 contains space utilization bounds for static generalized cuckoo hashing with
d > 3 hash functions and « elements per table cell when the assignment is obtained via a process
that requires the (x + 1)-core to be empty. These calculations clearly support the conjecture that
space utilization decreases for larger values of d and .

176

15. A Generalized Version of the Hash Class

In this section we will present a generalized version of our hash class that uses arbitrary «-wise
independent hash classes as building blocks.

15.1. The Generalized Hash Class

Definition 15.1.1

Let ¢ > 1,d > 2, and k > 2. For integers m, ¢ > 1, and given
fiyooos fa: U = [m], g1,...,9c: U — [f], and d two-dimensional tables z()[1..c,0..0 —
1] with elements from [m] for i € {1,...,d}, we let h = (h1,...,hqg) =
(hl, ceey hd)<f1, e ,fd,gl, <5 9c, Z(l), ey Z(d)>, where

hi(z) = (fi(m) + Y z@[j,gj(m)]) mod m, forz € Ui € {1,...,d}.

1<j<e

Let Hy, [H}] be an arbitrary k-wise independent hash family with functions from
U to [m] [from U to [¢]]. Then Zgﬁ;”(?—[?,?—{ﬁl) is the family of all sequences

(hy ooy)1y e ooy fas Gy oo ey 2o 2 @) for f; € HE, with 1 < i < dand g; € Hf
withl < j <e.

In the following, we study Z;’ka (H7*, H2¥) for some fixed k € N,k > 1. For the parameters
d = 2 and ¢ = 1, this is the hash class used by Dietzfelbinger and Woelfel in [DW03]. We
first analyze the properties of this hash class by stating a definition similar to Definition 11.1.2
and a lemma similar to Lemma 11.1.3. We hope that comparing the proofs of Lemma 11.1.3 and
Lemma 15.1.3 shows the (relative) simplicity of the original analysis.

177

15. A Generalized Version of the Hash Class

Definition 15.1.2
For T' C U, define the random variable dr, the “deficiency” of h = (h1, ..., hq) with respect

to T, by dr(h) = |T| — max{k, |gi(T)|,...,|9.(T)|}. (Note: dr depends only on the g;-
components of (hy, ..., hg).) Further, define

(i) badr as the event that dp > k;
(ii) goody as badr, i.e., the event that dr < k;
(iii) crity as the event that dp = k.

Hash function sequences (hi, ..., hq) in these events are called “T'-bad”, “T'-good”, and “T-
critical”, resp.

Lemma 15.1.3
Assume d > 2,c¢ > 1,and k > 1. For T' C U, the following holds:

(@) Pr(badr U critr) < (]T|2 /E)Ck.

(b) Conditioned on good; (or on critr), the hash values (hi(z),...,hq4(z)), z € T, are
distributed uniformly and independently in [r]%.

Proof. (a) Assume |T'| > 2k (otherwise the events bady and crity cannot occur). Since g1, . . ., g¢
are independent, it suffices to show that for a function g chosen randomly from H%k we have
Pr(|T| - g(T)| > k) < [T /¢

We first argue that if |T'| — |g(T")| > k then there is a subset 7" of T' with |T”| = 2k and
lg(T")| < k. Initialize 7" as T'. Repeat the following as long as |T’| > 2k: (i) if there exists
a key © € T’ such that g(z) # g(y) for all y € T” \ {z}, remove z from T”; (ii) otherwise,
remove any key. Clearly, this process terminates with |7”| = 2k. It also maintains the invariant
|T"| — |g(T")| > k: In case (i) |T"| — |g(T")| remains unchanged. In case (ii) before the key is
removed from 7" we have |g(T")| < |T”|/2 and thus |T'| — |g(T")| > |T"|/2 > k.

Now fix a subset T" of T of size 2k that satisfies |g(7")| < k. The preimages g~ (u), u €
g(T"), partition T” into k' classes, k' < k, such that g is constant on each class. Since g is chosen
from a 2k-wise independent class, the probability that g is constant on all classes of a given
partition of 7" into classes C1, . .., Cys, with k' < k, is exactly (= (2k=k) < g—k,

Finally, we bound Pr(|g(T)| < |T'| — k). There are (‘27];') subsets T" of T' of size 2k. Every
partition of such a set 7" into &’ < k classes can be represented by a permutation of 7" with &’
cycles, where each cycle contains the elements from one class. Hence, there are at most (2k)!
such partitions. This yields:

2k
Pr(T| — |g(T)| > k) < (’21;') ewr & < T2 (15.1)

178

15.2. Application of the Hash Class

(b) If |T'| < 2k, then hy and hy are fully random on 7" simply because f; and fo are 2k-wise
independent. So suppose |T'| > 2k. Fix an arbitrary g-part of (h1, h2) so that good occurs, i.e.,
max{k,|g1(T)|,...,|g.(T)|} > |T| — k. Let jo € {1,...,c} be such that |g;,(T)| > |T'| — k.
Arbitrarily fix all values in the tables zj@ with j # jo and i € {1,2}. Let T™ be the set of keys
in T colliding with other keys in T under gj,. Then || < 2k. Choose the values zj(.f)) (950 ()]
forallz € T* and i € {1,2} at random. Furthermore, choose f; and fs at random from the
2k-wise independent family 72*. This determines h;(x) and ha(z), * € T*, as fully random
values. Furthermore, the function g;, maps the keys x € T'—T™ to distinct entries of the vectors

z(»é) that were not fixed before. Thus, the hash function values hj(x), ha(x), v € T — T*, are
distributed fully randomly as well and are independent of those with x € T™*. O

15.2. Application of the Hash Class

The central lemma to bound the impact of using our hash class in contrast to fully random hash
functions was Lemma 11.3.4. One can reprove this lemma in an analogous way for the generalized
version of the hash class, using the probability bound from Lemma 15.1.3(a) to get the following
result.

Lemma 15.2.1
Letc > 1,k > 1,5 C U with |S| = n, and let A be a graph property. Let B DO A be a peelable
graph property. Let C be a graph property such that B is C-2ck-reducible. Then

n
Pr <B’§) < Pr (BE) <k ST ek
t=2k

This settles the theoretical background needed to discuss this generalized hash class.

15.3. Discussion

One can now redo all the calculations from Section 13 and Section 14. We discuss the differences.
Looking at Lemma 15.2.1, we notice the (+2°*)-factor in the sum instead of ¢>°. Since k is fixed,
this factor does not change anything in the calculations that always used t(!) (see, e.g., the
proof of Lemma 12.2.5). The factor 1//* (instead of 1/£¢) leads to lower values for c if & >
2. E.g., in cuckoo hashing with a stash, we have to set ¢ > (s + 2)/(dk) instead of ¢ >
(s +2)/d. This improves the space usage, since we need less tables filled with random values.
However, the higher degree of independence needed for the f- and g-components leads to a
higher evaluation time of a single function. Hence there is an interesting tradeoff between space
usage and evaluation time that we investigated in the following experiments.

179

16. Experimental Evaluation

In this section we will report on experiments running cuckoo hashing with a stash with our class
of hash functions. We will compare it to other well-studied hash families, which will be intro-
duced in Section 16.1. In that section, we will also describe the experimental setup. Subsequently,
we will compare these hash functions with respect to the success probability (Section 16.2) and
the running time (Section 16.3) for setting up the cuckoo hash table. We will also consider the
cache behavior of the hash functions to speculate about running time differences on very large
key sets.

16.1. Setup and Considered Hash Families

We start by introducing the setup of our experiments. We restrict all our experiments to hashing
32-bit keys.

Experimental Setup. We consider inputs of size n with n € {210, ..., 223}, Inputs have two
types: For general n, we assume that S = {1,...,n} and insert the elements of S in random
order. For n = 220 we consider the following structured set:

{wog+2% 2 +2% . 25 +2% . 231i€{0,1,2,3} : 0 < 2; < 31}.

This set is known to be a worst-case input for the simple tabulation scheme that will be intro-
duced below.

For each input of length n, we construct a cuckoo hash table of size m € {1.005n, 1.05n} for
each of the two tables, i.e., we consider a load factor of 49.75% and 47.62%, respectively. We
let the stash contain at most two keys, which yields a failure probability of O(1/n3). So, if a
key were to be put in a stash that already contains two elements, we invoke a rehash. For each
input length, we repeat the experiment 10,000 times, each time with a new seed for the random
number generator. Next, we will discuss the considered hash families.

Simple Tabulation. In simple tabulation hashing as analyzed by Patrascu and Thorup [PT12],
each key is a tuple (1, . .., z.) which is mapped to the hash value (T} (z1) ®- - - ®T¢(z.)) mod
m (where @ denote bitwise XOR), by c uniform random hash functions (implemented by lookup
tables filled with random values) 71, . . ., T, each with a domain of cardinality [|U|'/¢]. In our
experiments with hashing 32-bit integers, we used two different versions of this scheme. The first

181

16. Experimental Evaluation

version views a key x to consist of four 8-bit keys x1, x2, 3, £4. Then, the tabulation scheme
uses 4 tables 17, . . ., Ty of size 28 filled with random 32-bit values. The hash function is then

h(x = (x1,x2,23,24)) = T1[x1] ® Talxs] ® T3[xs] © Talx4] mod m.

The second variant views a 32-bit key to consist of two 16-bit keys and uses two random tables
of size 216

Pitrascu and Thorup showed in [PT12] that cuckoo hashing fails with probability O(1/n'/3)
using simple tabulation. According to Thorup (personal communication), a stash does not help
to lower the failure probability of cuckoo hashing with simple tabulation hashing.

Polynomials with CW-Trick. Here we consider the standard implementation of an (approxi-
mately) k-independent family of hash functions: polynomials of degree k — 1 over some prime
field projected to the hash table range. For setting up such a polynomial, we choose a prime p
much larger than |U|. (In the experiments, we used p = 2%® — 1.) Next, we choose k coefficients
ag, . ..,ax—1 € [p]. The hash function h: U — [m)] is then defined by

k—1
hag,....arn_, () = ((Z aixi> mod p) mod m.

1=0

Evaluating this polynomial is done using Horner’s method. In general, the modulo operation
is expensive. When p = 2° — 1 is a Mersenne prime, the “mod p” operation becomes simpler,
because the result of x mod p can be calculated as follows (this is the so-called “CW-trick” of
Carter and Wegman suggested in [CW79]):

i< x&p > & is bit-wise and
204 i+ (x> 9) > x> sisaright-shift of z by s bits
3. if ¢ > p then

4 return¢ — p

5: else

6 return ¢

Murmur3. To compare hash functions used in practice with hash functions discussed in theory,
we have picked one candidate used in practice: Murmur3. It is the third generation of a class
of non-cryptographic hash functions invented by Austin Appleby with the goal of providing a
fast and well-distributing hash function. A detailed overview over the algorithm can be found
at [App]. To get two different hash functions, we use two different seeds when setting up a
Murmur3-based hash function. Due to time constraints, we did not test other popular hash
functions such as xxhash [Col], SipHash [AB12], or CityHash [PA].

182

16.1. Setup and Considered Hash Families

Hash Family Z. In view of the main results regarding our hash class, a hash function from
Zg’; guarantees the same failure probability in cuckoo hashing with a stash as a fully random

hash function when we choose £ = n% and ¢ > (s + 2)/0 (cf Theorem 13.1.4). We have two
main parameters:

1. The size £ = n® of the random tables.
2. The number c of random tables per hash function and components g;.

We aim at a failure probability of O(1/n%) and consequently use a stash size of 2. For £ = n?,

the parameter ¢ must then satisfy ¢ > 4/§. As buildings blocks for our hash functions, we use
the 2-universal “multiplication-shift” scheme from Dietzfelbinger et al. [Die+97] for hashing the
32-bit keys to £oy¢-bit numbers, which reads for random odd a € [232]:

ho(x) = (az mod 23%) div 232~ fou
In 32-bit arithmetic, this can be implemented as
ho(x) = (az) > (32 — lout)-

The 2-independent hash family that is used to initialize the f functions of a hash function from
Z, uses a variant of the “multiplication-shift” scheme from [Die96] for hashing 32-bit integers to
{out-bit integers. There, we choose a, b € [264] and use the hash function

hap(z) = ((az +b) mod 2°%) div 964—tour
On a 64-bit architecture, we can implement this hashing scheme by
ho(z) = (az +b) > (64 — low).
We evaluate the following three constructions:

1. Low Space Usage, Many Functions. We let £ = n'/* and must set ¢ = 16. For n = 220
our hash function pair then consists of sixteen 2-universal functions g1, ..., g1, two 2-
independent functions f;, fo and thirtytwo tables of size 32 filled with random values.
(Altogether, the tables can be stored in an integer array of size 1024.)

2. Moderate Space Usage, Fewer Functions. We let £ = n!/? and get ¢ = 8. For n =
229 our hash function pair then consists of eight 2-universal functions g1, ..., gs, two
2-independent functions f1, f> and sixteen tables of size 2! filled with random values.
(Altogether, the tables can be stored in an integer array of size 16384.)

3. Low Space Usage, High-Degree Polynomials. In light of the generalization of our hash
class discussed in Section 15, we also study the (extreme) case that for stash size s we use

183

16. Experimental Evaluation

Identifier Construction

simp-tab-8 Simple Tabulation with four 8-bit keys from [PT12]
simp-tab-16 Simple Tabulation with two 16-bit keys from [PT12]
Murmur3 Murmur3 hash functions of [App]
k-ind (3) 3-wise independent hashing with polynomials
of degree 2 with CW-Trick

21 Z construction “low space usage, many functions”

Z9 Z construction “moderate space usage, fewer functions”

Z3 Z construction “low space usage, high-degree polynomials”

Table 16.1.: Hash Families considered in our experiments. The “identifier” is used to refer to the
constructions in the charts and in the text.

one g-function, two z tables of size n'/2 and two f-functions. For n = 220, we use three

16-wise independent functions and two tables of size 2!°. (The tables can be stored in an
integer array of size 2048.)

We observe that apart from the description lengths of these constructions, the difference in eval-
uation time is not clear. An array of size 1024 with 4 byte integers easily fits into L1 cache of the
Intel i7 used in our experiments. This is not the case for an array of size 2!“. However, the second
constructions needs only (roughly) half of the arithmetic operations. The third construction uses
the fewest tables, but involves the evaluation of high-degree polynomials.

All constructions considered in the following are summarized with their identifiers in Ta-
ble 16.1.

Our implementation uses C++. For compiling C++ code, we use gcc in version 4.8. Random
values are obtained using boost: :random.! The experiments were carried out on the machine
specified in Section 1. The code can be found at http://eiche.theoinf.tu-ilmenau.de/
maumueller-diss/.

16.2. Success Probability

We first report on our results for structured inputs. For n = 220 and m = 1.05n, rehashes
occurred rarely. For all hash functions and all trials, a stash of size 1 would have sufficed. In
9 out of 10,000 runs, simp-tab-16 used a stash of size 1. This was the maximum number of
rehashes over all constructions. The results for m = 1.005n looked very differently. Details can
be found in Tab. 16.2. Without a stash the construction failed in about 8% of the cases. Using a
stash of size 2 already decreased the likelyhood of a rehash to at most 0.74%. (With a stash of
size 3 it would have been decreased to 0.21% of the cases.) We note that from our experiments

'http://boost.org

184

http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/
http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/

16.3. Running Times

method || s =0 | s = § = rehash
simp-tab-8 || 9,223 | 590 131 o4
simp-tab-16 || 9,194 | 595 139 72
Murmur3 || 9,232 | 576 139 53
k-ind (3) || 9,137 | 632 159 72
Z1 || 9,127 | 656 159 58
Z5 || 9,201 | 595 150 54
Zs || 9,177 | 615 134 74

Table 16.2.: Maximum stash size s for structured inputs of n = 220 elements with m = 1.005n.

we cannot report of a difference in the success probability between simple tabulation hashing
and hash class Z.

When considering key sets {1,...,n} forn € {20 ... 223} for m = 1.005n, again there
was no big difference between the different hash function constructions. As expected, the failure
probability rapidly decreased for n getting larger. For n = 2!5, about 14% of the trials put a
key into the stash and about 1.5% of the runs caused a rehash with a stash of size 2, for all
constructions. For n = 29, these frequencies decreased to 10% and 0.8%, respectively. For
n = 223, the frequencies were 6.5% and 0.7%, respectively.

16.3. Running Times

Table 16.3 shows the measurements of our running time experiments to construct a hash table
with keys from {1,...,n} for dense tables with m = 1.005n. We observe that the simple
tabulation scheme is the fastest implementation; it is faster than the deterministic Murmur3-
based hash functions. Among the constructions based on hash class Z, the second construction—
moderate space usage and fewer hash functions—is faster than the other constructions. It is
about a factor 1.8 slower than the fastest hash class, while providing theoretical guarantees on
the failure probability comparable to a fully random hash function.? We also point out that
there is a big difference in running time between s-tab-8 and s-tab-16. This is because our
inputs consisted of integers smaller than 222, In this situation, the ten most significant bits are
unused. So, s-tab-8 will always use 77[0] for the eight most significant bits. For comparison,
we also include the results from the experiment on inputs from the hypercube [32]* in the last
row of Table 16.3. In that case, construction simp-tab-16 was a little bit faster than construction
simp-tab-8. With respect to class Z, it seems that from our experiments the parameter settings
¢ = /n (or the next power of 2 being at least as large as \/n) and ¢ = 2(s + 2) provide the
best performance. Using more hash functions but smaller tables is a little bit slower on our test

*When we aim for a failure probability of O(1/4/n) with hash class Z, we can use 6 tables of size \/n, instead of
16 tables for construction Z». This hash class was a factor of 1.26 slower than simp-tab-8, and was thus even
faster than the 3-independent hash class.

185

16. Experimental Evaluation

n s-tab-8 | s-tab-16 Murmur3 | k-ind (3) Z1 Z5 Z3
1024 0.02 ms 0.03 ms 0.03 ms 0.04 ms 0.06 ms 0.04 ms 0.21 ms
4096 0.10 ms 0.10 ms 0.11 ms 0.14 ms 0.23 ms 0.17 ms 0.80 ms
16384 0.41 ms 0.48 ms 0.48 ms 0.55 ms 0.93 ms 0.66 ms 3.13 ms
65536 1.88 ms 2.41 ms 2.15 ms 2.57 ms 4.12 ms 3.09 ms 12.93 ms
262144 8.59 ms 10.62 ms 9.82 ms 12.05 ms 18.93 ms 14.75 ms 55.62 ms
1048576 39.84 ms 46.50 ms 45.10 ms 54.00 ms 80.85 ms 69.15 ms 214.36 ms
4194304 286.32ms | 293.20ms | 312.13 ms 375.00ms | 554.14 ms | 510.35 ms | 1081.58 ms
1048576 || 55.24ms | 54.67ms | 60.43ms | 75.46ms | 117.37ms | 101.02ms | 268.58 ms
Table 16.3.: Different running times for the construction of a cuckoo hash table for m = 1.005n.
Each entry is the average over 10,000 trials. The last row contains the measurements
for the structured input.
n s-tab-8 | s-tab-16 Murmur3 | k-ind (3) Z Z5 Z3
1024 0.02 ms 0.02 ms 0.03 ms 0.03 ms 0.06 ms 0.04 ms 0.19 ms
4096 0.09 ms 0.1 ms 0.11 ms 0.13 ms 0.22 ms 0.15 ms 0.74 ms
16384 0.38 ms 0.45 ms 0.44 ms 0.51 ms 0.87 ms 0.62 ms 2.93 ms
65536 1.75 ms 2.24 ms 2.0 ms 2.43 ms 3.91 ms 2.93 ms 12.12 ms
262144 8.08 ms 9.89 ms 9.19 ms 11.42 ms 18.16 ms 14.2 ms 52.57 ms
1048576 38.07 ms 43.95 ms 41.95 ms 51.64 ms 77.66 ms | 65.07 ms 202.65 ms
4194304 265.03 ms | 268.66 ms | 280.21 ms 350.47ms | 531.16 ms | 497.7 ms | 1020.77 ms
1048576 || 52.26ms | 51.25ms | 57.04ms [72.19ms | 113.8ms | 98.33ms | 254.60 ms

Table 16.4.: Different running times for the construction of a cuckoo hash table for m = 1.05n.
Each entry is the average over 10,000 trials. The last row contains the measurements
for the structured input type.

setup. Furthermore, using only one table but a high degree of independence is not competetive.
Table 16.4 shows the results for m = 1.05n. The construction time is a little bit lower compared
with the denser case. The relations with respect to running time stay the same.

We also measured the cache behavior of the hash functions. Figure 16.1 and Figure 16.2 show
the measurements we got with respect to L1 cache misses and L2 cache misses, respectively. For
reference to cache misses that happen because of access to the cuckoo hash table, we include the
results for k-ind (3). We see that among the tabulation-based constructions, simp-tab-8 and
Z; show the best behavior with respect to cache misses. The data structure for the hash function
is in L1 cache practically all the time. For simp-tab-16, we have about two additional cache
misses per insertion. (Note that the four tables for simp-tab-16 need 1 MB of data, and thus do
not fit into L1 or L2 cache on our setup.) The variant Z; of hash class Z, using sixteen tables of
size y/n, performs badly when the key set is large. So, while Z is the fastest construction among
the considered variants of hash class Z for n < 223 its performance should decrease for larger
key sets. Then, construction Z; with tables of size n'/4 should be faster.

186

16.3. Running Times

10

L1 cache misses /n

Figure 16.1.:

L2 cache misses /n

Figure 16.2.:

T T T T T T
—o— simp-tab-8 —=— simp-tab-16 —e—k-ind (3)
—— Z1 —o— Z9 -o- Z3
L | | | | | | | | i
10 12 14 16 18 20 22 24
Items [logy(n)]
Level 1 cache misses for building a cuckoo hash table from inputs {1,...,n} with

a particular hash function. Each data point is the average over 10,000 trials. Cache
Misses are scaled by n.

r T T T T T T]
—o— simp-tab-8 —&— simp-tab-16 —e—k-ind (3)
- —r Zl —— ZQ -0 - Zg N
L | | | | | | | \7
10 12 14 16 18 20 22 24
Items [logsy(n)]
Level 2 cache misses for building a cuckoo hash table from inputs {1,...,n} with

a particular hash function. Each data point is the average over 10,000 trials. Cache
Misses are scaled by n.

187

17. Conclusion and Open Questions

In this part of the thesis, we described a general framework to analyze hashing-based algorithms
and data structures whose analysis depends on properties of the random graph G(S, E) when
h comes from a certain class of simple hash functions. This class combined lookups in small
random tables with the evaluation of simple 2-universal or 2-independent hash functions.

We showed that these hash functions can be used in such diverse applications as cuckoo hash-
ing (with a stash), generalized cuckoo hashing, the simulation of uniform hash functions, the
construction of a perfect hash function, and load balancing. The framework allowed us to an-
alyze these applications without exposing details of the hash family, only using a first moment
approach for random graphs. Particular choices for the parameters to set up hash functions from
Z provide hash functions that can be evaluated efficiently.

We already proposed directions for future work in the respective sections of this part of the
thesis, and collect here the points we find most interesting.

1. Our method is tightly connected to the first moment method. Unfortunately, some proper-
ties of random graphs cannot be proven using this method. For example, the classical proof
that the connected components of the random graph G(S, hy, ha) for m = (1 + ¢)|S], for
e > 0, with fully random hash functions have size O(log n) uses a Galton-Watson process
(see, e.g., [Bol85]). From previous work [DM90; DM92] we know that hash class Z has
some classical properties regarding the balls-into-bins game. In the hypergraph setting this
translates to a degree distribution of the vertices close to the fully random case. We are
currently investigating whether this approach yields good enough bounds for the process
mentioned above or not.

2. The analysis of generalized cuckoo hashing could succeed (asymptotically) using hash
functions from Z. For this, one has to extend the analysis of the behavior of Z on small
connected hypergraphs to connected hypergraphs with super-logarithmically many edges.

3. Witness trees are another approach to tackle the analysis of generalized cuckoo hashing.
We presented initial results in Section 14.3. It is open whether this approach yields good
bounds on the space utilization of generalized cuckoo hashing.

4. In light of the new construction of Thorup [Tho13], it should be demonstrated in exper-

iments whether or not log n-wise and n’-wise independent hash classes with constant
evaluation time are efficient.

189

17. Conclusion and Open Questions

5. It should be tested whether hash class Z allows running linear probing robustly or not.
Furthermore, it would be interesting to see if it is e-minwise independent (for good enough
values €).

190

Bibliography

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. “SipHash: A Fast Short-Input PRF”.
In: Proc. of the 13th International Conference on Cryptology in India INDOCRYPT’12).
Springer, 2012, pp. 489-508. por: 10 . 1007 /978-3-642-34931-7 _28 (cited on
pp- 101, 182).

[AD13] Martin Aumiller and Martin Dietzfelbinger. “Optimal Partitioning for Dual Pivot
Quicksort - (Extended Abstract)”. In: Proc. of the 40th International Colloquium on
Automata, Languages and Programming (ICALP’13). Springer, 2013, pp. 33—44. DOL:
10.1007/978-3-642-39206-1_4 (cited on pp. 1, 4, 18).

[ADW12] Martin Aumiiller, Martin Dietzfelbinger, and Philipp Woelfel. “Explicit and Efficient
Hash Families Suffice for Cuckoo Hashing with a Stash”. In: Proc. of the 20th annual
European symposium on Algorithms (ESA’12). Springer, 2012, pp. 108—120. po1: 10.
1007/978-3-642-33090-2_11 (cited on pp. 4, 137, 139).

[ADW14] Martin Aumiller, Martin Dietzfelbinger, and Philipp Woelfel. “Explicit and Efficient
Hash Families Suffice for Cuckoo Hashing with a Stash”. In: Algorithmica 70.3 (2014),
pp. 428—456. poL: 10. 1007 /s00453-013-9840-x (cited on pp. 4, 106, 113, 119,
125, 131, 132, 134, 135).

[Aga96] Ramesh C. Agarwal. “A Super Scalar Sort Algorithm for RISC Processors”. In: Proc.
of the 1996 ACM SIGMOD International Conference on Management of Data. ACM,
1996, pp. 240—246. por: 10.1145/233269.233336 (cited on p. 68).

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approxi-
mating the Frequency Moments”. In: . Comput. Syst. Sci. 58.1 (1999), pp. 137-147.
DOI: 10.1006/jcss. 1997 . 1545 (cited on pp. 3, 102).

[ANS09] Yuriy Arbitman, Moni Naor, and Gil Segev. “De-amortized Cuckoo Hashing: Prov-
able Worst-Case Performance and Experimental Results”. In: Proc. of the 36th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’09). Springer,
2009, pp. 107-118. por: 10.1007/978-3-642-02927-1_11 (cited on p. 145).

[App] Austin Appleby. MurmurHash3. https ://code . google . com/p/smhasher/
wiki/MurmurHash3 (cited on pp. 101, 106, 182, 184).

[Aum10] Martin Aumiiller. “An alternative Analysis of Cuckoo Hashing with a Stash and
Realistic Hash Functions”. Diplomarbeit. Technische Universitit llmenau, 2010, p. 98
(cited on pp. 119, 121, 125, 131-134).

191

http://dx.doi.org/10.1007/978-3-642-34931-7_28
http://dx.doi.org/10.1007/978-3-642-39206-1_4
http://dx.doi.org/10.1007/978-3-642-33090-2_11
http://dx.doi.org/10.1007/978-3-642-33090-2_11
http://dx.doi.org/10.1007/s00453-013-9840-x
http://dx.doi.org/10.1145/233269.233336
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1007/978-3-642-02927-1_11
https://code.google.com/p/smhasher/wiki/MurmurHash3
https://code.google.com/p/smhasher/wiki/MurmurHash3

Bibliography

[AV8S]

[Aza+99]

[BBD09]

[Ben86]
[Big+08]

[BKZ05]

[BMOo5]

[BM93]

[Bol8s]
[BPZ07]

[BPZ13]

[Cal97]

192

Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output Complexity of Sorting
and Related Problems”. In: Commun. ACM 31.9 (1988), pp. 1116-1127. po1: 10.1145/
48529.48535 (cited on p. 66).

Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. “Balanced Allocations”.
In: STAM F. Comput. 29.1 (1999), pp. 180—200. po1: 10.1137/S0097539795288490
(cited on p. 174).

Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Dis-
place, and Compress”. In: Proc. of the 17th Annual European Symposium on Algo-
rithms (ESA’09). Springer, 2009, pp. 682-693. poL: 10.1007/978-3-642-04128-
0_61 (cited on p. 140).

Jon Louis Bentley. Programming pearls. Addison-Wesley, 1986 (cited on p. 205).

Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg. “An experimental
study of sorting and branch prediction”. In: ACM Journal of Experimental Algorith-
mics 12 (2008). po1: 10.1145/1227161.1370599 (cited on pp. 68, 93).

Fabiano C. Botelho, Yoshiharu Kohayakawa, and Nivio Ziviani. “A Practical Min-
imal Perfect Hashing Method”. In: Proc. of the 4th International Workshop on Ex-
perimental and Efficient Algorithms (WEA’05). Springer, 2005, pp. 488—500. DOI:
10.1007/11427186_42 (cited on p. 140).

Gerth Stelting Brodal and Gabriel Moruz. “Tradeoffs Between Branch Mispredic-
tions and Comparisons for Sorting Algorithms”. In: Proc. of the 9th International
Workshop on Algorithms and Data Structures (WADS’ 05). Springer, 2005, pp. 385—
395. por: 10.1007/11534273_34 (cited on p. 68).

Jon Louis Bentley and M. Douglas MclIlroy. “Engineering a Sort Function”. In: Softw.,
Pract. Exper. 23.11 (1993), pp. 1249-1265. por: 10 . 1002/ spe . 4380231105 (cited
on pp. 10, 12).

Béla Bollobas. Random Graphs. Academic Press, London, 1985 (cited on pp. 105, 189).

Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Simple and Space-Efficient
Minimal Perfect Hash Functions”. In: Proc. of the 10th International Workshop on
Algorithms and Data Structures (WADS 07). Springer, 2007, pp. 139-150. po1: 10.
1007/978-3-540-73951-7_13 (cited on p. 140).

Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Practical perfect hashing in
nearly optimal space”. In: Inf. Syst. 38.1 (2013), pp. 108-131. por: 10.1016/j.is.
2012.06.002 (cited on pp. 4, 103, 104, 131, 139-143, 148).

Neil J. Calkin. “Dependent Sets of Constant Weight Binary Vectors”. In: Combina-
torics, Probability and Computing 6.3 (1997), pp. 263-271 (cited on p. 137).

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1137/S0097539795288490
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://dx.doi.org/10.1145/1227161.1370599
http://dx.doi.org/10.1007/11427186_42
http://dx.doi.org/10.1007/11534273_34
http://dx.doi.org/10.1002/spe.4380231105
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1016/j.is.2012.06.002
http://dx.doi.org/10.1016/j.is.2012.06.002

Bibliography

[Cel+13]

[Cha+04]

[CHMY2]

[CHMO7]

[Col]

[Col+984a]

[Col+98b]

[Cor+09]

[CW03]

[CW77]

[CW79]

L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. “Balls and Bins: Smaller
Hash Families and Faster Evaluation”. In: SIAM J. Comput. 42.3 (2013), pp. 1030-
1050. por: 10.1137/120871626 (cited on pp. 3, 103, 108).

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. “The Bloomier filter:
an efficient data structure for static support lookup tables”. In: Proc. of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA’04). STAM, 2004, pp. 30—
39. por: 10.1145/2£982792.982797 (cited on pp. 140, 155).

Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. “An Optimal Algorithm
for Generating Minimal Perfect Hash Functions”. In: Inf. Process. Lett. 43.5 (1992),
pp. 257-264. por: 10.1016/0020-0190(92) 90220~-P (cited on p. 140).

Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. “Perfect Hashing”. In:
Theor. Comput. Sci. 182.1-2 (1997), pp. 1-143. por: 10 . 1016 /50304 -3975(96)
00146-6 (cited on pp. 139, 148).

Yann Collet. xxhash. http://code.google.com/p/xxhash/ (cited on p. 182).

Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher, Andréa W.
Richa, Ramesh K. Sitaraman, and Eli Upfal. “On Balls and Bins with Deletions”.
In: Proc. of the 2nd International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM’98). Springer, 1998, pp. 145-158. DOL:
10.1007/3-540-49543-6_12 (cited on p. 159).

Richard Cole, Bruce M. Maggs, Friedhelm Meyer auf der Heide, Michael Mitzen-
macher, Andréa W. Richa, Klaus Schroder, Ramesh K. Sitaraman, and Berthold Vock-
ing. “Randomized Protocols for Low Congestion Circuit Routing in Multistage Inter-
connection Networks”. In: Proc. of the 3th Annual ACM Symposium on the Theory
of Computing (STOC98). ACM, 1998, pp. 378—388. porL: 10.1145/276698.276790
(cited on p. 159).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms (3. ed.) MIT Press, 2009, pp. I-XIX, 1-1292 (cited on pp. 1,
9).

Scott A. Crosby and Dan S. Wallach. “Denial of Service via Algorithmic Complexity
Attacks”. In: Proc. of the 12th Conference on USENIX Security Symposium - Volume
12. SSYM’03. Washington, DC: USENIX Association, 2003, pp. 3-3 (cited on p. 101).

J. Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions (Ex-
tended Abstract)”. In: Proc. of the 9th Annual ACM Symposium on Theory of Com-
puting (STOC’77). ACM, 1977, pp. 106—112. por: 10.1145/800105 . 803400 (cited
on p. 107).

Larry Carter and Mark N. Wegman. “Universal Classes of Hash Functions”. In: }.
Comput. Syst. Sci. 18.2 (1979), pp. 143-154. DOL: 10.1016/0022-0000 (79) 90044~
8 (cited on pp. 3, 101, 102, 107, 182).

193

http://dx.doi.org/10.1137/120871626
http://dx.doi.org/10.1145/2f982792.982797
http://dx.doi.org/10.1016/0020-0190(92)90220-P
http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://code.google.com/p/xxhash/
http://dx.doi.org/10.1007/3-540-49543-6_12
http://dx.doi.org/10.1145/276698.276790
http://dx.doi.org/10.1145/800105.803400
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1016/0022-0000(79)90044-8

Bibliography

[Dah+14]

[DHo1]

[Die+10]

[Die+97]

[Die05]

[Die07]

[Die12]

[Die96]

[Dij76]

[DMo3]

[DM09]

194

Seren Dahlgaard, Mathias Baek Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup.
“The Power of Two Choices with Simple Tabulation”. In: CoRR abs/1407.6846 (2014)
(cited on pp. 3, 103).

Martin Dietzfelbinger and Torben Hagerup. “Simple Minimal Perfect Hashing in
Less Space”. In: Proc. of the 9th Annual European Symposium on Algorithms (ESA’01).
Springer, 2001, pp. 109-120. por: 10.1007/3-540-44676-1_9 (cited on p. 140).

Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari,
Rasmus Pagh, and Michael Rink. “Tight Thresholds for Cuckoo Hashing via XOR-
SAT”. In: Proc. of the 37th International Colloquium on Automata, Languages and
Programming (ICALP’10). Springer, 2010, pp. 213-225. por: 10.1007/978-3-642-
14165-2_19 (cited on pp. 149, 154).

Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. “A
Reliable Randomized Algorithm for the Closest-Pair Problem”. In: J. Algorithms 25.1
(1997), pp. 19-51. por: 10.1006/ jagm.1997.0873 (cited on pp. 107, 183).

Reinhard Diestel. Graph Theory. Springer, 2005 (cited on pp. 111, 125, 128, 147, 154,
168).

Martin Dietzfelbinger. “Design Strategies for Minimal Perfect Hash Functions”. In:
4th International Symposium on Stochastic Algorithms: Foundations and Applica-
tions (SAGA’07). Springer, 2007, pp. 2—-17. por: 10.1007/978-3-540-74871-7_2
(cited on pp. 103, 139, 140, 148).

Martin Dietzfelbinger. “On Randomness in Hash Functions (Invited Talk)”. In: 29th
International Symposium on Theoretical Aspects of Computer Science (STACS’12).
Springer, 2012, pp. 25-28. por: 10 . 4230 /LIPIcs . STACS . 2012 . 25 (cited on
p. 103).

Martin Dietzfelbinger. “Universal Hashing and k-Wise Independent Random Vari-
ables via Integer Arithmetic without Primes.” In: Proc. of the 13th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS’96). Springer, 1996, pp. 569
580. po1: 10.1007/3-540-60922-9_46 (cited on p. 183).

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976 (cited on p. 69).

Luc Devroye and Pat Morin. “Cuckoo hashing: Further analysis”. In: Inf. Process.
Lett. 86.4 (2003), pp. 215-219. por: 10.1016/S0020-0190(02) 00500-8 (cited on
pp. 120, 121, 135).

Luc Devroye and Ebrahim Malalla. “On the k-orientability of random graphs”. In:
Discrete Mathematics 309.6 (2009), pp. 1476-1490. por: 10.1016/j .disc.2008.
02.023 (cited on p. 176).

http://dx.doi.org/10.1007/3-540-44676-1_9
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1006/jagm.1997.0873
http://dx.doi.org/10.1007/978-3-540-74871-7_2
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.25
http://dx.doi.org/10.1007/3-540-60922-9_46
http://dx.doi.org/10.1016/S0020-0190(02)00500-8
http://dx.doi.org/10.1016/j.disc.2008.02.023
http://dx.doi.org/10.1016/j.disc.2008.02.023

Bibliography

[DM90]

[DM92]

[DM93]

[DP09]

[DR09]

[DS09a]

[DS09b]

[DT14]

[DW03]

[DW07]

Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “A New Universal Class
of Hash Functions and Dynamic Hashing in Real Time”. In: Proc. of the 17th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’90). Springer,
1990, pp. 6—19. por: 10.1007/BFb0032018 (cited on pp. 3, 103, 104, 108, 109, 189).

Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “Dynamic Hashing in
Real Time”. In: Informatik, Festschrift zum 60. Geburtstag von Giinter Hotz. Teubner,
1992, pp. 95-119 (cited on pp. 108, 189).

Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “Simple, Efficient Shared
Memory Simulations”. In: Proc. of the 5th ACM Symposium on Parallelism in Al-
gorithms and Architectures, (SPAA’93). ACM, 1993, pp. 110-119. por: 10 . 1145/
165231.165246 (cited on p. 164).

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009, pp. I-XIV,
1-196 (cited on p. 21).

Martin Dietzfelbinger and Michael Rink. “Applications of a Splitting Trick”. In: Proc.
of the 36th International Colloquium on Automata, Languages and Programming
(ICALP’09). Springer, 2009, pp. 354—-365. Dol: 10.1007/978-3-642-02927-1_30
(cited on pp. 103, 137, 140).

Martin Dietzfelbinger and Ulf Schellbach. “On risks of using cuckoo hashing with
simple universal hash classes”. In: Proc. of the 20th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’09). SIAM, 2009, pp. 795-804. por: 10. 1145/
1496770.1496857 (cited on p. 102).

Martin Dietzfelbinger and Ulf Schellbach. “Weaknesses of Cuckoo Hashing with a
Simple Universal Hash Class: The Case of Large Universes”. In: Proc. of the 35th
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM’09).
2009, pp. 217-228. por: 10.1007/978-3-540-95891-8_22 (cited on p. 102).

Seren Dahlgaard and Mikkel Thorup. “Approximately Minwise Independence with
Twisted Tabulation”. In: Proc. of the 14th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT’14). Springer, 2014, pp. 134—145. por: 10.1007/978~
3-319-08404-6_12 (cited on pp. 3, 103).

Martin Dietzfelbinger and Philipp Woelfel. “Almost random graphs with simple hash
functions”. In: Proc. of the 35th annual ACM Symposium on Theory of computing
(STOC’03). ACM, 2003, pp. 629-638. por: 10.1145/780542.780634 (cited on pp. 3,
4,103-105, 108, 119, 125, 135, 136, 177).

Martin Dietzfelbinger and Christoph Weidling. “Balanced allocation and dictionar-
ies with tightly packed constant size bins”. In: Theor. Comput. Sci. 380.1-2 (2007),
pp- 47-68. por: 10.1016/j.tcs.2007.02.054 (cited on p. 176).

195

http://dx.doi.org/10.1007/BFb0032018
http://dx.doi.org/10.1145/165231.165246
http://dx.doi.org/10.1145/165231.165246
http://dx.doi.org/10.1007/978-3-642-02927-1_30
http://dx.doi.org/10.1145/1496770.1496857
http://dx.doi.org/10.1145/1496770.1496857
http://dx.doi.org/10.1007/978-3-540-95891-8_22
http://dx.doi.org/10.1007/978-3-319-08404-6_12
http://dx.doi.org/10.1007/978-3-319-08404-6_12
http://dx.doi.org/10.1145/780542.780634
http://dx.doi.org/10.1016/j.tcs.2007.02.054

Bibliography

[Emd70]

(Epp+14]

[ER60]

[FK84]

[FKS84]

[FM12]

[FMM11]

[Fot+05]

[FP10]

[FPS13]

[Fri+12]

196

M. H. van Emden. “Increasing the efficiency of quicksort”. In: Commun. ACM 13.9
(Sept. 1970), pp. 563—-567. poI: 10.1145/362736.362753 (cited on pp. 12, 61).

David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona.
“Wear Minimization for Cuckoo Hashing: How Not to Throw a Lot of Eggs into One
Basket”. In: Proc. of the 13th International Symposium of Experimental Algorithms,
(SEA’14). Springer, 2014, pp. 162-173. DOL: 10. 1007 /978-3-319-07959-2_14
(cited on pp. 4, 104, 147, 155, 156, 159—-161).

P Erdés and A Rényi. “On the evolution of random graphs”. In: Publ. Math. Inst.
Hung. Acad. Sci 5 (1960), pp. 17-61 (cited on p. 149).

Michael L Fredman and Janos Komlés. “On the size of separating systems and fam-
ilies of perfect hash functions”. In: SIAM Journal on Algebraic Discrete Methods 5.1
(1984), pp. 61-68 (cited on p. 139).

Michael L. Fredman, Janos Komlés, and Endre Szemerédi. “Storing a Sparse Table
with 0(1) Worst Case Access Time”. In: J. ACM 31.3 (1984), pp. 538—544. DOI: 10.
1145/828.1884 (cited on pp. 108, 139).

Alan M. Frieze and Pall Melsted. “Maximum matchings in random bipartite graphs
and the space utilization of Cuckoo Hash tables”. In: Random Struct. Algorithms 41.3
(2012), pp. 334-364. pOL: 10.1002/rsa. 20427 (cited on p. 149).

Alan M. Frieze, Pall Melsted, and Michael Mitzenmacher. “An Analysis of Random-
Walk Cuckoo Hashing”. In: SIAM J. Comput. 40.2 (2011), pp. 291-308. por: 10.1137/
090770928 (cited on p. 149).

Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. “Space Efficient
Hash Tables with Worst Case Constant Access Time”. In: Theory Comput. Syst. 38.2
(2005), pp. 229-248. por: 10.1007/s00224-004-1195-x (cited on pp. 4, 103, 104,
147-149, 154, 155).

Nikolaos Fountoulakis and Konstantinos Panagiotou. “Orientability of Random Hy-
pergraphs and the Power of Multiple Choices”. In: Proc. of the 37th International
Colloquium on Automata, Languages and Programming (ICALP’10). Springer, 2010,
pp- 348-359. por: 10.1007/978-3-642-14165-2_30 (cited on p. 149).

Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. “On the In-
sertion Time of Cuckoo Hashing”. In: SIAM 7. Comput. 42.6 (2013), pp. 2156—2181.
por: 10.1137/100797503 (cited on pp. 148, 149, 163).

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
“Cache-Oblivious Algorithms”. In: ACM Transactions on Algorithms 8.1 (2012), p. 4.
poI: 10.1145/2071379.2071383 (cited on p 67).

http://dx.doi.org/10.1145/362736.362753
http://dx.doi.org/10.1007/978-3-319-07959-2_14
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1002/rsa.20427
http://dx.doi.org/10.1137/090770928
http://dx.doi.org/10.1137/090770928
http://dx.doi.org/10.1007/s00224-004-1195-x
http://dx.doi.org/10.1007/978-3-642-14165-2_30
http://dx.doi.org/10.1137/100797503
http://dx.doi.org/10.1145/2071379.2071383

Bibliography

[GM11] Michael T. Goodrich and Michael Mitzenmacher. “Privacy-Preserving Access of Out-
sourced Data via Oblivious RAM Simulation”. In: Proc. of the 38th International
Colloquium on Automata, Languages and Programming (ICALP’11). Springer, 2011,
pp. 576-587. por: 10.1007/978-3-642-22012-8_46 (cited on p. 135).

[Gou72] Henry W. Gould. Combinatorial Identities. 1972 (cited on p. 32).

[Hen91] Pascal Hennequin. “Analyse en moyenne d’algorithmes: tri rapide et arbres de recherche”.
available at http://www-1lor.int-evry.fr/“pascal/. PhD thesis. Ecole Po-
litechnique, Palaiseau, 1991 (cited on pp. 9, 10, 13, 18, 39, 40, 46, 61, 62).

[Hoa62] C. A. R. Hoare. “Quicksort”. In: Comput. 7. 5.1 (1962), pp. 10-15 (cited on pp. 1, 9, 12,
40, 67).

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative
Approach (5. ed.) Morgan Kaufmann, 2012 (cited on pp. 13, 66, 215).

[HSS96] Friedhelm Meyer auf der Heide, Christian Scheideler, and Volker Stemann. “Exploit-
ing Storage Redundancy to Speed up Randomized Shared Memory Simulations”.
In: Theor. Comput. Sci. 162.2 (1996), pp. 245-281. por: 10.1016/0304-3975(96)
00032-1 (cited on p. 159).

[HTo1] Torben Hagerup and Torsten Tholey. “Efficient Minimal Perfect Hashing in Nearly
Minimal Space”. In: Proc. of the 18th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’01). 2001, pp. 317-326. por: 10.1007/3-540-44693-
1_28 (cited on p. 139).

[Mi14] Vasileios Iliopoulos. “A note on multipivot Quicksort”. In: CoRR abs/1407.7459 (2014)
(cited on pp. 46, 62).

[Indo1] Piotr Indyk. “A Small Approximately Min-Wise Independent Family of Hash Func-
tions”. In: J. Algorithms 38.1 (2001), pp. 84-90. por: 10.1006/ jagm . 2000 . 1131
(cited on p. 102).

[JEBS6] C. T. M. Jacobs and Peter van Emde Boas. “Two Results on Tables”. In: Inf. Process.
Lett. 22.1 (1986), pp. 43—48. por: 10.1016/0020-0190(86) 90041 -4 (cited on
p. 139).

[JM13] Tomasz Jurkiewicz and Kurt Mehlhorn. “The cost of address translation”. In: Proc. of
the 15th Meeting on Algorithm Engineering and Experiments, (ALENEX’13). SIAM,
2013, pp. 148-162. poI: 10.1137/1.9781611972931. 13 (cited on p. 68).

[UMT14] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. “Parallel peeling algorithms”.
In: Proc. of the 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures, (SPAA ’14). ACM, 2014, pp. 319-330. por: 10 . 1145 /2612669 . 2612674
(cited on p. 176).

197

http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://www-lor.int-evry.fr/~pascal/
http://dx.doi.org/10.1016/0304-3975(96)00032-1
http://dx.doi.org/10.1016/0304-3975(96)00032-1
http://dx.doi.org/10.1007/3-540-44693-1_28
http://dx.doi.org/10.1007/3-540-44693-1_28
http://dx.doi.org/10.1006/jagm.2000.1131
http://dx.doi.org/10.1016/0020-0190(86)90041-4
http://dx.doi.org/10.1137/1.9781611972931.13
http://dx.doi.org/10.1145/2612669.2612674

Bibliography

[JNL02]

[Kho13]

[Kla14]

[KLMO96]

[KMWO08]

[KMW09]

[Knu73]

[KS06]

[Kus+14]

[KW12]

[KE02]

198

Daniel Jiménez-Gonzalez, Juan J. Navarro, and Josep-Lluis Larriba-Pey. “The Effect
of Local Sort on Parallel Sorting Algorithms”. In: 10th Euromicro Workshop on Par-
allel, Distributed and Network-Based Processing (PDP’02). IEEE Computer Society,
2002, pp. 360-367. poL: 10.1109/EMPDP.2002.994310 (cited on p. 68).

Megha Khosla. “Balls into Bins Made Faster”. In: Proc. of the 21st European Sympo-
sium on Algorithms (ESA’13). Springer, 2013, pp. 601-612. por: 10.1007/978-3-
642-40450-4_51 (cited on pp. 4, 104, 147, 148, 155-157, 163).

Pascal Klaue. “Optimal Partitionierungsverfahren fiir Multi-Pivot-Quicksort”. in Ger-
man. MA thesis. TU Ilmenau, 2014 (cited on pp. 45, 55, 62).

Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. “Efficient
PRAM Simulation on a Distributed Memory Machine”. In: Algorithmica 16.4/5 (1996),
pp- 517-542. por: 10.1007/BF01940878 (cited on pp. 3, 143—145).

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. “More Robust Hashing: Cuckoo
Hashing with a Stash”. In: Proc. of the 16th annual European symposium on Algo-
rithms (ESA’08). Springer, 2008, pp. 611-622. por: 10.1007/978-3-540-87744~
8_51 (cited on pp. 131, 134).

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. “More Robust Hashing: Cuckoo
Hashing with a Stash”. In: SIAM 7. Comput. 39.4 (2009), pp. 1543-1561. por: 10 .
1137/080728743 (cited on pp. 4, 104, 131, 132).

Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley, 1973 (cited on pp. 9, 56, 62).

Kanela Kaligosi and Peter Sanders. “How Branch Mispredictions Affect Quicksort”.
In: Proc. of the 14th Annual European Symposium on Algorithms (ESA’06). Springer,
2006, pp. 780-791. por: 10.1007/11841036_69 (cited on p. 68).

Shrinu Kushagra, Alejandro Lopez-Ortiz, Aurick Qiao, and J Ian Munro. “Multi-
Pivot Quicksort: Theory and Experiments”. In: Proc. of the 16th Meeting on Al-
gorithms Engineering and Experiments (ALENEX’14). SIAM, 2014, pp. 47-60. DOL:
10.1137/1.9781611973198. 6 (cited on pp. 1, 2, 13, 46, 5355, 65, 67, 70, 77, 79,
82, 89, 93, 94, 97, 212, 214, 227).

Toryn Qwyllyn Klassen and Philipp Woelfel. “Independence of Tabulation-Based
Hash Classes”. In: Proc. Theoretical Informatics - 10th Latin American Symposium
(LATIN’12). Springer, 2012, pp. 506—-517. po1: 10.1007/978-3-642-29344-3_43
(cited on p. 108).

Michat Karoniski and Tomasz Luczak. “The phase transition in a random hyper-
graph”. In: Journal of Computational and Applied Mathematics 142.1 (2002), pp. 125—
135. por: 10.1016/80377-0427 (01) 00464-2 (cited on pp. 147, 149-151).

http://dx.doi.org/10.1109/EMPDP.2002.994310
http://dx.doi.org/10.1007/978-3-642-40450-4_51
http://dx.doi.org/10.1007/978-3-642-40450-4_51
http://dx.doi.org/10.1007/BF01940878
http://dx.doi.org/10.1007/978-3-540-87744-8_51
http://dx.doi.org/10.1007/978-3-540-87744-8_51
http://dx.doi.org/10.1137/080728743
http://dx.doi.org/10.1137/080728743
http://dx.doi.org/10.1007/11841036_69
http://dx.doi.org/10.1137/1.9781611973198.6
http://dx.doi.org/10.1007/978-3-642-29344-3_43
http://dx.doi.org/10.1016/S0377-0427(01)00464-2

Bibliography

[Lev09]

[LL99]

[LO14]

[Maj+96]

[MBM93]

[McM78]

[Mehs4]

[Mey738]

[MMO09]

[MNW15]

[Molos]

[MRO1]

[MR95]

David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and Intel
Xeon 5500 processors. https : //software . intel . com/sites/products/
collateral/hpc/vtune/performance_analysis_guide.pdf. 2009 (cited on
pp. 66, 67, 215).

Anthony LaMarca and Richard E. Ladner. “The Influence of Caches on the Perfor-
mance of Sorting”. In: 7. Algorithms 31.1 (1999), pp. 66—104. po1: 10. 1006/ jagn .
1998.0985 (cited on pp. 13, 67, 82).

Alejandro Lopez-Ortiz. Multi-Pivot Quicksort: Theory and Experiments. Talk given
at Dagstuhl Seminar 14091: “Data Structures and Advanced Models of Computation
on Big Data”. 2014 (cited on p. 2).

Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbigniew J. Czech.
“A Family of Perfect Hashing Methods”. In: Comput. . 39.6 (1996), pp. 547—554. DOI:
10.1093/comjnl/39.6.547 (cited on pp. 140, 154).

Peter M. Mcllroy, Keith Bostic, and M. Douglas Mcllroy. “Engineering Radix Sort”.
In: Computing Systems 6.1 (1993), pp. 5-27 (cited on pp. 67, 69, 70).

Colin L. McMaster. “An Analysis of Algorithms for the Dutch National Flag Prob-
lem”. In: Commun. ACM 21.10 (1978), pp. 842—-846. DOI: 10.1145/359619.359629
(cited on p. 69).

Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Vol. 1.
EATCS Monographs on Theoretical Computer Science. Springer, 1984 (cited on p. 139).

S. J. Meyer. “A failure of structured programming”. In: Zilog Corp., Software Dept.
Technical Rep. No. 5, Cupertino, CA (1978) (cited on p. 69).

Marc Mezard and Andrea Montanari. Information, physics, and computation. Ox-
ford University Press, 2009 (cited on p. 154).

Conrado Martinez, Markus E. Nebel, and Sebastian Wild. “Analysis of Branch Misses
in Quicksort”. In: Proc. of the 12th Meeting on Analytic Algorithmics and Combina-
torics (ANALCO’ 15). To appear. 2015 (cited on pp. 1, 13, 68).

Michael Molloy. “Cores in random hypergraphs and Boolean formulas”. In: Random
Struct. Algorithms 27.1 (2005), pp. 124—135. por: 10 . 1002/ rsa . 20061 (cited on
pp- 148, 150, 176).

Conrado Martinez and Salvador Roura. “Optimal Sampling Strategies in Quicksort
and Quickselect”. In: SIAM J. Comput. 31.3 (2001), pp. 683-705. por: 10 . 1137/
S0097539700382108 (cited on pp. 12, 39, 41, 61).

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995 (cited on p. 4).

199

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://dx.doi.org/10.1006/jagm.1998.0985
http://dx.doi.org/10.1006/jagm.1998.0985
http://dx.doi.org/10.1093/comjnl/39.6.547
http://dx.doi.org/10.1145/359619.359629
http://dx.doi.org/10.1002/rsa.20061
http://dx.doi.org/10.1137/S0097539700382108
http://dx.doi.org/10.1137/S0097539700382108

Bibliography

[MS03]

[MUO05]

[Mus97]

[MV08]

[NW14]

[Ott48]

[PA]

[Pag14]

[Pag99]

[PPOS]

[PPR09]

[PRO4]

[PT10]

200

Kurt Mehlhorn and Peter Sanders. “Scanning Multiple Sequences Via Cache Mem-
ory”. In: Algorithmica 35.1 (2003), pp. 75-93. por: 10.1007/s00453-002-0993-2
(cited on pp. 66, 82).

Michael Mitzenmacher and Eli Upfal. Probability and Computing : Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press, 2005 (cited on p. 4).

David R. Musser. “Introspective Sorting and Selection Algorithms”. In: Softw., Pract.
Exper. 27.8 (1997), pp. 983-993 (cited on p. 92).

Michael Mitzenmacher and Salil P. Vadhan. “Why simple hash functions work: ex-
ploiting the entropy in a data stream”. In: Proc. of the 19th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’08). SIAM, 2008, pp. 746—755. pol: 10.1145/
1347082.1347164 (cited on p. 103).

Markus E. Nebel and Sebastian Wild. “Pivot Sampling in Java 7’s Dual-Pivot Quick-
sort — Exploiting Asymmetries in Yaroslavskiy’s Partitioning Scheme”. In: Analysis
of Algorithms (AofA’14). 2014 (cited on pp. 1, 39, 41).

Richard Otter. “The number of trees”. In: Annals of Mathematics (1948), pp. 583-599
(cited on p. 145).

Geoff Pike and Jyrki Alakuijala. CityHash. http : / / code . google . com/p/
cityhash/ (cited on p. 182).

Rasmus Pagh. Basics of Hashing: k-independence and applications. Talk given at
Summer School on Hashing’14 in Copenhagen. 2014 (cited on p. 101).

Rasmus Pagh. “Hash and Displace: Efficient Evaluation of Minimal Perfect Hash
Functions”. In: Proc. of the 6th International Workshop on Algorithms and Data
Structures (WADS’99). Springer, 1999, pp. 49-54. por: 10 . 1007/ 3-540- 48447 -
7_5 (cited on p. 140).

Anna Pagh and Rasmus Pagh. “Uniform Hashing in Constant Time and Optimal
Space”. In: SIAM J. Comput. 38.1 (2008), pp. 85-96. Do1: 10.1137/060658400 (cited
on pp. 4, 103, 104, 131, 137-139).

Anna Pagh, Rasmus Pagh, and Milan Ruzic. “Linear Probing with Constant Indepen-
dence”. In: SIAM J. Comput. 39.3 (2009), pp. 1107-1120. por: 10.1137/070702278
(cited on pp. 3, 102).

Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: J. Algorithms 51.2
(2004), pp. 122—-144. po1: 10.1016/j . jalgor.2003.12.002 (cited on pp. 102, 104,
119, 121, 135).

Mihai Patrascu and Mikkel Thorup. “On the k-Independence Required by Linear
Probing and Minwise Independence”. In: Proc. of the 37th International Colloquium
on Automata, Languages and Programming (ICALP’10). Springer, 2010, pp. 715-726.
DOI: 10.1007/978-3-642-14165-2_60 (cited on p. 102).

http://dx.doi.org/10.1007/s00453-002-0993-2
http://dx.doi.org/10.1145/1347082.1347164
http://dx.doi.org/10.1145/1347082.1347164
http://code.google.com/p/cityhash/
http://code.google.com/p/cityhash/
http://dx.doi.org/10.1007/3-540-48447-7_5
http://dx.doi.org/10.1007/3-540-48447-7_5
http://dx.doi.org/10.1137/060658400
http://dx.doi.org/10.1137/070702278
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1007/978-3-642-14165-2_60

Bibliography

[PT11] Mihai Patrascu and Mikkel Thorup. “The Power of Simple Tabulation Hashing”. In:
Proc. of the 43rd Annual ACM Symposium on Theory of Computing (STOC’11). 2011,
pp. 1-10. por: 10.1145/1993636. 1993638 (cited on pp. 3, 4, 103).

[PT12] Mihai Patrascu and Mikkel Thorup. “The Power of Simple Tabulation Hashing”. In:
J. ACM 59.3 (2012), p. 14. por: 10.1145/2220357 .2220361 (cited on pp. 103, 106,
108, 181, 182, 184).

[PT13] Mihai Patrascu and Mikkel Thorup. “Twisted Tabulation Hashing.” In: Proc. of the
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13). SIAM, 2013,
pp- 209-228. por: 10.1137/1.9781611973105. 16 (cited on pp. 3, 103, 108).

[Rah02] Naila Rahman. “Algorithms for Hardware Caches and TLB”. In: Algorithms for
Memory Hierarchies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14,
2002]. 2002, pp. 171-192. por: 10.1007/3-540-36574-5_8 (cited on pp. 66, 67,
80).

[Raj+01] Sanguthevar Rajasekaran, Panos M. Pardalos, John H. Reif, and Rosé Rolim, eds.

Handbook of Randomized Computing, Vol. 1. Kluwer Academic Publishers, 2001
(cited on p. 164).

[Rin14] Michael Rink. “Thresholds for Matchings in Random Bipartite Graphs with Appli-
cations to Hashing-Based Data Structures”. to appear. PhD thesis. Technische Uni-
versitat Ilmenau, 2014 (cited on pp. 136, 137).

[Rou01] Salvador Roura. “Improved master theorems for divide-and-conquer recurrences”.
In: 7. ACM 48.2 (2001), pp. 170-205. por: 10 . 1145 /375827 . 375837 (cited on
pp- 16, 17, 42, 46, 47).

[RRW14] Omer Reingold, Ron D. Rothblum, and Udi Wieder. “Pseudorandom Graphs in Data
Structures”. In: Proc. of the 41st International Colloquium on Automata, Languages
and Programming (ICALP’14). Springer, 2014, pp. 943-954. por: 10.1007/978-3~
662-43948-7_78 (cited on pp. 3, 103).

[SB] Robert Sedgewick and Jon Bentley. Quicksort is optimal. http://www.cs.princeton.
edu/~rs/talks/QuicksortIsOptimal .pdf (cited on p. 69).

[Sed75] Robert Sedgewick. “Quicksort”. PhD thesis. Standford University, 1975 (cited on
pp. 1,9, 28, 38, 208, 209).

[Sed77] Robert Sedgewick. “Quicksort with Equal Keys”. In: SIAM J. Comput. 6.2 (1977),
pp- 240-268. por: 10.1137/0206018 (cited on p. 9).

Sed78 Robert Sedgewick. “Implementing Quicksort programs”. In: Commun. ACM 21.10
g p g prog
(1978), pp. 847-857. por: 10.1145/359619.359631 (cited on p. 205).

[SF96] Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of algo-
rithms. Addison-Wesley-Longman, 1996, pp. I-XV, 1-492 (cited on p. 9).

201

http://dx.doi.org/10.1145/1993636.1993638
http://dx.doi.org/10.1145/2220357.2220361
http://dx.doi.org/10.1137/1.9781611973105.16
http://dx.doi.org/10.1007/3-540-36574-5_8
http://dx.doi.org/10.1145/375827.375837
http://dx.doi.org/10.1007/978-3-662-43948-7_78
http://dx.doi.org/10.1007/978-3-662-43948-7_78
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://dx.doi.org/10.1137/0206018
http://dx.doi.org/10.1145/359619.359631

Bibliography

[Sie04] Alan Siegel. “On Universal Classes of Extremely Random Constant-Time Hash Func-
tions”. In: SIAM . Comput. 33.3 (2004), pp. 505-543. poI: 10.1137/50097539701386216
(cited on pp. 102, 107, 135, 137).

[Sof12] Anthony Sofo. “New classes of harmonic number identities”. In: J. Integer Seq 15
(2012) (cited on p. 48).

[SPS85] Jeanette Schmidt-Pruzan and Eli Shamir. “Component structure in the evolution of
random hypergraphs”. English. In: Combinatorica 5.1 (1985), pp. 81-94. por: 10 .
1007/BF02579445 (cited on p. 147).

[SS00] Thomas Schickinger and Angelika Steger. “Simplified Witness Tree Arguments”. In:
Proc. of the 27th Conference on Current Trends in Theory and Practice of Informatics
(SOFSEM’00). Springer, 2000, pp. 71-87. por: 10.1007/3-540-44411-4_6 (cited
on pp. 4, 104, 147, 159, 165, 166, 168, 169, 174, 175).

[SS63] John C. Shepherdson and Howard E. Sturgis. “Computability of Recursive Func-
tions”. In: . ACM 10.2 (1963), pp. 217-255. po1: 10.1145/321160.321170 (cited
on p. 66).

[SS90] Jeanette P. Schmidt and Alan Siegel. “The Spatial Complexity of Oblivious k-Probe
Hash Functions”. In: SIAM J. Comput. 19.5 (1990), pp. 775-786. por: 10 . 1137/
0219054 (cited on p. 139).

[Ste96] Volker Stemann. “Parallel Balanced Allocations”. In: Proc. of the 8th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, (SPAA’96). ACM, 1996, pp. 261—
269. por: 10.1145/237502.237565 (cited on pp. 159, 164).

[SWo4] Peter Sanders and Sebastian Winkel. “Super Scalar Sample Sort”. In: Proc. of the 12th
Annual European Symposium on Algorithms (ESA’04). Springer, 2004, pp. 784-796.
por: 10.1007/978-3-540-30140-0_69 (cited on pp. 13, 67, 68, 70, 91-93).

[Tan93] Kok-Hooi Tan. “An asymptotic analysis of the number of comparisons in multipar-
tition quicksort”. PhD thesis. Carnegie Mellon University, 1993 (cited on p. 13).

[Tho13] Mikkel Thorup. “Simple Tabulation, Fast Expanders, Double Tabulation, and High
Independence”. In: Proc. 54th Annual Symposium on Foundations of Computer Sci-
ence (FOCS). ACM, 2013, pp. 90-99. por: 10.1109/F0CS.2013. 18 (cited on pp. 102,
135, 137, 139, 189).

[TZ04] Mikkel Thorup and Yin Zhang. “Tabulation based 4-universal hashing with applica-
tions to second moment estimation”. In: Proc. of the 15th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’04). SIAM, 2004, pp. 615-624. DoL: 10.1145/
982792.982884 (cited on p. 102).

[TZ12] Mikkel Thorup and Yin Zhang. “Tabulation-Based 5-Independent Hashing with Ap-
plications to Linear Probing and Second Moment Estimation”. In: SIAM J. Comput.
41.2 (2012), pp. 293-331. por: 10.1137/100800774 (cited on pp. 102, 108).

202

http://dx.doi.org/10.1137/S0097539701386216
http://dx.doi.org/10.1007/BF02579445
http://dx.doi.org/10.1007/BF02579445
http://dx.doi.org/10.1007/3-540-44411-4_6
http://dx.doi.org/10.1145/321160.321170
http://dx.doi.org/10.1137/0219054
http://dx.doi.org/10.1137/0219054
http://dx.doi.org/10.1145/237502.237565
http://dx.doi.org/10.1007/978-3-540-30140-0_69
http://dx.doi.org/10.1109/FOCS.2013.18
http://dx.doi.org/10.1145/982792.982884
http://dx.doi.org/10.1145/982792.982884
http://dx.doi.org/10.1137/100800774

Bibliography

[V6c03] Berthold Vocking. “How asymmetry helps load balancing”. In: J. ACM 50.4 (2003),
pp- 568—589. poOI: 10.1145/792538 . 792546 (cited on pp. 103, 104, 109, 159, 166,
174, 175).

[WC79] Mark N. Wegman and Larry Carter. “New Classes and Applications of Hash Func-
tions”. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS’79).
[EEE Computer Society, 1979, pp. 175-182. por: 10.1109/SFCS.1979. 26 (cited on
pp. 107, 108).

[WC81] Mark N. Wegman and Larry Carter. “New Hash Functions and Their Use in Au-
thentication and Set Equality”. In: J. Comput. Syst. Sci. 22.3 (1981), pp. 265-279. DOI:
10.1016/0022-0000(81)90033-7 (cited on p. 107).

[Wil+13] Sebastian Wild, Markus E. Nebel, Raphael Reitzig, and Ulrich Laube. “Engineering
Java 7’s Dual Pivot Quicksort Using MaLiJAn”. In: Proc. of the 15th Meeting on
Algorithms Engineering and Experiments (ALENEX’13). 2013, pp. 55-69. por: 10 .
1137/1.9781611972931 .5 (cited on pp. 1, 40).

[Wil13] Sebastian Wild. “Java 7’s Dual Pivot Quicksort”. MA thesis. University of Kaiser-
slautern, 2013, p. 171 (cited on p. 29).

[WN12] Sebastian Wild and Markus E. Nebel. “Average Case Analysis of Java 7’s Dual Pivot
Quicksort”. In: Proc. of the 20th European Symposium on Algorithms (ESA’12). 2012,
pp- 825-836. DOI: 10.1007/978-3-642-33090-2_71 (cited on pp. 1, 9-12, 28, 38,
46, 67, 70, 79, 206).

[WNM13] Sebastian Wild, Markus E. Nebel, and Hosam Mahmoud. “Analysis of Quickselect
under Yaroslavskiy’s Dual-Pivoting Algorithm”. In: CoRR abs/1306.3819 (2013) (cited
on p. 1).

[WNN13] Sebastian Wild, Markus E. Nebel, and Ralph Neininger. “Average case and distri-
butional analysis of Java 7’s dual pivot quicksort”. In: CoRR abs/1304.0988 (2013).
Accepted for publication in ACM Transactions on Algorithms (cited on pp. 1, 9, 69,
70, 94).

[Woe05] Philipp Woelfel. The Power of Two Random Choices with Simple Hash Functions.
Available at http://eiche.theoinf . tu-ilmenau.de/maumueller-diss/.
2005 (cited on p. 4).

[Woeo6a] Philipp Woelfel. “Asymmetric balanced allocation with simple hash functions”. In:
Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06).
ACM, 2006, pp. 424—433. por: 10.1145/1109557 . 1109605 (cited on pp. 3, 103-
105, 109, 166, 175).

[Woe06b] Philipp Woelfel. “Maintaining External Memory Efficient Hash Tables”. In: Proc. of
the 10th International Workshop on Randomization and Computation (RANDOM’06).
Springer, 2006, pp. 508—519. por1: 10.1007/11830924_46 (cited on p. 140).

203

http://dx.doi.org/10.1145/792538.792546
http://dx.doi.org/10.1109/SFCS.1979.26
http://dx.doi.org/10.1016/0022-0000(81)90033-7
http://dx.doi.org/10.1137/1.9781611972931.5
http://dx.doi.org/10.1137/1.9781611972931.5
http://dx.doi.org/10.1007/978-3-642-33090-2_71
http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/
http://dx.doi.org/10.1145/1109557.1109605
http://dx.doi.org/10.1007/11830924_46

Bibliography

[Woe99] Philipp Woelfel. “Efficient Strongly Universal and Optimally Universal Hashing”. In:
24th International Symposium on Mathematical Foundations of Computer Science
(MFCS’99). Springer, 1999, pp. 262-272. por: 10.1007/3-540-48340-3_24 (cited
on p. 107).

[Yar09] Vladimir Yaroslavskiy. Dual-pivot quicksort. 2009 (cited on pp. 1, 97).

[Zob70] Albert Lindsey Zobrist. A new hashing method with application for game playing.
Tech. rep. University of Wisconsin, 1970 (cited on p. 103).

[OPo03] Anna Ostlin and Rasmus Pagh. “Uniform hashing in constant time and linear space”.
In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC’03).
ACM, 2003, pp. 622-628. por: 10.1145/780542.780633 (cited on pp. 136, 137).

204

http://dx.doi.org/10.1007/3-540-48340-3_24
http://dx.doi.org/10.1145/780542.780633

A. Quicksort: Algorithms in Detail

A.1. Quicksort

The following algorithm is an implementation of classical quicksort, slightly modified from
[Sed78]. Note that there is a different, somewhat simpler, partitioning procedure which does
not use two indices that move towards each other. Pseudocode can be found in, e. g., [Bens8é, p.
110]. (Also read footnote 1 on that page.) This “simpler” algorithm is obtained from our Algo-
rithm 3 (“Exchange;”) by setting &’ <— 1 on Line 2 and simplifying unnecessary code for this
special case.

Algorithm 4 The quicksort algorithm

procedure Quicksort(A[1..n])
Requires: Sentinel A[0] = —oc;
1: if n < 1 then return;

2 p + Aln];

3 14-05j < n;

4 while true do

5: do i< i+ 1while A[{] < p end while
6: do j < j — 1 while A[j] > p end while
7: if j > i then

8: Exchange A[i] and A[j];

9: else

10: break;

: Exchange A[i] and A[n];
: Quicksort(A[l..i — 1]);
Quicksort{A[i + 1..n]);

== =
W N =

A.2. Dual-Pivot Quicksort

A.2.1. General Setup

The general outline of a dual-pivot quicksort algorithm is presented as Algorithm 5.

205

A. Quicksort: Algorithms in Detail

Algorithm 5 Dual-Pivot-Quicksort (outline)

procedure Dual-Pivot-Quicksort(A, left, right)
1 if right — left < THRESHOLD then
2 InsertionSort(A, left, right);

3 return ;

4

5

if A[right] > A[left] then
swap A[left] and A[right];

6 p <« Alleft];
7 q < Alright];
8 partition(A, p, q, left, right, pos,, posq);
9 Dual-Pivot-Quicksort(A, left, pos, - 1);
10 Dual-Pivot-Quicksort{ A, pos, + 1, pos, - 1);
11 Dual-Pivot-Quicksori(A, pos gt L right);

To get an actual algorithm we have to implement a partition function that partitions the input
as depicted in Figure 2.1. A partition procedure in this thesis has two output variables pos,, and
pos, that are used to return the positions of the two pivots in the partitioned array.

For moving elements around, we make use of the following two operations.

procedure rotate3(a, b,) procedure rotate4(a, b, ¢, d)
1 tmp < g 1 tmp < @
2 a<+ b 2 a< b
3 b+ ¢ 3 b+ ¢
4 <4 tmp; 4 c+ d
5 d< tmp;

A.2.2. Yaroslavskiy’s Partitioning Method

As mentioned in Section 4.1, Yaroslavskiy’s algorithm makes sure that for ¢ large elements in the
input it will compare £ or £ — 1 elements to the larger pivot first. How does it accomplish this?
By default, it compares to the smaller pivot first, but for each large elements that it sees, it will
compare the next element to the larger pivot first.

Algorithm 6 shows the partition step of (a slightly modified version of) Yaroslavskiy’s algo-
rithm. In contrast to the algorithm studied in [WN12], it saves an unnecessary index check
at Line 8, and uses a rotate3 operation to save assignments. (In our experiments this makes
Yaroslavskiy’s algorithm about 4% faster.)

206

A.2. Dual-Pivot Quicksort

Algorithm 6 Yaroslavskiy’s Partitioning Method

procedure Y-Partition(A, p, q, left, right, pos,, posq)
1 1< left+1;g < right — 1;k < 1;
2 whilek < gdo
3 if Alk] < p then

4 swap A[k] and A[1];

5 1+ 1+1;

6 else

7 if Alk] > ¢ then

8 while Alg] > ¢ do

9 g+—g—1

10 if k < g then

11 if Alg] < pthen

12 rotate3(Alg], Alk], A[1]);
13 1+ 1+41;

14 else

15 swap A[k] and Alg];
16 g+—g—1;

17 k+ k+1;

18 swap A[left] and A[1 — 1];

19 swap A[right] and Alg + 1];
20 pos, <1 —1;pos < g+ 1;

207

A. Quicksort: Algorithms in Detail

A.2.3. Algorithm Using “Always Compare to the Larger Pivot First”

Algorithm 7 presents an implementation of the strategy “Always compare to the larger pivot first.”
Like Yaroslavskiy’s algorithm, it uses three pointers into the array. One pointer is used to scan
the array from left to right until a large element has been found (moving small elements to a
correct position using the second pointer on the way). Subsequently, it scans the array from right
to left using the third pointer until a non-large element has been found. These two elements
are then placed into a correct position. This is repeated until the two pointers have crossed.
The design goal is to check as rarely as possible if these two pointers have met, since this event
occurs infrequently. (In contrast, Yaroslavskiy’s algorithm checks this for each element scanned
by index k in Algorithm 6.)
This strategy makes 2n Inn comparisons and 1.6n Inn assignments on average.

Algorithm 7 Always Compare To Larger Pivot First Partitioning
procedure Q-Partition(A, p, q, left, right, pos,, pos,)

1 i< left+ 1;k right—1; j < i;

2 while j <kdo

3 while g < A[k] do

4 k+—k—1;

5 while A[j] < gdo

6 if A[j] < pthen

7 swap A[i] and A[j];
8 i+ i—+1;

9 j+—i+1

10 if j < k then

11 if A[k] > p then

12 rotate3(Alk], Alj], A[i]);
13 i+ 1i+1;

14 else

15 swap A[j] and A[k];
16 k< k-1

17 jj+1

18 swap Alleft] and A[i — 1];

19 swap A[right] and A[k + 1];
20 pos, < i— 1;posq —k—+1;

A.2.4. Partitioning Methods Based on Sedgewick’s Algorithm

Algorithm 8 shows Sedgewick’s partitioning method as studied in [Sed75].

208

A.2. Dual-Pivot Quicksort

<p ip p<...<q i ? ? j p<...<q ji1 | 24

— — — —

Figure A.1.: An intermediate partitioning step in Sedgewick’s algorithm.

Sedgewick’s partitioning method uses two pointers i and j to scan through the input. It does
not swap entries in the strict sense, but rather has two “holes” at positions i resp. j; that can
be filled with small resp. large elements. “Moving a hole” is not a swap operation in the strict
sense (three elements are involved), but requires the same amount of work as a swap operation
(in which we have to save the content of a variable into a temporary variable [Sed75]). An
intermediate step in the partitioning algorithm is depicted in Figure A.1.

The algorithm works as follows: Using i it scans the input from left to right until it has found
a large element, always comparing to the larger pivot first. Small elements found in this way
are moved to a correct final position using the hole at array position i;. Subsequently, using j
it scans the input from right to left until it has found a small element, always comparing to the
smaller pivot first. Large elements found in this way are moved to a correct final position using
the hole at array position j;. Now it exchanges the two elements at positions i resp. j and
continues until i and j have met.

Algorithm 9 shows an implementation of the modified partitioning strategy from Section 4.1.
In the same way as Algorithm 8 it scans the input from left to right until it has found a large
element. However, it uses the smaller pivot for the first comparison in this part. Subsequently, it
scans the input from right to left until it has found a small element. Here, it uses the larger pivot
for the first comparison.

A.2.5. Algorithms for the Sampling Partitioning Method

The sampling method SP from Section 4.2 uses a mix of two classification algorithms: “Always
compare to the smaller pivot first”, and “Always compare to the larger pivot first”. The actual
partitioning method uses Algorithm 7 for the first sz = n/1024 classifications and then decides
which pivot should be used for the first comparison in the remaining input. (This is done by
comparing the two variables i and k in Algorithm 7.) If there are more large elements than small
elements in the sample it continues using Algorithm 7, otherwise it uses Algorithm 10 below.

A.2.6. Algorithm for the Counting Strategy

Algorithm 11 is an implementation of the counting strategy from Section 6.4. It uses a variable
d which stores the difference of the number of small elements and the number of large elements
which have been classified so far. On average this algorithm makes 1.8n In n+O(n) comparisons
and 1.6n Inn assignments.

209

A. Quicksort: Algorithms in Detail

Algorithm 8 Sedgewick’s Partitioning Method

procedure S-Partition(A, p, q, left, right, pos,, pos,)
1 14— 1y < left; j < j; := right;
2 while true do

3

[SSIENEN B NS TN

9
10
11
12
13

14
15
16
17
18
19

i—i41;
while A[i] < g do
if i > j then
break outer while
if A[i] < pthen
Aliq] « A[i]; i1 « 11+ L A[i] « A[i1];
i+ 1i+41;
j<i-L
while A[j] > pdo
if A[j] > g then
Al < A3l 31 ¢ 31— LA[] < Al34]s
if i > j then
break outer while
je<i-L
Ali] < A[3]; Al3,] « Aldl;
il(—i1—|—1;j1(—j1—1;
Ali] < Alii]; Al3] < A[34);

20 Alia] < pAlG] < g
21 pos, < il;posq <~ J1s

210

A.2. Dual-Pivot Quicksort

Algorithm 9 Sedgewick’s Partitioning Method, modified

procedure S2-Partition(A, p, q, left, right, pos,, posq)
1 141y < left; j < j; := right;
2 while true do

3

MR RIS BN NS BN

10
11

12
13
14
15
16
17
18
19
20
21
22
23

i—i41;
while true do
if i > j then
break outer while
if A[i] < pthen
A[il] — A[i]; i1 i1+ 1;A[i] — A[il];
else if A[i] > g then
break inner while
i+ i+1;
je=i—-L
while true do
if A[j] > qthen
Alj1] = Al3]s 31 < 31— LA[G] < Al5,;
else if A[j] < pthen
break inner while
if i > j then
break outer while
j+—3ji—1
Ali] < A[3]; Al3] « Alil;
i1 +Lj < 31— L
Ali] - AL1]; AlS] < Al

24 Al < pAlJi] < ¢
25 pos, < il;posq <~ Jis

211

A. Quicksort: Algorithms in Detail

Algorithm 10 Simple Partitioning Method (smaller pivot first)

procedure SimplePartitionSmall(A, p, q, left, right, pos,, pos,)
1 1< left+ 1;g < right — 1;k < 1;
2 whilek < g do
3 if Alk] < p then

4 swap A[k] and A[1];

5 1+ 1+1;

6 k+—k—+1;

7 else

8 if Alk] < ¢ then

9 k< k+1;

10 else

11 swap A[k| and A[g]
12 g+—g—1

13 swap Alleft] and A[1 — 1];
14 swap A[right] and Alg + 1];
15 pos, <=1 —1;pos, <= g+ 1;

A.3. A Fast Three-Pivot Algorithm

We give here the complete pseudocode for the three-pivot algorithm described in [Kus+14]. In
contrast to the pseudocode given in [Kus+14, Algorithm A.1.1], we removed two unnecessary
bound checks (Line 5 and Line 10 in our code) and we move misplaced elements in Lines 15-29
using less assignments. (This is used in the implementation of [Kus+14], as well.!) On average,
this algorithm makes 1.846n Inn + O(n) comparisons and 1.57n Inn + O(n) assignments.

'Personal communication with Alejandro Lépez-Ortiz.

212

A.3. A Fast Three-Pivot Algorithm

Algorithm 11 Counting Strategy C

procedure Counting-Partition(A, p, q, left, right, pos,, pos,)

1 i< left+ 1;k < right — 1; j < i;

2 d<+ 0

3 while j <kdo

4 if d > 0 then

5 if A[j] < pthen

6 swap A[i] and A[j];

7 i it ljej+lided+1;
8 else

9 if A[j] < qthen

10 je i+

11 else

12 swap A[j] and A[k];

13 k< k—-1;d+<d—-1;
14 else

15 while A[k] > g do

16 k< k—1;d+<d-—1;

17 if j <k then

18 if A[k] < pthen

19 rotate3(A[k], A[j], A[1]);
20 i+ i+ 1;d«d+1;
21 else

22 swap A[j] and A[k];

23 j—i+1;

24 swap Alleft] and A[i — 1];
25 swap Alright] and Ak + 1];
26 pos, < 1i—1;pos, k+1;

> d holds the difference of the number of small and large elements.

213

A. Quicksort: Algorithms in Detail

Algorithm 12 Symmetric Three-Pivot Algorithm ([Kus+14])

procedure 3-Pivot(A, left, right)
Require: right — left > 2, Alleft] < Alleft + 1] < A[right|
1 py < Alleft]; py < Alleft + 1]; pg < Alright];
2 1 left+2;j+
3 k< right—1;1<k
4 while j <kdo
5 while A[j] < p, do

6 if A[j] < p, then

7 swap A[i] and A[j];

8 i i+,

9 j— i+ 1

10 while A[k] > p, do

11 if A[k] > p; then

12 swap A[k| and A[1];

13 1+1-—1;

14 k< k—1;

15 if j < k then

16 if A[j] > ps then

17 if A[k] < p; then

18 rotate4(A[j], A[i], A[k], A[1]);
19 i+ i+41;

20 else

21 rotate3(A[j], Ak], A[1]);
22 1+1-—1;

23 else

24 if A[k] < p, then

25 rotate3(A[j], A[i], Ak]);
26 ii+1

27 else

28 swap A[j] and A[k];

29 j—j+Lk+k—-1;

30 rotate3(Alleft + 1], A[i — 1], A[j — 1]);
31 swap Alleft] and A[i — 2];
32 swap Alright| and A[1 — 1];

33 3-Pivot(A, left, i — 3);
34 3-Pivot(A, i — 1, j — 2);
35 3-Pivot(A, j, 1);

36 3-Pivot(A, 1 + 2, right);

214

B. Details of k-pivot Quicksort Experiments

This section contains detailed measurements obtained in the running time experiments for multi-
pivot quicksort.

B.1. Guesses On The Running Time Influence of Memory Accesses

With the results from Section 7 in connection with the penalties for cache misses from [Lev09]
and TBL misses from [HP12], we can calculate the average number of cycles used for accessing
memory (AVGCAM). Let L1-P, L2-P, and L3-P denote the penalty (in clock cycles) for a miss in
the L1, L2, and L3 cache, respectively. Let TLB-P be the penalty for a miss in the TLB. Let HT
be the hit time of the L1 cache. For a multi-pivot quicksort algorithm which makes on average
E(MA,,) memory accesses to sort an input of n elements, we may then calculate:

AVGCAM = HT - E (MA,,) + avg. #L1-Misses - L1-P + avg. #L.2-Misses - L2-P
+ avg. #L3-Misses - L3-P 4 avg. #TLB-Misses - TLB-P. (B.1)

For the Intel i7 used in the experiments, the characteristic numbers are:
e HT = 4 cycles [Lev09]
e L1-P = 7 cycles, L2-P = 14 cycles , L3-P = 120 cycles [Lev09]
e TBL-P = 10 cycles [HP12]. (We could not find exact numbers for the Intel i7.)

Using the detailed values from our experiments (see the tables on the following pages), Table B.1
shows the results with respect to this cost measure. Note that all values expect for the average
number of memory accesses are based on experimental measurements.

B.2. Detailed Figures From Experiments

The following pages contain exact measurements from the multi-pivot quicksort running time ex-
periments. Table B.2 contains figures for the cache misses of the considered algorithms. Table B.3
shows the TLB misses. Table B.4 consists of measurements with respect to branch mispredictions,
executed instructions, and required CPU clock cycles.

215

B. Details of k-pivot Quicksort Experiments

Algorithm AVGCAM
Permute;o7 4.58n1nn (15.9%
Permute)y; | 7.18n1nn (57.3%
Permute;5 4.54nInn (14.7%
Permute] 5 8.15n1nn (54.9%
Permutessg 4.31nInn (14.3%

Permutef 6.7nInn (48.2%
Permutes; 3.69n1Inn (13.3%
Permute}; 8.95nInn (61.9%
Permutes o 4.2nlnn (12.2%
Permutef,, | 7.07nlnn (43.1%
Permute; 6.47nInn (21.6%

Exchange; | 10.63nlnn (64.3%
Yy 8.26n Inn (53.8%
L 8.28n1nn (54.2%
Exchanges 7.16n1nn (47.1%
Exchanges 6.96nInn (42.1%
Exchanger 7.28n1nn (41.4%
Exchangeg 7.75nInn (42.8%
Copy’ar 9.91nlnn (91.9%
Copyhss 9.26n1nn (77.3%
Copysq1 8.74n1Inn (65.1%

)
)
)
)
)
)
)
)
)
)
)
Permute/, 10.98n Inn (64.5%)
)
)
)
)
)
)
)
)
)
)

Table B.1.: Average number of cycles used for accessing memory for the algorithms considered
in our experiments. The value in parentheses shows the ratio of the average number
of cycles needed for memory accesses and the average number of cycles needed for
sorting.

216

B.2. Detailed Figures From Experiments

Algorithm | avg. number of L1 misses | avg. number of L2 misses | avg. number of L3 misses
Permute; 7 0.0496n1nn (0.0%) 0.0165nInn (521.4%) 0.0128n1Inn (764.2%)
Permute’ 5, 0.0666n Inn (34.4%) 0.0175nInn (561.5%) 0.0143n1nn (861.8%)
Permute; 5 0.0728n1Inn (46.9%) 0.0033nlnn (22.8%) 0.0018n1Inn (21.6%)
Permute’ 0.0867nInn (74.8%) 0.0059n Inn (121.7%) 0.0022nInn (45.5%)
Permutegs 0.0578n1Inn (16.5%) 0.0152nInn (473.2%) 0.0113n1Inn (662.1%)
Permutely 0.0934nlnn (88.4%) 0.017nlnn (542.1%) 0.0126n1Inn (751.1%)
Permutes; 0.0594n1nn (19.9%) 0.0027nlnn (0.0%) 0.0015nInn (0.0%)
Permute, 0.0707TnInn (42.8%) 0.0216n1nn (714.7%) 0.0159nInn (969.4%)
Permutes 2 0.0874nInn (76.4%) 0.017n1Inn (540.8%) 0.0097n1nn (553.0%)
Permutey, 0.1691nInn (241.2%) 0.0206n 1Inn (676.1%) 0.0128n1Inn (760.6%)
Permute; 0.0969n1Inn (95.5%) 0.0039n1nn (45.7%) 0.0024n1nn (60.2%)
Permute’, 0.1153n1nn (132.5%) 0.0098n Inn (270.7%) 0.003n1nn (104.0%)
Exchange; 0.1472n1nn (197.0%) 0.02.8n1nn (869.9%) 0.0076n Inn (409.4%)
v 0.1166nInn (135.3%) 0.0124nInn (366.8%) 0.0041n1Inn (178.6%)

C 0.1166nInn (135.2%) | 0.0116n1nn (334.6%) | 0.0036n nn (144.6%)

SP 0.1166n1nn (135.2%) 0.0125n1Inn (372.9%) 0.0042n1nn (181.8%)

L 0.1166n Inn (135.2%) 0.0133n1nn (400.4%) 0.0042n1Inn (182.3%)
Exchanges 0.101nlnn (103.7%) 0.0093n Inn (250.4%) 0.0033n1nn (119.4%)
Exchanges | 0.0995nIn7n (100.6%) | 0.0073nInn (177.2%) | 0.0021nInn (44.5%)
Exchange; 0.1041n1nn (110.1%) 0.0075n1Inn (184.6%) 0.002n1nn (32.5%)
Exchangeg 0.1104n Inn (122.8%) 0.0083nInn (213.2%) 0.0021n1nn (39.9%)
Copy' o7 0.1183n1nn (138.6%) | 0.0507nlnn (1811.4%) | 0.0226nlnn (1424.5%)
Copyhes 0.1221nInn (146.4%) | 0.0443nInn (1572.0%) | 0.0236nInn (1490.2%)
Copyki1 0.1347nlnn (171.7%) | 0.0465nInn (1653.7%) | 0.0233nlnn (1469.7%)
ssortvl 0.0638n1nn (28.7%) 0.0179n1nn (574.2%) 0.0145n1nn (879.6%)
stdsort 0.1355nInn (173.4%) 0.0197nInn (644.3%) 0.0064nInn (331.7%)

Table B.2.: Measurements of L1, L2, and L3 cache misses of the algorithms considered in the
experiments for n = 227 items. All values are scaled by nInn and averaged over
500 trials. The value in parentheses shows the ratio of the specific cost and the lowest
value in the respective cost measure.

217

B. Details of k-pivot Quicksort Experiments

Algorithm avg. TLB misses
Permute;o7 | 0.0716n1nn (76.0%)
Permute),, | 0.1203n1nn (195.7%)
Permute;s | 0.0416nlnn (2.2%)
Permute); | 0.0498nInn (22.4%)
Permutessg | 0.0819nInn (101.4%)
Permute’.; | 0.1226n1nn (201.3%)
Permuteg; | 0.0462nInn (13.5%)
Permutes; | 0.0712nlnn (75.0%)
Permutes o | 0.0873nlnn (114.5%)
Permutef;, | 0.1401nlnn (244.4%)
Permute; 0.082n1nn (101.6%)
Permute’, 0.0421nInn (3.5%)
Exchange; | 0.0407nInn (0.0%)
Yy 0.0413nlnn (1.4%)
L 0.041nlnn (0.9%)
Exchanges 0.04Inlnn (0.9%)
Exchanges | 0.0412nInn (1.3%)
Exchange; | 0.0409n1nn (0.6%)
Exchangeg | 0.0412nlnn (1.2%)
Copylar 0.0412nlnn (1.2%)
Copyhss 0.0411nInn (1.1%)
Copyt1, 0.0411nInn (0.9%)

Table B.3.: Average number of load misses in the translation-lookaside buffer for n = 227 scaled
by n Inn. Numbers are averaged over 100 trials.

218

B.2. Detailed Figures From Experiments

Algorithm avg. branch mispred. count avg. instruction count avg. cycle count
Permute o7 0.1298nInn (5.7%) | 22.817nlnn (143.1%) | 28.7709n1nn (166.9%)
Permute/ o, 0.1569nInn (27.9%) | 11.2769nInn (20.1%) | 12.5178nlnn (16.1%)
Permute; 5 0.163nInn (32.8%) | 30.5548n1Inn (225.5%) | 30.7798nInn (185.5%)
Permute] 0.1665n1nn (35.7%) | 19.1643nlnn (104.2%) | 14.852nlnn (37.8%)
Permutessg 0.1383nlnn (12.7%) | 22.7312nlnn (142.2%) | 30.1065n1nn (179.2%)
Permute)sq 0.1285nInn (4.7%) | 12.2017nlnn (30.0%) | 13.9035n1nn (29.0%)
Permuteg; 0.1345nInn (9.6%) | 27.0696nInn (188.4%) | 27.646nlnn (156.4%)
Permute}, 0.133nInn (8.4%) | 16.2657nInn (73.3%) | 14.4689nlnn (34.2%)
Permuteso 0.1688n1nn (37.5%) | 25.5953nInn (172.7%) | 34.4346nInn (219.4%)
Permutef;, 0.1457nlnn (18.7%) | 12.4341nlnn (32.5%) | 16.3872nlnn (52.0%)
Permutegs 0.128nInn (4.3%) | 24.5402nlnn (161.4%) | 30.138nlnn (179.5%)
Permutey, 0.3516n1nn (186.5%) | 27.4562nlnn (192.5%) | 29.9299nlnn (177.6%)
Permute’, 0.3574nInn (191.2%) | 17.5678nInn (87.2%) | 17.0291nlnn (58.0%)
gsort1 0.5985n1nn (387.8%) | 11.1845nlnn (19.2%) | 17.4641nlnn (62.0%)
Exchange; 0.5695nInn (364.1%) | 10.6444nlnn (13.4%) | 16.5432n1nn (53.4%)
gsortlsentinels 0.6156n1nn (401.7%) | 11.1655nlnn (19.0%) | 17.7468nlnn (64.6%)
gsortisn 0.5698nInn (364.4%) | 10.1945nInn (8.6%) | 16.4503nlnn (52.6%)
Yy 0.5722nInn (366.4%) | 10.4313nlnn (11.1%) | 15.3437nlnn (42.3%)

C 0.5997nInn (388.7%) | 14.0916nInn (50.1%) | 17.4701nlnn (62.0%)
gsort2v3 0.5911n1nn (381.7%) | 11.4412nInn (21.9%) | 16.737nlnn (55.2%)
SP 0.5881nlInn (379.3%) | 10.0664nlnn (7.2%) | 16.0601nlnn (49.0%)

L 0.5685n1nn (363.3%) | 9.5129nInn (1.3%) | 15.2785nInn (41.7%)
Exchanges 0.5832n1lnn (375.3%) | 9.3864nlnn (0.0%) | 15.1875nlnn (40.9%)
Exchanges 0.6527n1nn (431.9%) | 10.5238nlnn (12.1%) | 16.5401nlnn (53.4%)
Exchange; 0.6631nlnn (440.4%) | 10.5193nlnn (12.1%) | 17.5827nlnn (63.1%)
Exchangeyg 0.6573nInn (435.7%) | 11.201nlnn (19.3%) | 18.0916nlnn (67.8%)
Copy’ a7 0.1528n1nn (24.5%) | 10.4937nlnn (11.8%) | 10.7813nlnn (0.0%)
Copyhss 0.1227nInn (0.0%) | 11.4709nInn (22.2%) | 11.9893nlnn (11.2%)
Copysi1 0.1891nlnn (54.1%) | 11.9471nlan (27.3%) | 13.4204nlnn (24.5%)
ssortvl 0.1635nInn (33.2%) | 10.8589nlnn (15.7%) | 13.084nlnn (21.4%)
stdsort 0.5883n1lnn (379.5%) | 10.2882nlnn (9.6%) | 16.6929n1nn (54.8%)

Table B.4.: Measurements for inputs containing n = 227 items of the average number of branch
mispredictions, the average number of executed instructions, and the average number
of CPU cycles required by the algorithms considered in the experiments. All values
are scaled by n Inn and averaged over 500 trials. The value in parentheses shows the
ratio to the minimum cost with respect to the cost measure over all algorithms.

219

List of Figures

2.1

3.1

4.1

4.2

6.1
6.2
6.3

7.1

Result of the partition step in dual-pivot quicksort schemes using two pivots p, ¢
with p < q. Elements left of p are smaller than or equal to p, elements right of ¢
are larger than or equal to ¢. The elements between p and q are at least as large
aspandatmostaslargeasq. L o

An example for a decision tree to classify three elements as, a3, and a4 according
to the pivots a; and as. Five out of the 27 leaves are explicitly drawn, showing
the classification of the elements and the costs ¢; of the specific paths.

Visualization of the decision process when inspecting an element using strategy
O (left) and C (right). Applying strategy O from left to right uses that of the
remaining elements three are small and one is large, so it decides that the element
should be compared with p first. Applying strategy C from right to left uses that
of the inspected elements two were small and only one was large, so it decides
to compare the element with p first, too. Note that the strategies would differ if,
e. g., the right-most element would be a medium element..

Average comparison count (scaled by n In n) needed to sort a random input of up
to n = 227 integers. We compare classical quicksort (QS), Yaroslavskiy’s algo-
rithm (), the optimal sampling algorithm (), the optimal counting algorithm
(C), the modified version of Sedgewick’s algorithm (S’), and the simple strategy
“always compare to the larger pivot first” (L). Each data point is the average over
400 trials.

Result of the partition step in k-pivot quicksort using pivots py, . .., pk.
A comparison tree for S pivots. Lo o

The different comparison trees for 3-pivot quicksort with their comparison cost
(dotted boxes, only displaying the numerator).

General memory layout of Algorithm 1 fork=2.

10

20

36

38

46
50

54

71

221

List of Figures

7.2 Top: Example for the cyclic rotations occurring in one round of Algorithm 1
starting from the example given in Figure 7.1. First, the algorithm finds an As-
element, which is then moved into the As-segment (1.), replacing an A;-element
which is moved into the A;-segment (2.). It replaces an Ag-element that is moved
to replace the next misplaced element in the As-segment, an Ay element (3.).

This element is then moved to the Ag-segment (4.), overwriting the misplaced
As-element, which ends the round. Bottom: Memory layout and offset indices
after moving the elements from the example. 71

7.3 General memory layout of Algorithm 3 for & = 6. Two pointers ¢ and j are
used to scan the array from left-to-right and right-to-left, respectively. Pointers
g1, - --,gk—1 are used to point to the start of segments. 72

7.4 The rotate operation in Line 8 of Algorithm 3. An element that belongs to
group A; is moved into its respective segment. Pointers ¢, g2, g3 are increased by
Tafterwards. 72

7.5 The rotate operation in Line 13 of Algorithm 3. An element that belongs to

group Ag is moved into its respective segment. Pointers j, g4, g5 are decreased

by 1 afterwards. 72
7.6 Example for the rotate operation in Line 17 of Algorithm 3. The element found

at position ¢ is moved into its specific segment. Subsequently, the element found

at position j is moved into its specific segment.o 72
7.7 The average number of assignments for sorting an input consisting of n elements

using Algorithm 1 (“Permute;,”) and Algorithm 3 (“Exchangey,”) for certain values

of k. Each data point is the average over 600 trials. 79
7.8 TLB misses for Algorithms 1-3. Each data point is averaged over 500 trials, TLB
load misses are scaled by nlnn.. oo oo 86

8.1 Running time experiments for dual-pivot quicksort algorithms. Each data point
is the average over 500 trials. Times are scaled by nlnmn. 89
8.2 The comparison trees used for the 5-,7-, and 9-pivot algorithms. 90

8.3 Running time experiments for k-pivot quicksort algorithms based on the “Exchangey,”
partitioning strategy. Each data point is the average over 500 trials. Times are
scaledbynlnn.o oL 90

8.4 Running time experiments for k-pivot quicksort algorithms based on the “Permutey,”
partitioning algorithm. Each data point is the average over 500 trials. Times are

scaledbynlnm. 92
8.5 Final Running time experiments for k-pivot quicksort algorithms based in C++.

Each data point is the average over 500 trials. Times are scaled by nlnn. 93
11.1 The minimal obstruction graphs for cuckoo hashing. 120

222

List of Figures

13.1

13.2
13.3

14.1

16.1

16.2

An example of a graph that contains an excess-3 core graph (bold edges). This
subgraph certifies that a stash of size at most 2 does not suffice to accommodate
the key set. This figure can also be found in [Aum10].
Example for the construction of a perfect hash function
Comparison of the probability of a random graph being acyclic and the theoreti-
cal bound following from a first moment approach for values ¢ € [0.08,4]. . . .

Structure of a witness tree 7; with root v after ¢ rounds if the 7-collision protocol
with d candidate machines has not yet terminated.

Level 1 cache misses for building a cuckoo hash table from inputs {1,...,n}
with a particular hash function. Each data point is the average over 10,000
trials. Cache Misses are scaledby n. L.
Level 2 cache misses for building a cuckoo hash table from inputs {1,...,n}
with a particular hash function. Each data point is the average over 10,000
trials. Cache Misses are scaledby n. L.

An intermediate partitioning step in Sedgewick’s algorithm.

223

List of Tables

5.1

6.1

7.1

7.2

7.3

7.4

7.5

8.1

Comparison of the leading term of the average cost of classical quicksort and
dual-pivot quicksort for specific sample sizes. Note that for real-life input sizes,
however, the linear term can make a big difference.

Optimal average comparison count for k-pivot quicksort for & € {2,...,9}. For
k > 4 these numbers are based on experiments). For odd k, we also include
the average comparison count of quicksort with the median-of-k strategy. (The
numbers for the median-of-k variant can be found in [Emd70] or [Hen91].) . . .

Average number of assignments for partitioning (E(PAS,,)) and average num-
ber of assignments for sorting (E(AS,,)) an array of length n disregarding lower
order terms using Algorithm 1, Algorithm 2, and Algorithm 3. We did not cal-
culate the average comparison count for Algorithm 3 for & € {15,31,63,127}.
For comparison, note that classical quicksort (“Exchange;”) makes n Inn assign-
ments involving array accesses on average.

Average number of memory accesses for partitioning (E(PMA,,)) and average
number of memory accesses for sorting an array (E(MA,,)) of length n disre-
garding lower order terms. Note that classical quicksort makes 2n In n memory
ACCESSES OM AVETAZE. .« © « v ¢ v v v e et et e e e e

Cache misses incured by Algorithm 1 (“Permy”) and Algorithm 3 (“Ex;”) in a
single partitioning step. All values are averaged over 600 trials.

Average number of L1 cache misses compared to the average number of memory
accesses. Measurements have been obtained for n = 227. Cache misses are
scaled by n In n. In parentheses, we show the ratio to the best algorithmic variant
of Algorithm 3 w.r.t. memory/cache behavior (£ = 5), calculated from the non-
truncated experimental data. Lo o L
Average number of TLB misses for random inputs with 227 items over 100 trials.
Load misses are scaled by n Inn. The number in parentheses shows the relative

difference to algorithm Exchange;.

Overview of the dual-pivot quicksort algorithms considered in the experiments.

41

61

78

81

83

84

85

88

225

List of Tables

226

8.2

14.1

16.1

16.2
16.3

16.4

B.1

B.2

B.3

B.4

Comparison of the actual running times of the algorithms on 500 different inputs
of size 227. A table cell in a row labeled “A” and a column labeled “B” contains
a string “z%/y%/2%"” and is read as follows: “In about 95%, 50%, and 5% of
the cases algorithm A was more than z, y, and 2z percent faster than algorithm
B, respectively” 91

Space utilization thresholds for generalized cuckoo hashing with d > 3 hash
functions and k + 1 keys per cell, for & > 1, based on the non-existence of the
(k + 1)-core. Each table cell gives the maximal space utilization achievable for
the specific pair (d, s + 1). These values have been obtained using Maple® to
evaluate the formula from Theorem 1 of [Mol05]. 176

Hash Families considered in our experiments. The “identifier” is used to refer to
the constructions in the charts and inthe text. 184
Maximum stash size s for structured inputs of n = 22° elements with m = 1.005n. 185
Different running times for the construction of a cuckoo hash table for m =
1.005n. Each entry is the average over 10,000 trials. The last row contains the
measurements for the structured input. Lo o L 186
Different running times for the construction of a cuckoo hash table for m =
1.05n. Each entry is the average over 10,000 trials. The last row contains the
measurements for the structured input type. L oL 186

Average number of cycles used for accessing memory for the algorithms consid-
ered in our experiments. The value in parentheses shows the ratio of the average
number of cycles needed for memory accesses and the average number of cycles
needed for sorting. 216
Measurements of L1, L2, and L3 cache misses of the algorithms considered in the
experiments for n = 227 items. All values are scaled by n Inn and averaged over
500 trials. The value in parentheses shows the ratio of the specific cost and the

lowest value in the respective cost measure. 217
Average number of load misses in the translation-lookaside buffer for n = 227
scaled by nInn. Numbers are averaged over 100 trials. 218

Measurements for inputs containing n = 227 items of the average number of
branch mispredictions, the average number of executed instructions, and the av-
erage number of CPU cycles required by the algorithms considered in the ex-
periments. All values are scaled by nlnn and averaged over 500 trials. The
value in parentheses shows the ratio to the minimum cost with respect to the
cost measure over all algorithms. o Lo Lo 219

List of Algorithms

Permute elements to produce a partition 73
Copy elements to produce a partition 74
Move elements by rotations to produce a partition 75
The quicksort algorithm L Lo 205
Dual-Pivot-Quicksort (outline) 206
Yaroslavskiy’s Partitioning Method oL 207
Always Compare To Larger Pivot First Partitioning 208
Sedgewick’s Partitioning Method Lo oL 210
Sedgewick’s Partitioning Method, modified 211
Simple Partitioning Method (smaller pivot first) 212
Counting Strategy C 213
Symmetric Three-Pivot Algorithm ([Kus+14]) 214

227

Erklarung

Ich versichere, dass ich die vorliegende Arbeit ohne unzuléssige Hilfe Dritter und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder
indirekt ibernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht
beteiligt. Insbesondere habe ich hierfiir nicht die entgeltliche Hilfe von Vermittlungs- bzw. Be-
ratungsdiensten (Promotionsberaterinnen oder anderen Personen) in Anspruch genommen. Nie-
mand hat von mir unmittelbar oder mittelbar geldwerte Leistungen fiir Arbeiten erhalten, die im
Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder dhnlicher Form einer
Prifungsbehorde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklarung als
Tauschungsversuch bewertet wird und geméafl §7 Absatz 10 der Promotionsordnung den Ab-
bruch des Promotionsverfahrens zur Folge hat.

Ilmenau, den 1. Dezember 2014

Martin Aumiiller

229

	1 Outline & Motivation
	I Multi-Pivot Quicksort
	2 Introduction
	3 Basic Approach to Analyzing Dual-Pivot Quicksort
	3.1 Basic Setup
	3.2 Analysis of a Partitioning Step
	3.2.1 Analysis of the Additional Cost Term

	3.3 Discussion

	4 Classification Strategies For Dual-Pivot Quicksort
	4.1 Analysis of Some Known Strategies
	4.2 (Asymptotically) Optimal Classification Strategies
	4.2.1 Two Unrealistic (Asymptotically) Optimal Strategies
	4.2.2 Two Realistic Asymptotically Optimal Strategies

	4.3 Discussion

	5 Choosing Pivots From a Sample
	5.1 Choosing the Two Tertiles in a Sample of Size 5 as Pivots
	5.2 Pivot Sampling in Classical Quicksort and Dual-Pivot Quicksort
	5.3 Optimal Segment Sizes for Dual-Pivot Quicksort

	6 Generalization to Multi-Pivot Quicksort
	6.1 General Setup
	6.2 The Average Comparison Count for Partitioning
	6.3 Example: 3-pivot Quicksort
	6.4 (Asymptotically) Optimal Classification Strategies
	6.4.1 Choosing an Optimal Comparison Tree
	6.4.2 The Optimal Classification Strategy and its Algorithmic Variant
	6.4.3 An Oblivious Strategy and its Algorithmic Variant

	6.5 Guesses About the Optimal Average Comparison Count of k-Pivot Quicksort
	6.6 Discussion

	7 The Cost of Rearranging Elements
	7.1 Why Look at Other Cost Measures Than Comparisons
	7.2 Problem Setting, Basic Algorithms and Related Work
	7.3 Algorithms
	7.3.1 Partitioning After Classification
	7.3.2 Partitioning During Classification

	7.4 Assignments
	7.5 Memory Accesses and Cache Misses

	8 Running Time Experiments
	8.1 Running Times of Dual-Pivot Quicksort Algorithms
	8.2 Running Times of k-Pivot Quicksort Algorithms based on ``Exchangek''
	8.3 Running Times of k-Pivot Quicksort Algorithms based on ``Permutek'' and ``Copyk''
	8.4 Do Theoretical Cost Measures Help Predicting Running Time?

	9 Conclusion and Open Questions

	II Hashing
	10 Introduction
	11 Basic Setup and Groundwork
	11.1 The Hash Class
	11.2 Graph Properties and the Hash Class
	11.3 Bounding the Failure Term of Hash Class Z
	11.4 Step by Step Example: Analyzing Static Cuckoo Hashing

	12 Randomness Properties of Z on Leafless Graphs
	12.1 A Counting Argument
	12.2 The Leafless Part of G(S,h1,h2)

	13 Applications on Graphs
	13.1 Cuckoo Hashing (with a Stash)
	13.2 Simulation of a Uniform Hash Function
	13.3 Construction of a (Minimal) Perfect Hash Function
	13.4 Connected Components of G(S, h1, h2) are small

	14 Applications on Hypergraphs
	14.1 Generalized Cuckoo Hashing
	14.2 Labeling-based Insertion Algorithms For Generalized Cuckoo Hashing
	14.3 Load Balancing

	15 A Generalized Version of the Hash Class
	15.1 The Generalized Hash Class
	15.2 Application of the Hash Class
	15.3 Discussion

	16 Experimental Evaluation
	16.1 Setup and Considered Hash Families
	16.2 Success Probability
	16.3 Running Times

	17 Conclusion and Open Questions
	Bibliography
	A Quicksort: Algorithms in Detail
	A.1 Quicksort
	A.2 Dual-Pivot Quicksort
	A.2.1 General Setup
	A.2.2 Yaroslavskiy's Partitioning Method
	A.2.3 Algorithm Using ``Always Compare to the Larger Pivot First''
	A.2.4 Partitioning Methods Based on Sedgewick's Algorithm
	A.2.5 Algorithms for the Sampling Partitioning Method
	A.2.6 Algorithm for the Counting Strategy

	A.3 A Fast Three-Pivot Algorithm

	B Details of k-pivot Quicksort Experiments
	B.1 Guesses On The Running Time Influence of Memory Accesses
	B.2 Detailed Figures From Experiments

	List of Figures
	List of Tables
	List of Algorithms
	Erklärung

