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Abstract

Randomization is a central technique in the design and analysis of algorithms and data struc-

tures. This thesis investigates the analysis of two fundamental families of randomized algo-

rithms in two di�erent branches of research.

The �rst part of this thesis considers the sorting problem, i. e., the problem of putting el-

ements of a sequence into a certain order. This is one of the most fundamental problems in

computer science. Despite having a large set of di�erent sorting algorithms to choose from,

the “quicksort” algorithm turned out to be implemented as the standard sorting algorithm in

practically all programming libraries. This divide-and-conquer algorithm has been studied for

decades, but the idea of using more than one pivot was considered to be impractical. This

changed in 2009, when a quicksort algorithm using two pivots due to Yaroslavskiy replaced

the well-engineered quicksort-based sorting algorithm in Oracle’s Java 7. The thesis presents

a detailed study of multi-pivot quicksort algorithms. It explains the underlying design choices

for dual-pivot quicksort algorithms with respect to the comparisons they make when sorting

the input. Moreover, it describes two easy to implement dual-pivot quicksort algorithms that

are comparison-optimal, i. e., make as few comparisons as possible on average. These algo-

rithms make about 1.8n lnn key comparisons on average when sorting an input of n distinct

elements in random order, improving on the 1.9n lnn key comparisons in Yaroslavskiy’s algo-

rithm. To analyze quicksort algorithms using more than two pivots, only slight modi�cations

to the dual-pivot case are necessary. This thesis also considers the theoretical analysis of the

memory and cache behavior of multi-pivot quicksort algorithms. It will be demonstrated that

using more than one pivot makes it possible to improve over the cache behavior of classical

quicksort. If no additional space is allowed, using three or �ve pivots provides the best choice

for a multi-pivot quicksort algorithm with respect to cache behavior. Otherwise, signi�cant

improvements are possible by using 127 pivots. A large-scale study on the empirical running

time of multi-pivot quicksort algorithms suggests that theoretical improvements translate into

practice.

The second part of this thesis considers the use of hash functions in algorithms and data

structures. Hash functions are applied in many di�erent situations, e. g., when building a hash

table or when distributing jobs among machines in load balancing. Traditionally, the anal-

ysis of a particular hashing-based algorithm or data structure assumes that a hash function

maps keys independently and uniformly at random to a range. Such functions are unrealis-

tic, since their space complexity is huge. Consequently, the task is to construct explicit hash

functions providing provable theoretical guarantees. The thesis describes such a construction.

It will provide su�cient randomness for running many di�erent applications, such as cuckoo
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hashing with a stash, the construction of a perfect hash function, the simulation of a uniform

hash function, load balancing, and generalized cuckoo hashing in a sparse setting with two

alternative insertion algorithms. The main contribution of this part of the thesis is a uni�ed

framework based on the �rst moment method. This framework makes it possible to analyze a

hashing-based algorithm or data structure only using random graph theory, without exploit-

ing details of the hash function. The hash functions are easy to implement and turn out to be

practical while providing strong randomness guarantees.
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Zusammenfassung

Die Nutzung von Zufall ist eine wichtige Technik in der Entwicklung und Analyse von Algo-

rithmen und Datenstrukturen. Diese Arbeit beschäftigt sich mit der Analyse von zwei grundle-

genden Familien randomisierter Algorithmen in zwei unterschiedlichen Forschungsbereichen.

Im ersten Teil der vorliegenden Arbeit wird das Sortierproblem betrachtet, also das Problem,

die Elemente einer Sequenz in eine bestimmte Ordnung zu bringen. Dieses Problem ist eines

der grundlegendsten Probleme der Informatik. In den letzten Jahrzehnten wurden eine Viel-

zahl unterschiedlicher Algorithmen zur Lösung des Sortierproblems vorgestellt. Quicksort, ein

auf dem Prinzip von Teile-und-Herrsche basierender Algorithmus, ist dabei der am häu�gs-

ten in Programmierbibliotheken genutzte Sortieralgorithmus. Die Idee mehr als ein Pivotele-

ment im Quicksort-Algorithmus zu nutzen, erschien über viele Jahre als unpraktikabel. Dies

änderte sich im Jahr 2009, in dem eine elegante Quicksort-Variante von V. Yaroslavskiy zum

Standard-Sortierverfahren in Oracles Java 7 wurde. Dieses Verfahren basiert auf der Idee, zwei

Pivotelemente zu nutzen. Die vorliegende Arbeit stellt eine detaillierte Studie von sogenann-

ten Multi-Pivot-Quicksort-Algorithmen dar, also Varianten des Quicksort-Algorithmus, die mit

mehr als einem Pivotelement arbeiten. Sie beschreibt dabei die Konstruktionsprinzipien von 2-

Pivot-Quicksort-Algorithmen in Bezug auf die Schlüsselvergleiche, die bei der Sortierung einer

Eingabe nötig sind. Ein Ergebnis dieser Untersuchung sind zwei leicht zu implementierende 2-

Pivot-Quicksort-Algorithmen, die optimal bezüglich der Anzahl an Schlüsselvergleichen sind:

Die Kosten stimmen mit einer in dieser Arbeit entwickelten unteren Schranke für die kleinst-

möglichen durchschnittlichen Kosten eines 2-Pivot-Quicksort-Algorithmus überein. Auf einer

Eingabe, die aus n paarweise verschiedenen Elementen in zufälliger Reihenfolge besteht, wer-

den diese Algorithmen durchschnittlich ungefähr 1.8n lnn Schlüssel miteinander vergleichen,

was einen großen Vorteil gegenüber den 1.9n lnn Schlüsselvergleichen im Algorithmus von

Yaroslavskiy darstellt. Die Verallgemeinerung der Resultate auf Quicksort-Varianten mit min-

destens drei Pivotelementen benötigt nur kleine Anpassungen des entwickelten Modells. Diese

Arbeit betrachtet außerdem die theoretische Analyse von Kostenmaßen, die es ermöglichen,

Multi-Pivot-Quicksort-Algorithmen hinsichtlich ihres Speicher- und Cacheverhaltens zu ver-

gleichen. Es zeigt sich dabei, dass Ansätze mit mehreren Pivotelementen große Vorteile im

Bezug auf diese Kostenmaße gegenüber Standard-Quicksort haben. Wenn es nicht erlaubt ist

zusätzlichen Speicher zu allokieren, dann haben Verfahren mit drei oder fünf Pivotelementen

das beste Cacheverhalten. Andernfalls können Algorithmen auf Basis vieler Pivotelemente, z. B.

127 Pivotelemente, zu deutlichen Verbesserungen hinsichtlich des Cacheverhaltens führen. Ei-

ne umfangreiche Studie der Laufzeit von Multi-Pivot-Quicksort-Algorithmen deutet darauf hin,

dass diese theoretischen Vorteile auch in der Praxis zu schnelleren Sortieralgorithmen führen.
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Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit dem Einsatz von Hashfunk-

tionen im Rahmen der Entwicklung von Algorithmen und Datenstrukturen. Hashfunktionen

bilden eine Kernkomponente vieler Anwendungen, z. B. beim Aufbau einer Hashtabelle oder

bei der Verteilung von Jobs auf Maschinen im Rahmen der Lastbalancierung. In der Litera-

tur wird dabei eine praktisch oft nicht zu begründende Annahme getätigt: Die Abbildung von

Elementen auf Hashwerte sei voll zufällig; Hashwerte seien also unabhängig und uniform im

Wertebereich der Hashfunktion verteilt. Die Speicherplatzkomplexität, die die Beschreibung

einer solchen Funktion benötigt, ist für den praktischen Einsatz für gewöhnlich unverhältnis-

mäßig hoch. Das Ziel ist es also, einfache Konstruktionen zu �nden, deren Zufallseigenschaften

ausreichen, um sie mit beweisbaren theoretischen Garantien praktisch einsetzen zu können.

Diese Arbeit beschreibt eine solche einfache Konstruktion von Hashfunktionen, die in einer

Vielzahl von Anwendungen beweisbar gut ist. Zu diesen Anwendungen zählen Cuckoo Ha-

shing mit einem sogenannten Stash, die Konstruktion einer perfekten Hashfunktion, die Si-

mulation einer uniformen Hashfunktion, verschiedene Algorithmen zur Lastbalancierung und

verallgemeinertes Cuckoo Hashing in einer leicht abgeschwächten Variante mit verschiedenen

Einfügealgorithmen. Der zentrale Beitrag dieser Dissertation ist ein einheitliches Analysekon-

zept. Dieses ermöglicht es, eine auf Hashfunktionen basierende Datenstruktur oder einen auf

Hashfunktionen basierenden Algorithmus nur mit Mitteln der Theorie von Zufallsgraphen zu

analysieren, ohne Details der Hashfunktion o�enzulegen. Die Analysetechnik ist dabei die so-

genannte First-Moment-Methode, eine Standardanalysemethode innerhalb der randomisierten

Algorithmen. Die Hashfunktionen zeigen gutes Cacheverhalten und sind praktisch einsetzbar.
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1. Outline & Motivation

Randomness is an ubiquitous tool in computer science. In the design and the analysis of algo-

rithms and data structures, randomness is usually applied in two di�erent ways. On the one

hand, in Average Case Analysis we assume that the input is random and we make statements

about the expected, i. e., average, behavior of a deterministic algorithm over all such inputs. On

the other hand, randomness can be used to “cancel out” worst-case inputs. Then we consider

the expected behavior of a randomized algorithm on an arbitrary, �xed input. This thesis uses

both of these techniques and applies them to two di�erent fundamental topics of computer

science: sorting and hashing.

In the �rst part of this thesis, we consider the average case analysis of new variants of the

well-known quicksort algorithm. The purpose of this algorithm is to sort a given input, i. e., to

put the elements of a possibly unordered sequence into a particular order. Over the last decades,

a great number of di�erent sorting algorithms were developed. A standard textbook on algo-

rithms and data structures like “Introduction to Algorithms” by Cormen, Leiserson, Rivest, and

Stein [Cor+09] lists twelve di�erent sorting algorithms in the index; most of them are covered

extensively. Despite this variety of sorting algorithms, the quicksort algorithm (with its vari-

ants), as introduced by Hoare in [Hoa62], turned out to be used dominantly throughout almost

all standard libraries of popular programming languages.

Following the divide-and-conquer paradigm, on an input consisting of n elements quicksort

uses a pivot element to partition its input elements into two parts: the elements in one part

being smaller than or equal to the pivot and the elements in the other part being larger than or

equal to the pivot; then it uses recursion to sort these parts. This approach—with slight variants

such as detecting worst-case inputs or choosing the pivot from a small sample of elements—

found its way into practically all algorithm libraries.

This thesis considers variants of quicksort using more than one pivot element. Such variants

were deemed to be impractical since Sedgewick’s PhD thesis in 1975 [Sed75]. The approach of

using more than one pivot was pioneered in the dual-pivot quicksort algorithm of Yaroslavskiy

[Yar09] in 2009, which replaced the well-engineered quicksort algorithm in Oracle’s Java 7
shortly after its discovery. This algorithm initiated much research which is documented, e. g.,

in the papers [WN12; Wil+13; NW14; WNN13; WNM13; Kus+14; MNW15; AD13].

The goal of this thesis is to answer the following general question:

How good is multi-pivot quicksort?

We will identify several advantages of multi-pivot quicksort algorithms over classical quicksort.

At the beginning we consider the classical cost measure of counting the average number of key

1



1. Outline & Motivation

comparisons between input keys made by a speci�c sorting algorithm. We will detail the design

choices for developing a dual-pivot quicksort, i. e., an algorithm that uses two pivots p and q
with p < q. This approach will make it possible to analyze the average comparison count of an

arbitrary dual-pivot quicksort algorithm. It will turn out that a very simple property of a dual-

pivot quicksort algorithm, the average number of times it compares an element to the smaller

pivot p �rst, will describe its average comparison count up to lower order terms. This means

that we do not have to care about things like the way pointers move through the input array to

analyze the average comparison count of a dual-pivot quicksort algorithm. Next, we will show

that there exist natural comparison-optimal dual-pivot quicksort algorithms, i. e., algorithms

which achieve the minimum possible average comparison count. To do this, we will develop

a lower bound for the average comparison count of dual-pivot quicksort. We will extend our

theory to k-pivot quicksort, for k ≥ 3. This will allow us to compare multi-pivot quicksort

with other standard variants such as classical quicksort using the median in a sample of size

2k′+1, k′ ≥ 0, as pivot. (We will refer to this algorithm as “median-of-k′”). It will turn out that

the improvements in the average comparison count when using comparison-optimal k-pivot

quicksort algorithms can be achieved in much simpler ways, e. g., by using the median-of-k
strategy. The algorithmic subproblems which have to be solved by optimal k-pivot quicksort

algorithms will let us conclude that no practical improvements are to be expected from using

such variants with more than two pivots.

However, there could be other advantages of multi-pivot quicksort apart from a lower av-

erage comparison count. In [Kus+14], Kushagra, López-Ortiz, Qiao, and Munro described a

beautiful 3-pivot quicksort algorithm that was faster than Yaroslavskiy’s algorithm in their

experiments. Their algorithm makes much more comparisons on average than a comparison-

optimal 3-pivot quicksort algorithm would make, but has a much simpler implementation. The

authors of [Kus+14] conjectured that the improvements of multi-pivot quicksort are due to bet-

ter cache behavior. (They provided experimental results to back this thesis in [LO14].) We will

provide a theoretical study of partitioning algorithms, i. e., algorithms that solve the problem

of partitioning the input with respect to the pivots. One of these algorithms will generalize

the partitioning algorithm for classical quicksort. We will see that using more than one pivot

makes it possible to decrease the average number of memory accesses to the input, which di-

rectly translates into better cache behavior. Another partitioning algorithm uses a two-pass

approach and minimizes both the average number of element rearrangements and the average

number of memory accesses to the input when used with many, e. g., 127 pivots. At the end,

we will report on results of a large-scale study on the empirical running time of multi-pivot

quicksort algorithms. When no additional space is allowed, variants using two or three pivots

provide the best running time. If additional space can be allocated, signi�cant improvements

are possible by using 127 pivots.

The second part of this thesis considers the use of hash functions in algorithms and data

structures. For a �nite set U (“the universe”) and a �nite set R (“the range”), a hash function is

a function mapping elements from U to R. Hash functions are used in many application: dis-

2



1. Outline & Motivation

tributing keys to table cells in hash tables, distributing jobs among machines in load balancing,

and gathering statistics in data streams, to name just a few.

In the analysis of a hashing-based algorithm or data structure, the hash function is tradi-

tionally assumed to be “ideal”, i. e., the mapping is fully random, it consumes no space, and its

evaluation takes unit time. Such functions do not exist. In fact, the representation of a fully

random hash functions takes |U | log |R| bits, which is ine�cient since in hashing the universe

U is assumed to be huge. Consequently, a large body of work has considered explicit, e�cient

hash functions, which are not fully random, but just good enough to allow running a speci�c

application. The goal of the second part of this thesis is to detail exactly such a construction

and show its use in di�erent applications.

Traditionally, explicit hash function constructions build upon the work of Carter and Weg-

man [CW79]. They proposed a technique called universal hashing, in which the idea is to pick

a hash function randomly from a setH ⊆ {h | h : U → R}. (We call such a setH a hash fam-
ily or hash class.) They coined the notions of “universality” and “independence” of such sets

H (to be de�ned rigorously in the respective part of this thesis). Both results mean the hash

function behaves close to a fully random hash function with respect to the collision probability

of two distinct elements or with respect to full randomness on small key sets of the universe.

These two concepts were (and still are) central in the analysis of hashing-based algorithms. As

examples, we mention the groundbreaking results of Alon, Matias, and Szegedy, who showed

in [AMS99] that 4-wise independence su�ces for frequency estimation, and Pagh, Pagh, and

Ruciz [PPR09], who proved, only in 2009, that 5-wise independence su�ces for running linear

probing, the most often used hash table implementation. Finding a proof that a certain degree

of independence allows running a speci�c application has the advantage that one can choose

freely from the pool of available hash families that achieve the necessary degree of indepen-

dence. If a faster hash family becomes known in future research, one can just switch to use

this hash class.

In a di�erent line of research, explicit properties of a hash class beyond its “universality”

and “independence” were exploited to show that speci�c hash functions su�ce to run a cer-

tain application with provable guarantees. Here, examples are the papers of Dietzfelbinger and

Meyer auf der Heide [DM90] (dynamic hashing), Karp, Luby, and Meyer auf der Heide [KLM96]

(PRAM simulations), Dietzfelbinger and Woelfel [DW03] (cuckoo hashing, uniform hashing,

shared memory simulations) and Woelfel [Woe06a] (load balancing). In 2010, Pǎtraşcu and

Thorup showed in [PT11] that a class of very simple tabulation hash functions allows run-

ning many important applications such as linear probing, static cuckoo hashing, frequency

estimation and ε-minwise independent hashing. The same authors described in [PT13] a more

involved tabulation class allowing for Cherno�-type bounds which guarantees robust execu-

tion times for a sequence of operations in linear probing and chained hashing. Currently, there

is a lot of ongoing research devoted to the demonstration that explicit hash function construc-

tions allow running certain applications. For tabulation-based hashing this is demonstrated by

the recent papers of Dahlgaard and Thorup [DT14] and Dahlgaard, Knudsen, Rotenberg and

Thorup [Dah+14]. A di�erent hash class was presented by Celis, Reingold, Segev, and Wieder
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1. Outline & Motivation

in [Cel+13]. They proved that their construction has strong randomness properties in the clas-

sical situation of throwing n balls into n bins. In [RRW14], Reingold, Rothblum, and Wieder

showed that this hash class allows running a modi�ed version of cuckoo hashing (with a stash)

and load balancing using two hash functions.

This thesis considers a generalization of the hash class described by Dietzfelbinger and

Woelfel in [DW03]. We will prove that the hash class provides su�cient randomness prop-

erties to run many di�erent applications, such as cuckoo hashing with a stash as introduced

by Kirsch, Mitzenmacher, and Wieder [KMW09], the construction of a perfect hash function as

described by Botelho, Pagh, and Ziviani [BPZ13], the simulation of a uniform hash function due

to Pagh and Pagh [PP08], generalized cuckoo hashing as described by Fotakis, Pagh, Sanders,

and Spirakis [Fot+05] in a sparse setting with two recent insertion algorithms introduced by

Khosla [Kho13] and Eppstein, Goodrich, Mitzenmacher, and Pszona [Epp+14], and many dif-

ferent algorithms for load balancing as studied by Schickinger and Steger in [SS00]. The main

contribution is a uni�ed framework based on the �rst moment method. This framework allows

us to analyze a hashing-based algorithm or data structure without exploiting details of the hash

function. While our construction is more involved as the simple tabulation scheme of Pǎtraşcu

and Thorup from [PT11], we show in experiments it is indeed practical.

How to Read This Thesis. This thesis consists of two independent parts. These two parts

can be read independently of each other. Each part will contain its own introduction and con-

clusion with pointers to future work. Part 1 will explain the work on multi-pivot quicksort.

There, Sections 3–5 (dual-pivot quicksort), Section 6 (multi-pivot quicksort), and Section 7 (ad-

ditional cost measures for multi-pivot quicksort) do not dependent on each other. Part 2 will

describe the explicit construction of a class of simple hash functions and its analysis. Sec-

tion 11 presents the basic framework and is mandatory to understand the subsequent sections.

Section 12 and Section 13 can be read independently of Section 14.

Publications. The �rst part of this thesis draws some content from the following published

or submitted material:

• “Optimal Partitioning For Dual Pivot Quicksort”, Martin A., Martin Dietzfelbinger, ap-

peared in ICALP ’13 [AD13]. Full version of this paper submitted to ACM Transactions on
Algorithms.

The second part of this thesis builds upon a manuscript of Woelfel [Woe05]. Furthermore, it

includes some parts of the following published material:

• “Simple Hash Functions Su�ce for Cuckoo Hashing with a Stash”, Martin A., Martin Dietz-

felbinger, Philipp Woelfel, in ESA ’12 [ADW12]. Full version [ADW14] to appear in Al-
gorithmica 70 (2014) as part of an issue on selected papers from ESA ’12.
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1. Outline & Motivation

Notation. We �x some notation that we are going to use throughout this thesis. For m ∈
N, we let [m] := {0, . . . ,m − 1}. We assume the reader is familiar with basics of discrete

probability theory. A good treatment of the topic with respect to this thesis are the books

[MR95; MU05]. In this work, probabilities are denoted by Pr, expectations are denoted by

E. When considering di�erent probability spaces, we add the probability space as a subscript

to Pr or E. Random variables will always be referred to by an uppercase character. Events

considered in this work often depend on an integer n. If an event En occurs with probability

at least 1 − O(1/nα), for some constant α > 0, we say that En occurs with high probability,

often abbreviated by “w.h.p.”.

Experimental Setup. All experiments were carried out on an Intel i7-2600 (4 physical cores,

3.4 GHz, 32 KB L1 instruction cache, 32 KB L1 data cache, 256 KB L2 cache and 8 MB L3 cache)

with 16 GB RAM running Ubuntu 13.10 with kernel version 3.11.0. The C++ source code and the

measurements from experiments can be accessed via the web page that accompanies this thesis.

It is available at http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/.
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2. Introduction

Quicksort [Hoa62] is a thoroughly analyzed classical sorting algorithm, described in standard

textbooks such as [Cor+09; Knu73; SF96] and with implementations in practically all algorithm

libraries. Following the divide-and-conquer paradigm, on an input consisting of n elements

quicksort uses a pivot element to partition its input elements into two parts, the elements in

one part being smaller than or equal to the pivot, the elements in the other part being larger

than or equal to the pivot, and then uses recursion to sort these parts. It is well known that if

the input consists of n elements with distinct keys in random order and the pivot is picked by

just choosing an element, then on average quicksort uses 2n lnn+O(n) comparisons between

elements from the input. (Pseudocode of a standard implementation of quicksort can be found

in Appendix A.)

In 2009, Yaroslavskiy announced
1

that he had found an improved quicksort implementation,

the claim being backed by experiments. After extensive empirical studies, in 2009 Yaroslavskiy’s

algorithm became the new standard quicksort algorithm in Oracle’s Java 7 runtime library. This

algorithm employs two pivots to split the elements. If two pivots p and q with p ≤ q are used,

the partitioning step partitions the remaining n−2 elements into three parts: elements smaller

than or equal to p, elements between p and q, and elements larger than or equal to q, see Fig. 2.1.

(In accordance with tradition, we assume in this theoretical study that all elements have dif-

ferent keys. Of course, in implementations equal keys are an important issue that requires a

lot of care [Sed77].) Recursion is then applied to the three parts. As remarked in [WN12],

it came as a surprise that two pivots should help, since in his thesis [Sed75] Sedgewick had

proposed and analyzed a dual-pivot approach inferior to classical quicksort. Later, Hennequin

in his thesis [Hen91] studied the general approach of using k ≥ 1 pivot elements. Accord-

ing to [WN12], he found only slight improvements which would not compensate for the more

involved partitioning procedure.

In [WN12] (full version [WNN13]), Nebel and Wild formulated and thoroughly analyzed a

simpli�ed version of Yaroslavskiy’s algorithm. They showed that it makes 1.9n lnn + O(n)
key comparisons on average, in contrast to the 2n lnn + O(n) of standard quicksort and the

32
15n lnn + O(n) of Sedgewick’s dual-pivot algorithm. On the other hand, Yaroslavskiy’s al-

gorithm requires 0.6n lnn + O(n) swap operations on average, which is much higher than

the 0.33n lnn+O(n) swap operations in classical quicksort. As an important future research

direction, they proposed to explain how Yaroslavskiy’s algorithm can compensate for the large

1

An archived version of the relevant discussion in a Java newsgroup can be found at

http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628. Also

see [WN12].
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2. Introduction

Figure 2.1.: Result of the partition step in dual-pivot quicksort schemes using two pivots p, q
with p ≤ q. Elements left of p are smaller than or equal to p, elements right of q
are larger than or equal to q. The elements between p and q are at least as large as

p and at most as large as q.

number of extra swaps it makes.

In the discussion referenced in Footnote 1, Jon Bentley, one of the authors of the seminal pa-

per [BM93] describing engineering steps for a sorting algorithm used in programming libraries,

is quoted as saying:

It would be horrible to put the new code [Yaroslavskiy’s algorithm] into the library,
and then have someone else come along and speed it up by another 20% by using
standard techniques.

This thesis considers what is possible when using more than one pivot and whether or not

improvements beyond Yaroslavskiy’s algorithm are to be expected from multi-pivot quicksort

algorithms.

In the �rst part of our study on multi-pivot quicksort algorithms, we will detail the design

choices we have for developing a dual-pivot quicksort algorithm that, on average, makes as

few key comparisons as possible. Let us take some time to understand the general idea.

The �rst observation is that everything depends on the cost, i. e., the comparison count,

of the partitioning step. This is not new at all. Actually, in Hennequin’s thesis [Hen91] the

connection between partitioning cost and overall cost for quicksort variants with more than

one pivot is analyzed in detail. The result relevant for us is that if two pivots are used and the

(average) partitioning cost for n elements is a · n + O(1), for a constant a, then the average

cost for sorting n elements is

6

5
a · n lnn+O(n). (2.1)

Throughout this part of the thesis all that interests us is the constant factor with the leading

term. (The reader should be warned that for real-life n the linear term, which may even be

negative, can have a big in�uence on the average number of comparisons. We shall see that

this is indeed the case in the empirical veri�cation.)

The second observation is that the partitioning cost depends on certain details of the parti-

tioning procedure. This is in contrast to standard quicksort with one pivot where partitioning

always takes n−1 comparisons. In [WN12] it is shown that Yaroslavskiy’s partitioning proce-

dure uses
19
12n+O(1) comparisons on average, while Sedgewick’s uses

16
9 n+O(1) many. The

analysis of these two algorithms is based on the study of how certain pointers move through

the array, at which positions elements are compared to the pivots, which of the two pivots is

used for the �rst comparison, and how swap operations exchange two elements in the array.
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2. Introduction

For understanding what is going on, however, it is helpful to forget about concrete implemen-

tations with loops in which pointers sweep across arrays and entries are swapped, and look at

partitioning with two pivots in a more abstract way. For simplicity, we shall always assume the

input to be a permutation of {1, . . . , n}. Now pivots p and q with p < q are chosen. The task

is to classify the remaining n − 2 elements into classes “small” (s = p − 1 many), “medium”

(m = q − p− 1 many), and “large” (` = n− p many), by comparing these elements one after

the other with the smaller pivot or the larger pivot, or both of them if necessary. Note that for

symmetry reasons it is inessential in which order the elements are treated. The only choice the

algorithm can make is whether to compare the current element with the smaller pivot or the

larger pivot �rst. Let the random variable S2 denote the number of small elements compared

with the larger pivot �rst, and let L2 denote the number of large elements compared with the

smaller pivot �rst. Then, the total number of comparisons is n− 2 +m+ S2 + L2.

Averaging over all inputs and all possible choices of the pivots the term n− 2 +m will lead

to
4
3n+O(1) key comparisons on average, independently of the algorithm. Let W = S2 +L2

be the number of elements compared with the “wrong” pivot �rst. Then E(W ) is the only

quantity in�uenced by a particular partitioning procedure.

In this thesis, we will �rst devise an easy method to calculate E(W ). The result of this

analysis will lead to an (asymptotically) optimal strategy. The basic approach is the following.

Assume a partitioning procedure is given, and assume p, q and hence s = p− 1 and ` = n− q
are �xed, and let ws,` = E(W | s, `). Denote the average number of elements compared to the

smaller and larger pivot �rst by f
p

s,` and f
q

s,`, respectively. If the elements to be classi�ed were

chosen to be small, medium, and large independently with probabilities s/(n− 2), m/(n− 2),

and `/(n−2), resp., then the average number of small elements compared with the large pivot

�rst would be f
q

s,` · s/(n− 2), similarly for the large elements. Of course, the actual input is a

sequence with exactly s,m, and ` small, medium, and large elements, respectively, and there is

no independence. Still, we will show that the randomness in the order is su�cient to guarantee

that

ws,` = f
q

s,` · s/n+ f
p

s,` · `/n+ o(n). (2.2)

The details of the partitioning procedure will determine f
p

s,` and f
q

s,`, and hencews,` up to o(n).

This seemingly simple insight has two consequences, one for the analysis and one for the

design of dual-pivot algorithms:

(i) In order to analyze the average comparison count of a dual-pivot algorithm (given by

its partitioning procedure) up to lower order terms, determine f
p

s,` and f
q

s,` for this par-

titioning procedure. This will give ws,` up to lower order terms, which must then be

averaged over all s, ` to �nd the average number of comparisons in partitioning. Then

apply (2.1).

(ii) In order to design a good partitioning procedure w.r.t. the average comparison count, try

to make f
q

s,` · s/n+ f
p

s,` · `/n small.
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We shall demonstrate both approaches in Section 4. An example: As explained in [WN12], if s
and ` are �xed, in Yaroslavskiy’s algorithm we have f

q

s,` ≈ ` and f
p

s,` ≈ s+m. By (2.2) we get

ws,` = (`s + (s + m)`)/n + o(n). This must be averaged over all possible values of s and `.
The result is

1
4n+ o(n), which together with

4
3n+O(1) gives

19
12n+ o(n), close to the result

from [WN12].

Principle (ii) will be used to identify an (asymptotically) optimal partitioning procedure that

makes 1.8n lnn + o(n lnn) key comparisons on average. In brief, such a strategy should

achieve the following: If s > `, compare (almost) all entries with the smaller pivot �rst (f
p

s,` ≈ n
and f

q

s,` ≈ 0), otherwise compare (almost) all entries with the larger pivot �rst (f
p

s,` ≈ 0 and

f
q

s,` ≈ n). Of course, some details have to be worked out: How can the algorithm decide

which case applies? In which technical sense is this strategy optimal? These questions will be

answered in Section 4.2.

Following our study on dual-pivot quicksort, we will consider the case of using k pivots

p1, . . . , pk in a quicksort algorithm, for k ≥ 1. We shall see that the model for dual-pivot

quicksort algorithms extends nicely to this general situation. First, instead of having “small”,

“medium”, and “large” elements, there are k + 1 di�erent groups A0, . . . ,Ak. An element x
belongs to group Ai, 0 ≤ i ≤ k, if pi < x < pi+1. (For ease of discussion, we set p0 = 0
and pk+1 = n + 1.) The classi�cation of a single element becomes more involved when at

least three pivots are used. Naturally, it is done by comparing the element against the pivots

in some order. This order is best visualized using a comparison tree, which is a binary tree

with k + 1 leaves labeled A0, . . . ,Ak from left to right and k inner nodes labeled p1, . . . , pk
according to inorder traversal. The classi�cation of an element can then be read o� from the

leaf that is reached in the obvious way. The design choice of a multi-pivot quicksort algorithm

for classifying an element is then to pick a certain pivot order, i. e., a certain comparison tree.

To �nd out how many key comparisons a multi-pivot quicksort algorithm makes on average

it su�ces to multiply the average number of times a certain comparison tree is used with a

certain cost term which describes how many comparisons a comparison tree will require on

average for a �xed pivot choice, summed up over all comparison trees and pivot choices.

In implementations of quicksort, the pivot is usually chosen as the median from a small

sample of 2k + 1 elements with k ≥ 0. To speed up the selection of the pivot, other strategies

such as the “quasi-median-of-nine”, i. e., the median of three medians of samples of size 3, have

been suggested [BM93]. Intuitively, this yields more balanced (and thus fewer) subproblems.

This idea already appeared in Hoare’s original publication [Hoa62] without an analysis, which

was later supplied by van Emden [Emd70]. The complete analysis of this variant was given by

Martínez and Roura in [MR01] in 2001. They showed that the optimal sample size is Θ (
√
n).

For this sample size the average comparison count of quicksort matches the lower-order bound

of n log n+O(n) comparisons. In practice, one usually uses a sample of size 3. Theoretically,

this decreases the average comparison count from 2n lnn+O(n) to 1.714n lnn+O(n). We will

see that choosing the median of a sample of k elements yields about the same improvement to

the average comparison count as using k pivots in a comparison-optimal multi-pivot quicksort
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algorithm.

It seems hard to believe that key comparisons are the single dominating factor to the running

time of a sorting algorithm. This is especially true when key comparisons are cheap, e. g.,

for comparing 32-bit integers. Two important performance bottlenecks in modern computers

are branch mispredictions and cache behavior [HP12]. In very recent work, Martínez, Nebel,

and Wild [MNW15] analyzed branch mispredictions in classical quicksort and Yaroslavksiy’s

algorithm. According to their paper, the running time di�erences observed in practice cannot

be explained by this cost measure.

Consequently, we have to consider the cost of rearranging the input elements using parti-

tioning algorithms for multi-pivot quicksort in Section 7. This section draws some ideas from

the fast three-pivot quicksort algorithm of Kushagra et al. [Kus+14]. The classi�cation strategy

of their algorithm is very simple. It compares a new element with the middle pivot �rst, and

then with one of the two others. While the general idea of this algorithm had been known

(see, e.g., [Hen91; Tan93]), they provided a smart way of moving elements around to produce

the partition. Building upon the work of Ladner and LaMarca [LL99], they demonstrated that

their algorithm is very cache e�cient. Hence, they conjectured that the observed running time

behavior is largely due to cache-e�ciency, and not primarily in�uenced by comparisons or

swaps. We will extend their study to partitioning algorithms for multi-pivot quicksort.

In which sense can the cache-e�ciency of classical quicksort be improved? It is often as-

sumed that the standard partitioning procedure of quicksort, in which two pointers move to-

wards each other and exchange misplaced elements along the way, see Algorithm A.1 in Ap-

pendix A, is “optimal” with respect to cache-e�ciency. There are only two places in the array

which are needed in memory at any given point in time and it is easy to predict the array seg-

ments that are going to be used next. This makes prefetching of these array segments easy. To

improve cache behavior, we have to consider the whole sorting process. Intuitively, using more

than one pivot decreases the size of subproblems and thus reduces the depth of the recursion

stack. Since we have to read about the whole array on each level of the recursion, reduced

depth means the input has to be read fewer times. On the other hand, using more than one

pivot increases the number of elements that have to be exchanged because they are at a wrong

position in the input. This makes partitioning more complicated. So, using more than one

pivot yields two e�ects working in opposite directions: increased cost by more complicated

partitioning, and decreased cost because the input has to be read fewer times. It will turn out

that, in some sense, minimal partitioning cost will be achieved when using �ve pivots.

Moreover, we will consider partitioning strategies that decouple classi�cation and partition-

ing, i. e., use two passes to produce a partition. This technique was pioneered by Sanders and

Winkel with their “super scalar sample sort algorithm” [SW04]. This approach will prove to

have much better cache behavior because partitioning does not become more di�cult with

many pivots. However, additional space is needed to obtain algorithms that are faster in prac-

tice than algorithms using only one pass.
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Summary and Outline. We will study multi-pivot quicksort algorithms and show how well

they perform with respect to di�erent cost measures.

In Section 3, we study the average comparison count of dual-pivot quicksort algorithms.

To this end, we introduce a model which covers dual-pivot quicksort algorithms. Then, we

describe how to calculate the average comparison count of a given algorithm. Next, we use

this result to re-analyze previously known dual-pivot quicksort algorithms like Yaroslavskiy’s

algorithm and Sedgewick’s algorithm in Section 4. In the same section, we present optimal

algorithms, i. e., algorithms which achieve the minimum possible average comparison count

for dual-pivot quicksort. Optimal dual-pivot quicksort algorithms make 1.8n lnn+O(n) com-

parisons on average, improving on the 1.9n lnn+O(n) comparisons Yaroslavskiy’s algorithm

makes on average. In the subsequent section, we consider the well known technique of choos-

ing pivots from a small sample. We prove that choosing the tertiles of the sample as the two

pivots, as, e. g., done in the Java implementation of Yaroslavskiy’s algorithm, is not optimal for

dual-pivot quicksort, and describe optimal sampling strategies.

After understanding the case with two pivots, we consider quicksort algorithms using more

than two pivots in Section 6. We are going to see that our theory for dual-pivot quicksort

generalizes nicely to this case. Again, we describe how to calculate the average comparison

count for an arbitrary multi-pivot quicksort strategy and how comparison-optimal algorithms

for dual-pivot quicksort extend to the case of using more than two pivots. As we will �nd

out, calculating the average comparison count is hard even for a few, say, four pivots. From a

practical perspective, comparison-optimal multi-pivot quicksort will turn out to be slow and

not competitive.

Consequently, we will follow a di�erent approach in Section 7. We restrict ourselves to use

some �xed comparison tree for each classi�cation—ignoring the average comparison count—,

and think only about moving elements around in order to produce the partition. This will help

to understand in which sense a multi-pivot quicksort approach allows more e�cient algorithms

than classical quicksort.

Finally, Section 8 reports on a study of empirical running times of di�erent quicksort algo-

rithms. We shall see that many variants are faster than classical quicksort. Furthermore, we

will investigate whether or not our theoretical cost measures help predicting observed running

times. In brief, the cache-e�ciency of an algorithm provides the best prediction for di�erences

in running times. However, it cannot explain observed running times in detail.
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�icksort

In this section we formalize the notion of a “dual-pivot quicksort algorithm”, give the basic

assumptions of the analysis and show how to calculate the average comparison count of an

arbitrary dual-pivot quicksort algorithm.

In Section 6 we will generalize this approach to “k-pivot quicksort”, for k ≥ 1. Of course,

this generalization includes the dual-pivot quicksort case. However, the algorithmic approach

to dual-pivot quicksort is much easier to understand. Furthermore, we are able to prove some

tight results analytically only in the dual-pivot quicksort case.

3.1. Basic Setup

We assume the input sequence (a1, . . . , an) to be a random permutation of {1, . . . , n}, each

permutation occurring with probability (1/n!). If n ≤ 1, there is nothing to do; if n = 2, sort

by one comparison. Otherwise, choose the �rst element a1 and the last element an as the set of

pivots, and set p = min(a1, an) and q = max(a1, an). Partition the remaining elements into

elements smaller than p (“small” elements), elements between p and q (“medium” elements),

and elements larger than q (“large” elements), see Fig. 2.1. Then apply the procedure recursively

to these three groups. Clearly, each pair p, q with 1 ≤ p < q ≤ n appears as set of pivots with

probability 1/
(
n
2

)
. Our cost measure is the number of key comparisons needed to sort the

given input. Let Cn be the random variable counting this number. Let Pn denote the number

of key comparisons necessary to partition the n− 2 non-pivot elements into the three groups,

and let Rn denote the number of key comparisons made in the recursion. Since elements are

only compared with the two pivots, the randomness of subarrays is preserved. Thus, in the

recursion we may always assume that the input is arranged randomly. The average number of
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key comparisons E(Cn) obeys the following recurrence:

E(Cn) =
∑

1≤p<q≤n
Pr(p, q pivots) · E(Pn +Rn | p, q)

=
∑

1≤p<q≤n

2

n(n− 1)
· E(Pn + Cp−1 + Cq−p−1 + Cn−q | p, q)

= E(Pn) +
2

n(n− 1)
· 3

n−2∑
k=0

(n− k − 1) · E(Ck). (3.1)

Solving the Recurrence for Dual-Pivot �icksort. We now solve this recurrence using

the Continuous Master Theorem of Roura [Rou01], whose statement we will review �rst.

Theorem 3.1.1 ([Rou01, Theorem 18])
Let Fn be recursively de�ned by

Fn =

{
bn, for 0 ≤ n < N,

tn +
∑n−1

j=0 wn,jFj , for n ≥ N,

where the toll function tn satis�es tn ∼ Knα logβ(n) as n→∞ for constants K 6= 0, α ≥
0, β > −1. Assume there exists a function w : [0, 1]→ R such that

n−1∑
j=0

∣∣∣∣∣wn,j −
∫ (j+1)/n

j/n
w(z) dz

∣∣∣∣∣ = O(n−d), (3.2)

for a constant d > 0. Let H := 1−
∫ 1

0 z
αw(z) dz. Then we have the following cases:

a

1. If H > 0, then Fn ∼ tn/H.

2. If H = 0, then Fn ∼ (tn lnn)/Ĥ , where

Ĥ := −(β + 1)

∫ 1

0
zα ln(z)w(z) dz.

3. If H < 0, then Fn ∼ Θ(nc) for the unique c ∈ R with∫ 1

0
zcw(z) dz = 1.

a
Here, f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1.
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Theorem 3.1.2
LetA be a dual-pivot quicksort algorithm which has for each subarray of length n partition-

ing cost E(Pn) = a · n+ o(n). Then

E(Cn) =
6

5
an lnn+ o(n lnn). (3.3)

Proof. Recurrence (3.1) has weight

wn,j =
6(n− j − 1)

n(n− 1)

We de�ne the shape function w(z) as suggested in [Rou01] by

w(z) = lim
n→∞

n · wn,zn = 6(1− z).

Now we have to check (3.2) to see whether the shape function is suitable. We calculate:

n−1∑
j=0

∣∣∣∣∣wn,j −
∫ (j+1)/n

j/n
w(z) dz

∣∣∣∣∣
= 6

n−1∑
j=0

∣∣∣∣∣n− j − 1

n(n− 1)
−
∫ (j+1)/n

j/n
(1− z) dz

∣∣∣∣∣
= 6

n−1∑
j=0

∣∣∣∣n− j − 1

n(n− 1)
+

2j + 1

2n2
− 1

n

∣∣∣∣
< 6

n−1∑
j=0

∣∣∣∣ 1

2n(n− 1)

∣∣∣∣ = O(1/n).

Thus, w is a suitable shape function. By calculating

H := 1− 6

∫ 1

0
(z − z2) dz = 0,

we conclude that the second case of Theorem 3.1.1 applies for our recurrence. Consequently,

we calculate

Ĥ := −6

∫ 1

0
(z − z2) ln z dz,

which—using a standard computer algebra system—gives Ĥ = 5/6. The theorem follows.
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This generalizes the result of Hennequin [Hen91] who proved that for average partitioning

cost a · n+O(1) for n elements, for a constant a, the average cost for sorting n elements is

6

5
a · n lnn+O(n). (3.4)

Remark 3.1.3. Most of our algorithms have partitioning cost a · n + o(n), for a constant a.

Thus, we cannot apply (3.4) directly. In the paper [AD13] we give an alternative proof of

Theorem 3.1.2 only based on (3.4), see [AD13, Theorem 1].

Handling Small Subarrays. One of our algorithms will make a decision based on a small

sampling step. For very small subarrays of size n0 ≤ n1/ ln lnn
, this decision will be wrong

with a too high probability, making the partitioning cost larger than a ·n′+o(n′). We will now

argue that the total contribution of these small subarrays to the average comparison count is

o(n lnn), and can hence be neglected.

To see this, wait until the algorithm has created a subarray of size n′ < n0. Note that the

partitioning cost of dual-pivot quicksort on input size n′ is at most 2n′. Using this simple

observation and combining it with (3.3), the cost for the whole recursion starting from this

input is at most 12/5 · n′ lnn′ + o(n′ lnn′). To calculate the total contribution of all small

subarrays we must then sum 12/5 ·ni lnni + o(ni lnni) over a sequence of disjoint subarrays

of length n1, . . . , nk. Since all ni are smaller than n0, n1 + . . .+nk ≤ n, and since x 7→ x lnx
is a convex function, this sums up to no more than

n
n0
· 12

5 n0 lnn0 + n
n0
·o(n0 lnn0) = o(n lnn).

Thus, in the remainder of this work we will ignore the contribution of such small subarrays

to the total sorting cost.

3.2. Analysis of a Partitioning Step

The main consequence of Theorem 3.1.2 is that it is su�cient to study the cost of partitioning.

Abstracting from moving elements around in arrays, we arrive at the following “classi�ca-

tion problem”: Given a random permutation (a1, . . . , an) of {1, . . . , n} as the input sequence

and a1 and an as the two pivots p and q, with p < q, classify each of the remaining n− 2 ele-

ments as being small, medium, or large. Note that there are exactly s := p− 1 small elements,

m := q − p− 1 medium elements, and ` := n− q large elements. Although this classi�cation

does not yield an actual partition of the input sequence, a classi�cation algorithm can be turned

into a partition algorithm only by rearranging the input elements after classi�cation, without

additional key comparisons.

We make the following observations (and �x notation) for all classi�cation algorithms. One

key comparison is needed to decide which of the elements a1 and an is the smaller pivot p
and which is the larger pivot q. For classi�cation, each of the remaining n − 2 elements has

to be compared against p or q or both. Each medium element has to be compared to p and
q. On average, there are (n − 2)/3 medium elements. Let S2 denote the number of small
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3. Basic Approach to Analyzing Dual-Pivot Quicksort

elements that are compared to the larger pivot �rst, i. e., the number of small elements that

need 2 comparisons for classi�cation. Analogously, letL2 denote the number of large elements

compared to the smaller pivot �rst. Conditioning on the pivot choices, and hence the values of

s and `, we may calculate E(Pn) as follows:

E(Pn) = (n− 1) + (n− 2)/3 +
1(
n
2

) ∑
s+`≤n−2

E(S2 + L2 | s, `). (3.5)

Here, “s, `” denotes the event that the pivots p = s+ 1 and q = n− ` are chosen. We call the

third summand the additional cost term (ACT), as it is the only value that depends on the actual

classi�cation algorithm.

3.2.1. Analysis of the Additional Cost Term

We will use the following formalization of a partitioning procedure: A classi�cation strategy is

given as a three-way decision tree T with a root and n− 2 levels of inner nodes as well as one

leaf level. The root is on level 0. Each node v is labeled with an index i(v) ∈ {2, . . . , n − 1}
and an element l(v) ∈ {p, q}. If l(v) is p, then at node v element ai(v) is compared with the

smaller pivot �rst; otherwise, i. e., l(v) = q, it is compared with the larger pivot �rst. The three

edges out of a node are labeled σ, µ, λ, resp., representing the outcome of the classi�cation as

small, medium, large, respectively. The label of edge e is called c(e). The three children of a

node v are called the σ-, µ-, and λ-child of this node. On each of the 3n−2
paths each index

occurs exactly once. Each input determines exactly one path w from the root to a leaf in the

obvious way; the classi�cation of the elements can then be read o� from the node and edge

labels along this path. The labeled reached in this way contains this classi�cation. We call such

a tree a classi�cation tree.
Identifying a path π from the root to a leaf lf by the sequence of nodes and edges on it, i. e.,

π = (v1, e1, v2, e2, . . . , vn−2, en−2, lf), we de�ne the cost cπ as

cπ =
∣∣{j ∈ {1, . . . , n− 2} | c(ej) 6= µ, l(vj) 6= c(ej)

}∣∣.
For a given input, the cost of the path associated with this input exactly describes the number

of additional comparisons on this input. An example for such a classi�cation tree is given in

Figure 3.1.

For a random input, we let ST2 [LT2 ] denote the random variable that counts the number

of small [large] elements classi�ed in nodes with label q [p]. We now describe how we can

calculate the ACT of a classi�cation tree T . First consider �xed s and ` and let the input

excepting the pivots be arranged randomly. For a node v in T , we let sv , mv , and `v , resp.,

denote the number of edges labeled σ, µ, and λ, resp., from the root to v. By the randomness

of the input, the probability that the element classi�ed at v is “small”, i. e., that the edge labeled

σ is used, is exactly (s − sv)/(n − 2 − level(v)). The probability that it is “medium” is (m −
mv)/(n−2− level(v)), and that it is “large” is (`− `v)/(n−2− level(v)). The probability pvs,`
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3 : p

2 : q 4 : p 2 : p

4 : p 4 : q 4 : p 2 : q 2 : p 2 : p 4 : p 4 : q 4 : p

a2 : σ
a3 : σ
a4 : σ

a2 : σ
a3 : µ
a4 : µ

a2 : µ
a3 : µ
a4 : µ

a2 : λ
a3 : µ
a4 : µ

a2 : λ
a3 : λ
a4 : λ

σ µ λ

σ µ λ σ µ λ σ µ λ

σ σ µ λ λ

. . . . . .

c1 : 1 c2 : 0 c3 : 0 c4 : 1 c5 : 3

Figure 3.1.: An example for a decision tree to classify three elements a2, a3, and a4 according

to the pivots a1 and a5. Five out of the 27 leaves are explicitly drawn, showing the

classi�cation of the elements and the costs ci of the speci�c paths.

that node v in the tree is reached is then just the product of all these edge probabilities on the

unique path from the root to v. The probability that the edge labeled σ out of a node v is used

can then be calculated as pvs,` · (s− sv)/(n− 2− level(v)). Similarly, the probability that the

edge labeled λ is used is pvs,` · (`− `v)/(n− 2− level(v)). Note that all this is independent of

the actual ordering in which the classi�cation tree inspects the elements. We can thus always

assume some �xed ordering and forget about the label i(v) of node v.

By linearity of expectation, we can sum up the contribution to the additional comparison

count for each node separately. Thus, we may calculate

E(ST2 +LT2 | s, `) =
∑
v∈T
l(v)=q

pvs,` ·
s− sv

n−2−level(v)
+
∑
v∈T
l(v)=p

pvs,` ·
`− `v

n−2−level(v)
. (3.6)

The setup developed so far makes it possible to describe the connection between a classi�cation

tree T and its average comparison count in general. Let F T
p

resp. F T
q

be two random variables

that denote the number of elements that are compared with the smaller resp. larger pivot �rst

when using T . Then let f
q

s,` = E

(
F T

q
| s, `

)
resp. f

p

s,` = E

(
F T

p
| s, `

)
denote the average

number of comparisons with the larger resp. smaller pivot �rst, given s and `. Now, if it
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was decided in each step by independent random experiments with the correct expectations

s/(n− 2), m/(n− 2), and `/(n− 2), resp., whether an element is small, medium, or large, it

would be clear that for example f
q

s,` · s/(n − 2) is the average number of small elements that

are compared with the larger pivot �rst. We will show that one can indeed use this intuition

in the calculation of the average comparison count, excepting that one gets an additional o(n)
term due to the elements tested not being independent.

Before we can show this, we �rst have to introduce the basic probability theoretical argument

which will be used throughout the analysis of di�erent lemmas and theorems.

Let si,mi, `i, resp., be the random variables which counts the number of elements classi�ed

as small, medium, and large, resp., in the �rst i classi�cation steps. Our goal is to show concen-

tration of these random variables. This would be a trivial application of the Cherno� bound

if the tests to which group elements belong to were independent. But when pivots are �xed,

the probability that the i-th considered element is small depends on si−1 and i. To deal with

these dependencies, we will use the following theorem, commonly known as “the method of

averaged bounded di�erences”.
1

Theorem 3.2.1 ([DP09, Theorem 5.3])
LetX1, . . . , Xn be an arbitrary set of random variables and let f be a function satisfying the

property that for each i ∈ {1, . . . , n} there is a non-negative ci such that

|E(f | X1, . . . , Xi)− E(f | X1, . . . , Xi−1)| ≤ ci.

Then

Pr(f > E(f) + t) ≤ exp

(
− t

2

2c

)
and

Pr(f < E(f)− t) ≤ exp

(
− t

2

2c

)
,

where

c :=

n∑
i=1

c2
i .

1

We remark that our statement corrects a typo in [DP09, Theorem 5.3] where the bound reads exp(−2t2/c)
instead of exp(−t2/(2c)).

19



3. Basic Approach to Analyzing Dual-Pivot Quicksort

Lemma 3.2.2
Let the two pivots p and q be �xed. Let si be de�ned as above. For each iwith 1 ≤ i ≤ n−2
we have that

Pr
(
|si − E(si)| > n2/3

)
≤ 2exp

(
−n1/3/2

)
.

Proof. De�ne the indicator random variable Xj = [the j-th element is small]. Of course, si =∑
1≤j≤iXj . We let

cj := |E (si | X1, . . . , Xj)− E (si | X1, . . . , Xj−1)| .

Using linearity of expectation we may calculate

cj =
∣∣
E(si | X1, . . . , Xj)− E(si | X1, . . . , Xj−1)

∣∣
=

∣∣∣∣∣∣Xj +

i∑
k=j+1

(E(Xk | X1, . . . , Xj)− E(Xk | X1, . . . , Xj−1))− E(Xj | X1, . . . , Xj−1)

∣∣∣∣∣∣
=

∣∣∣∣Xj −
s− sj−1

n− j − 1
+ (i− j)

(
s− sj

n− j − 2
− s− sj +Xj

n− j − 1

)∣∣∣∣
=

∣∣∣∣Xj

(
1− i− j

n− j − 1

)
− s− sj−1

n− j − 1
+

(i− j)(s− sj)
(n− j − 2)(n− j − 1)

∣∣∣∣
≤
∣∣∣∣Xj

(
1− i− j

n− j − 1

)
− s− sj +Xj

n− j − 1
+

s− sj
n− j − 1

∣∣∣∣
=

∣∣∣∣Xj

(
1− i− j − 1

n− j − 1

)∣∣∣∣ ≤ 1.

Applying Theorem 3.2.1 now gives us

Pr(|si − E(si)| > n2/3) ≤ 2 exp

(
−n4/3

2i

)
,

which is not larger than 2 exp(−n1/3/2).

Of course, we get analogous results for the random variables mi and `i.

This allows us to prove the following lemma.
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Lemma 3.2.3
Let T be a classi�cation tree. Let E(P Tn ) be the average number of key comparisons for

classifying an input of n elements using T . Then

E(P Tn ) =
4

3
n+

1(
n
2

)
· (n− 2)

∑
s+`≤n−2

(
f

q

s,` · s+ f
p

s,` · `
)

+ o(n).

Proof. Fix p and q (and thus s,m, and `). We will show that

E(ST2 + LT2 | s, `) =
f

q

s,` · s+ f
p

s,` · `
n− 2

+ o(n). (3.7)

(The lemma then follows by substituting this into (3.5).)

We call a node v in T good if

l(v) = q and

∣∣∣∣ s

n− 2
− s− sv
n− level(v)− 2

∣∣∣∣ ≤ 1

n1/12
or

l(v) = p and

∣∣∣∣ `

n− 2
− `− `v
n− level(v)− 2

∣∣∣∣ ≤ 1

n1/12
. (3.8)

Otherwise we call v bad. We �rst obtain an upper bound. Starting from (3.6), we calculate:

E(ST2 + LT2 | s, `) =
∑

v∈T,l(v)=q

pvs,` ·
s− sv

n−2−level(v)
+

∑
v∈T,l(v)=p

pvs,` ·
`− `v

n−2−level(v)

=
∑

v∈T,l(v)=q

pvs,` ·
s

n− 2
+

∑
v∈T,l(v)=p

pvs,` ·
`

n− 2
+

∑
v∈T,l(v)=q

pvs,`

(
s− sv

n− 2− level(v)
− s

n− 2

)
+

∑
v∈T,l(v)=p

pvs,`

(
`− `v

n− 2− level(v)
− `

n− 2

)

≤
∑

v∈T,l(v)=q

pvs,` ·
s

n− 2
+

∑
v∈T,l(v)=p

pvs,` ·
`

n− 2
+

∑
v∈T,l(v)=q

v good

pvs,`

n1/12
+

∑
v∈T,l(v)=q

v bad

pvs,` +
∑

v∈T,l(v)=p

v good

pvs,`

n1/12
+

∑
v∈T,l(v)=p

v bad

pvs,`,

(3.9)
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where the last step follows by separating good and bad nodes and using (3.8). (For bad nodes

we use that the left-hand side of the inequalities in (3.8) is at most 1.) For the sums in the last

line of (3.9), consider each level of the classi�cation tree separately. Since the probabilities pvs,`
for nodes v on the same level sum up to 1, the contribution of the 1/n1/12

terms is bounded

by O(n11/12). Using the de�nition of f
q

s,` and f
p

s,`, we continue as follows:

E(ST2 + LT2 | s, `) ≤
∑

v∈T,l(v)=q

pvs,` ·
s

n− 2
+

∑
v∈T,l(v)=p

pvs,` ·
`

n− 2
+
∑
v∈T
v bad

pvs,` + o(n)

=
f

q

s,`·s+ f
p

s,`·`
n− 2

+
∑

v∈T,v bad

pvs,` + o(n)

=
f

q

s,`·s+ f
p

s,`·`
n− 2

+
n−3∑
i=0

Pr(a bad node on level i is reached) + o(n),

(3.10)

where in the last step we just rewrote the sum to consider each level in the classi�cation tree

separately. So, to show (3.7) it remains to bound the sum in (3.10) by o(n).

To see this, consider a random input that is classi�ed using T . We will show that with very

high probability we do not reach a bad node in the classi�cation tree in the �rst n−n3/4
levels.

Intuitively, this means that it is highly improbable that underway the observed fraction of small

elements deviates very far from the average s/(n− 2). In the following, we will only consider

nodes which are labeled with “p”. Analogously, these statements are valid for nodes labeled

with “q”.

Let si be the random variable that counts the number of small elements classi�ed in the �rst

i classi�cation steps. By Lemma 3.2.2, with very high probability we have that |si − E(si)| ≤
n2/3

. Suppose this events occurs.

We may calculate∣∣∣∣ s

n− 2
− s− si
n− 2− i

∣∣∣∣ ≤ ∣∣∣∣ s

n− 2
− s(1− i/(n− 2))

n− 2− i

∣∣∣∣+

∣∣∣∣∣ n2/3

n− 2− i

∣∣∣∣∣ =
n2/3

n− 2− i
.

That means that for each of the �rst i ≤ n−n3/4
levels with very high probability we are in a

good node on level i, because the deviation from the ideal case that we see a small element with

probability s/(n− 2) is n2/3/(n− 2− i) ≤ n2/3/n3/4 = 1/n1/12
. Thus, for the �rst n− n3/4

levels the contribution of the sums of the probabilities of bad nodes in (3.10) is o(n). For the

last n3/4
levels of the tree, we use that the contribution of the probabilities that we reach a bad

node on level i is at most 1 for a �xed level.

This shows that the contribution of he sum in (3.10) is o(n). This �nishes the proof of the
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upper bound. The calculations for the lower bound are similar and are omitted here.

3.3. Discussion

Lemma 3.2.3 and Theorem 3.1.2 tell us that for the analysis of the average comparison count of a

dual-pivot quicksort algorithm we just have to �nd out what f
p

s,` and f
q

s,` are for this algorithm.

Moreover, to design a good algorithm (w.r.t. the average comparison count), we should try to

make f
q

s,` · s+ f
p

s,` · ` small for each pair s, `.

To model dual-pivot quicksort algorithms and study their average comparison count, we

introduced the concept of a classi�cation strategy, which is a three-way decision tree. The

reader might wonder whether this model is general enough or not. We describe two ideas for

possible generalizations, and show how they are covered by our model.

Randomized Classifications. Of course, one could also think of allowing random choices

inside the nodes of the decision tree, e. g., “�ip a coin to choose the pivot used in the �rst compari-
son.” This, however, can just be seen as a probability distribution on deterministic classi�cation

strategies. But this means that for every randomized classi�cation strategy there is also a de-

terministic strategy which is at least as good on average.

Postponing Classifications. In our model we enforce that an element has to be classi�ed

as soon as it is inspected for the �rst time. Of course, it can be allowed that an element is left

unclassi�ed (i. e., that its group is not determined after the �rst classi�cation) and reconsidered

later. Intuitively, this should not help with respect to lowering the comparison count: If the

element is left unclassi�ed then one more comparison is needed later to determine its group.

Moreover, one could think that not classifying an element is a disadvantage, since it could be

useful for future decisions to know about previous classi�cations. Neither is the case and we

make this statement precise in the following way. Naturally, postponing classi�cations can be

modeled by a decision tree which allows inner nodes that either have two or three children.

But given such a decision tree T one can build an equivalent decision tree T ′ in which each

inner node has degree 3. We sketch one way to do this transformation. Let v be a node with

only two children in T . Let p = (v0, v1, . . . , vt = v) be the unique path from the root v0 of

T to v. If there exists a node vj with i(vj) = i(v) and j < t, then identify v with vj . Wlog.

assume that l(v) = p. Then construct a decision tree T ′ from T in the following way: Let Tv
be the subtree rooted at v in T . Let Tµ be the tree we obtain from Tv by taking each non-root

node v′ with i(v′) = i(v) and change the edge pointing to it from its parent to point to its

µ-child. (The node v′ and its λ-child are thus removed from Tµ.) Analogously, let Tλ be the

tree we obtain from Tv by taking each non-root node v′ with i(v′) = i(v) and change the edge

pointing to it from its parent to point to its λ-child. Now construct T ′ in the obvious way: First,

let T ′ = T . Then, replace the subtree reached from v by following the edge labeled µ with the

subtree from Tµ that is rooted at the µ-child of v. Finally, add the subtree reached by following

23



3. Basic Approach to Analyzing Dual-Pivot Quicksort

the edge labeled µ of Tλ as a child to v; label the edge from v to the root of this tree with λ.

Starting with an arbitrary decision tree with nodes with two and three children, this process

is iterated until there is no node with two children left. Thus, postponing classi�cations does

not help with respect to improving the average comparison count.
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�icksort

This section is devoted to the study of di�erent classi�cation strategies. In the �rst section,

we will analyze the average comparison count of some known strategies. Then, we will study

classi�cation algorithms which minimize the average comparison count. Pseudocode for ac-

tual dual-pivot algorithms using these classi�cation strategies is provided in Appendix A. The

reader is invited to look at the pseudocode to see the simplicity of dual-pivot quicksort algo-

rithms.

4.1. Analysis of Some Known Strategies

Oblivious Strategies. We will �rst consider strategies that do not use information of previ-

ous classi�cations for future classi�cations. To this end, we call a classi�cation tree oblivious if

for each level all nodes v on this level share the same label l(v) ∈ {p, q}. This means that these

algorithms do not react to the outcome of previous classi�cations, but use a �xed sequence of

pivot choices. Examples for such strategies are, e. g.,

• always compare to the larger pivot �rst (we refer to this strategy by the letter “L”),

• always compare to the smaller pivot �rst,

• alternate the pivots in each step.

Let T be an oblivious classi�cation tree. Let f
q

n denote the average number of comparisons to

the larger pivot �rst. By assumption this value is independent of s and `. Hence these strategies

make sure that f
q

s,` = f
q

n and f
p

s,` = n− 2− fq

n for all pairs of values s, `.
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Applying Lemma 3.2.3 gives us

E(Pn) =
4

3
n+

1(
n
2

)
· (n− 2)

·
∑

s+`≤n−2

(fq

n · s+ (n− 2− fq

n) · `) + o(n)

=
4

3
n+

f
q

n(
n
2

)
· (n− 2)

·

 ∑
s+`≤n−2

s

+
n− 2− fq

n(
n
2

)
· (n− 2)

·

 ∑
s+`≤n−2

`

+ o(n)

=
4

3
n+

1(
n
2

) ·
 ∑
s+`≤n−2

s

+ o(n) =
5

3
n+ o(n).

Using Theorem 3.1.2 we get E(Cn) = 2n lnn + o(n lnn)—the leading term being the same

as in standard quicksort. So, for each strategy that does not adapt to the outcome of previous

classi�cations, there is no di�erence to the average comparison count of classical quicksort. We

believe that this is one reason why dual-pivot quicksort seemed inferior to classical quicksort

for a long time.
1

Yaroslavskiy’s Algorithm. Following [WN12, Section 3.2], Yaroslavskiy’s algorithm is an

implementation based on the following strategy Y : Compare ` elements to q �rst, and compare
the other elements to p �rst.2

We get that f
q

s,` = ` and f
p

s,` = s+m. Applying Lemma 3.2.3, we calculate

E

(
PYn
)

=
4

3
n+

1(
n
2

) ∑
s+`≤n−2

(
s`

n− 2
+

(s+m)`

n− 2

)
+ o(n).

Of course, it is possible to evaluate this sum by hand. We used Maple
®

to obtain E

(
PYn
)

=
19
12n+ o(n). Using Theorem 3.1.2 gives E (Cn) = 1.9n lnn+ o(n lnn), as in [WN12].

Sedgewick’s Algorithm. Following [WN12, Section 3.2], Sedgewick’s algorithm amounts

to an implementation of the following strategy S : Compare (on average) a fraction of s/(s+ `)
of the keys with q �rst, and compare the other keys with p �rst. We get f

q

s,` = (n− 2) · s/(s+ `)

1

This does not mean that oblivious strategies do not have other advantages over classical quicksort. The simple

strategy L will be among the fastest algorithms in our experiments.

2

The idea behind this is simple: By default, we compare against p �rst. But whenever we classify an element as

being large, the next classi�cation is started by comparing against q �rst. We see that this is slightly di�erent to

strategy Y : It makes `−1 comparisons to the larger pivot �rst, if the element classi�ed last is large. Otherwise,

it makes ` comparisons to the larger pivot �rst. So, we get f
q

s,` = ` − α and f
p

s,` = s + m + α, for some

0 ≤ α ≤ 1. The di�erence of this strategy and strategy Y with regard to the average comparison count for

classi�cation vanishes in the o(n) term. Thus, we disregard this detail in the discussion.
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and f
p

s,` = (n− 2) · `/(s+ `). Plugging these values into Lemma 3.2.3, we calculate

E

(
PSn
)

=
4

3
n+

1(
n
2

) ∑
s+`≤n−2

(
s2

s+ `
+

`2

s+ `

)
+ o(n) =

16

9
n+ o(n).

Applying Theorem 3.1.2 gives E(Cn) = 2.133... · n lnn+ o(n lnn), as known from [WN12].

Obviously, this is worse than the oblivious strategies considered before.
3

This is easily ex-

plained intuitively: If the fraction of small elements is large, it will compare many elements

with q �rst. But this costs two comparisons for each small element. Conversely, if the fraction

of large elements is large, it will compare many elements to p �rst, which is again the wrong

decision.

Since Sedgewick’s strategy seems to do exactly the opposite of what one should do to lower

the comparison count, we consider the following modi�ed strategy S ′: For given p and q, com-
pare (on average) a fraction of s/(s+ `) of the keys with p �rst, and compare the other keys with
q �rst. (S ′ simply uses p �rst when S would use q �rst and vice versa.)

Using the same analysis as above, we get E(Pn) = 14
9 n + o(n), which yields E(Cn) =

1.866...·n lnn+o(n lnn)—improving on the standard quicksort algorithm and even on Yaroslavskiy’s

algorithm! Note that this has been observed by Wild in his Master’s Thesis as well [Wil13].

Remark. Swapping the �rst comparison of p with q and vice versa as in the strategy de-

scribed above is a general technique. In fact, if the leading coe�cient of the average number of

comparisons for a �xed rule for choosing p or q �rst is α, e. g., α = 2.133... for strategy S , then

the leading coe�cient of the strategy that does the opposite is 4−α, e. g., 4−2.133... = 1.866...
as in strategy S ′.

To make this precise, let A be a strategy that uses a �xed choice of f
p

s,` and f
q

s,`. Let A′ be a

strategy that uses g
p

s,` = f
q

s,` and g
q

s,` = f
p

s,`. (Such a strategy is easily obtained by exchanging

the labels l(v) in the decision tree that corresponds to strategyA.) Since f
p

s,` = (n− 2− fq

s,`),

summing up to the additional cost terms of A and A′ in Lemma 3.2.3 leads to

1(
n
2

)( ∑
s+`≤n−2

(
f

q

s,` · s
n− 2

+
f

p

s,` · `
n− 2

)
+

∑
s+`≤n−2

(
g

q

s,` · s
n− 2

+
g

p

s,` · `
n− 2

))
+ o(n)

=
1(
n
2

) ∑
s+`≤n−2

(s+ `) + o(n) =
2

3
(n− 2) + o(n).

So, if the additional cost term ofA is b ·n+o(n), for a constant b, then the additional cost term

ofA′ is (2/3− b) ·n+ o(n). Now let α = 6/5 · (4/3 + b), i. e., E(CAn ) = α ·n lnn+ o(n lnn).

3

We remark that in his thesis Sedgewick [Sed75] focused on the average number of swaps, not on the comparison

count.
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Using (3.3), we obtain by a standard calculation

E(CA
′

n ) =
6

5
·
(

4

3
+

2

3
− b
)
· n lnn+ o(n lnn)

= (4− α)n lnn+ o(n lnn),

which precisely describes the in�uence of exchanging f
p

s,` and f
q

s,` to the leading term of the

average comparison count.

4.2. (Asymptotically) Optimal Classification Strategies

We now present optimal classi�cation strategies, that means, classi�cation strategies which

achieve the minimum average comparison count in our model of dual-pivot quicksort algo-

rithms. At �rst, we will consider two di�erent strategies whose optimality proof is surprisingly

simple. However, they require that after the pivots p and q are chosen, the algorithm knows s
and `. We call them “improper” classi�cation strategies, because a classi�cation strategy uses

only a single classi�cation tree. In the second part of this subsection, we will slightly change

these two strategies and obtain “real” classi�cation strategies. The main task is then to show

that these changes do not a�ect the dominating term of the average comparison count.

4.2.1. Two Unrealistic (Asymptotically) Optimal Strategies

We consider the following strategyO: Given s and `, the comparison at node v is with the smaller
pivot �rst if s− sv > `− `v , otherwise it is with the larger pivot �rst.4 (For the de�nition of sv
and `v , see Page 17.)

Theorem 4.2.1
Strategy O is optimal, i. e., its ACT (see (3.5)) is at most as large as ACTT for every single

classi�cation tree T . When using O in a dual-pivot quicksort algorithm, we get E(COn ) =
1.8n lnn+O(n).

Proof. Fix the two pivots. We will prove each statement separately.

First statement: According to (3.6), the contribution of an arbitrary node v in the decision tree

to the additional cost term is at least

pvs,` ·
min {s− sv, `− `v}
n− 2− level(v)

.

Strategy O chooses the label of each node in the decision tree such that this minimum contri-

bution is achieved, and hence minimizes the additional cost term in (3.6).

4

This strategy was suggested to us by Thomas Hotz (personal communication).
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Second statement: We �rst derive an upper bound of 1.8n lnn+O(n) for the average number

of comparisons, and then show that this is tight.

For the �rst part, let an input with n entries and two pivots be given, so that there are s
small and ` large elements. Assume s ≥ `. Omit all medium elements to obtain a reduced

input (a1, . . . , an′) with n′ = s + `. For 0 ≤ i ≤ n′ let si and `i denote the number of

small resp. large elements remaining in (ai+1, . . . , an′). Let Di = si − `i. Of course we have

D0 = s − ` and Dn′ = 0. Let i1 < i2 < . . . < ik be the list of indices i with Di = 0. (In

particular, ik = n′.) Rounds i with Di = 0 are called zero-crossings. Consider some j with

Dij = Dij+1 = 0. The numbers Dij+1, . . . .Dij+1−1 are nonzero and have the same positive

[or negative] sign. The algorithm compares aij+2, . . . , aij+1 with the smaller [or larger] pivot

�rst, and aij+1 with the larger pivot �rst. Since {aij+1, . . . , aij+1} contains the same number of

small and large elements, the contribution of this segment to the additional comparison count

is
1
2(ij+1 − ij)− 1

[
or

1
2(ij+1 − ij)

]
.

IfD0 > 0, i. e., s > `, all elements in {a1, . . . , ai1} are compared with the smaller pivot �rst,

and this set contains
1
2(i1− (s− `)) large elements (and

1
2(i1 +(s− `)) small elements), giving

a contribution of
1
2(i1 − (s − `)) to the additional comparison count. Overall, the additional

comparison count of strategy O on the considered input is

i1 − (s− `)
2

+
k−1∑
j=1

ij+1 − ij
2

− k∗ =
n′ − (s− `)

2
− k∗ = `− k∗,

for some correction term k∗ ∈ {0, . . . , k}.
Averaging the upper bound ` over all pivot choices, we see that the additional cost term of

strategy O is at most

1(
n
2

) ·
2 ·

∑
s+`≤n
`<s

`+
∑
`≤n/2

`

 , (4.1)

which gives an average number of at most 1.5n + O(1) comparisons. For such a partitioning

cost we can use (2.1) and obtain an average comparison count for sorting via strategy O of at

most 1.8n lnn+O(n).

It remains to show that this is tight. This follows by a lengthy calculation. We shall see that

the essential step in this analysis is to show that the average (over all inputs) of the number

of zero-crossings (the number k from above) is O(log n). Again, we temporarily omit medium

elements to simplify calculations, i. e., we assume that the number of small and large elements

together is n. Let Zn be the random variable that denotes the number of zero-crossings for an

input of n elements. We calculate:
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E(Zn) =
∑

1≤i≤n/2

Pr(there is a zero-crossing at position n− 2i)

=
2

n

n/2∑
i=1

n/2∑
s=i

Pr(there is a zero-crossing at position n− 2i | s small elements)

=
2

n

n/2∑
i=1

n/2∑
s=i

(
2i
i

)
·
(
n−2i
s−i
)(

n
s

) .

By using the well-known estimate

(
2i
i

)
= Θ(22i/

√
i) (which follows directly from Stirling’s

approximation), we continue by

E(Zn) = Θ

(
1

n

) n/2∑
i=1

22i

√
i

n/2∑
s=s

(
n−2i
n−s
)(

n
s

)
= Θ

(
1

n

) n/2∑
i=1

22i

√
i

n/2∑
s=i

(n−2i) · . . . · (n−i−s+1) · s · . . . · (s−i+1)

n· . . . ·(n−s+1)

= Θ

(
1

n

) n/2∑
i=1

n+ 1√
i(n−2i+1)

n/2−i∑
j=0

i−1∏
k=0

(n+2j−2k)(n−2j−2k)

(n−2k+1)(n−2k)
, (4.2)

where the last step follows by an index transformation using j = s − i and multiplying 22i

into the terms of the right-most fraction. We now obtain an upper bound for the right-most

product:

i−1∏
k=0

(n+2j−2k)(n−2j−2k)

(n−2k+1)(n−2k)
≤

i−1∏
k=0

(
1−

(
2j

n− 2k

)2
)
≤

(
1−

(
2j

n

)2
)i
.

We substitute this bound into (4.2) and bound the right-most sum by an integral:

E(Zn) = O

(
1

n

) n/2∑
i=1

n+ 1√
i(n− 2i+ 1)

∫ n/2

0

(
1−

(
2t

n

)2
)i

dt+ 1

 . (4.3)
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We now obtain a bound on the integral as follows:

∫ n/2

0

(
1−

(
2t

n

)2
)i

dt =
n

2

∫ 1

0

(
1− t2

)i
dt

(1)
=
n

2

i∑
k=0

(−1)k
(
i

k

)
1

2k + 1

(2)
=
n

2
·

Γ
(

1
2

)
· Γ (i+ 1)

Γ
(
i+ 3

2

) (3)
= Θ

(
n√
i

)
,

involving the Gamma function Γ(x) =
∫∞

0 tx−1e−tdt. Here, (1) follows according to the

Binomial theorem, (2) is a well-known identity for the sum, see, e.g., [Gou72, Identity (1.40)],

and (3) follows by Stirling’s approximation and the identity

Γ

(
i+

1

2

)
=

(2i)!

i! · 4i
·
√
π,

which can be checked by induction using Γ
(

1
2

)
=
√
π and Γ(x) = (x− 1) · Γ(x− 1).

So, we can continue our calculation at (4.3) and obtain

E(Zn) = O

n/2∑
i=1

n+ 1

i(n− 2i+ 1)

 = O

n/4∑
i=1

1

i
+

n/2∑
i=n/4+1

1

n− 2i+ 1

 = O(log n).

Now we consider the case that the input contains medium elements. Fix the number of small

elements and the number of large elements. Medium elements have no in�uence on the value

of the additional cost term, so we can remove them and get the same number of additional

comparisons. This means that we should not consider a round i to be a zero crossing, when

there was a zero-crossing in round i− 1, for 1 ≤ i ≤ n− 2. Thus, we have that

E (Zs+m+` | s small, m medium, ` large elements) = E (Zs+` | s small, ` large elements) ,

i. e., it equals the average number of zero-crossings for a smaller input containing s+` elements.

We can now simply calculate the average number of zero-crossing for an arbitrary input as

follows:

E(Zn) =
1(
n
2

) ∑
s+`≤n

E(Zn | s, `) =
1(
n
2

) ∑
s+`≤n

O(log(s+ `)) = O(log n).

So, the di�erence between the upper bound on the additional cost term shown in (4.1) and the

actual additional cost term is O(log n). It remains to show that the in�uence of these O(log n)
terms to the total average sorting cost is bounded by O(n). By linearity of expectation, we

consider these terms in the average sorting cost of (3.1) separately. So, assume that the cost

associated with a partitioning step involving a subarray of length n is c · log n for a constant c.

We show by induction on the input size that the contributions of the c log n terms sum up
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to at mostO(n) for the total average comparison count. Let E(An) denote the sum of the error

terms in the average comparison count. We will show that

E(An) ≤ C · n−D lnn, (4.4)

for suitable constants C and D.

Let D ≥ c/5. For the base case, let n0 ∈ N and set C such that E(An) ≤ C · n − D lnn
for all n < n0. As the induction hypothesis, assume that (4.4) holds for all n′ < n. For the

induction step, we calculate:

E(An) =
1(
n
2

) ∑
s+m+`=n

E(An | s,m, `)

≤ C · n+
1(
n
2

) ∑
s+m+`=n

(c lnn−D · (ln s+ lnm+ ln `))

= C · n+ c lnn− 3(
n
2

) ∑
s+m+`=n

D · ln s = C · n+ c lnn− 6

n

∑
1≤s≤n

D · ln s

We use that

∑b
i=a f(i) ≥

∫ b
a f(x)dx for monotone functions f de�ned on [a, b] and obtain

E(An) ≤ C · n+ c lnn− 6D

n
· (n lnn− n+ 1) = C · n+ c lnn− 6D · (lnn− 1 + 1/n).

An easy calculation shows that from D ≥ c
5 it follows that

c lnn− 6D(lnn− 1 + 1/n) ≤ −D lnn,

which �nishes the induction step.

Thus, the additional O(log n) terms sum up to O(n) in the total average comparison count.

Thus, the di�erence between the upper bound of 1.8n lnn + O(n) derived in the proof of

Theorem 4.2.1 and the exact cost is O(n), and so the total average sorting cost of strategyO is

1.8n lnn+O(n).

Strategy O is the optimal strategy for dual-pivot quicksort. However, there exist other strate-

gies whose comparison count for classi�cation will di�er by only an o(n) term. We call these

strategies asymptotically optimal.
We will now study the following “oracle” strategy N : If s > ` then always compare with p

�rst, otherwise always compare with q �rst.

Theorem 4.2.2
When usingN in a dual pivot quicksort algorithm, we have E(CNn ) = 1.8n lnn+ o(n lnn).
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Proof. Lemma 3.2.3 says that the additional cost term for �xed pivots is

f
q

s,` · s+ f
p

s,` · `+ o(n). (4.5)

If ` < s, strategyN sets f
q

s,` = n− 2 and f
p

s,` = 0; otherwise it sets f
q

s,` = 0 and f
p

s,` = n− 2.

Using symmetry this means that the additional cost term of strategy N is

1(
n
2

)
2 ·

∑
s+`≤n
`<s

`+
∑
`≤n/2

`

+ o(n),

which means that

E(Pn) =
4

3
n+

1

6
n+ o(n) = 1.5n+ o(n).

Plugging this value into Theorem 3.1.2 gives E(Cn) = 1.8n lnn+ o(n lnn).

4.2.2. Two Realistic Asymptotically Optimal Strategies

While strategy O looks into the yet unclassi�ed part of the input and is interested if there are

more small or more large elements in it, this decision could just be based on what has been

seen so far.

We consider the following “counting” strategy C: The comparison at node v is with the smaller
pivot �rst if sv > `v , otherwise it is with the larger pivot �rst.

It is not hard to see that for some inputs the number of additional comparisons of strategyO
and C can di�er signi�cantly. The next theorem shows that averaged over all possible inputs,

however, there is only a small di�erence.

Theorem 4.2.3
Let ACTO and ACTC be the ACT for classifying n elements using strategy O and C, respec-

tively. Then ACTC = ACTO +O(log n). When using C in a dual-pivot quicksort algorithm,

we get E(CCn) = 1.8n lnn+O(n).

Proof. Assume that strategyO inspects the elements in the order an−1, . . . , a2, while C uses the

order a2, . . . , an−1. If the strategies compare the element ai to di�erent pivots, then there are

exactly as many small elements as there are large elements in {a2, . . . , ai−1} or {a2, . . . , ai},
depending on whether i is even or odd, see Figure 4.1. Thus, the same calculation as in the

proof of Theorem 4.2.1 shows that ACTC−ACTO isO(log n), which sums up to a total additive

contribution of O(n) when using strategy C in a dual-pivot quicksort algorithm, see the proof

of Theorem 4.2.1 for details.
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−→

σ λ σ µ σ λ σ σ

Next element

O

←−

σ λ σ µ σ λ σ σ

Next element

C

Figure 4.1.: Visualization of the decision process when inspecting an element using strategyO
(left) and C (right). Applying strategyO from left to right uses that of the remaining

elements three are small and one is large, so it decides that the element should

be compared with p �rst. Applying strategy C from right to left uses that of the

inspected elements two were small and only one was large, so it decides to compare

the element with p �rst, too. Note that the strategies would di�er if, e. g., the right-

most element would be a medium element.

Thus, dual-pivot quicksort with strategy C has average cost at mostO(n) larger than dual-pivot

quicksort using the (unrealistic) optimal strategy O.

Now we consider a realistic variation of strategyN . To decide whether there are more small

or more large elements in the input, we take a sample of n3/4
elements and make a guess based

on this sample.

Speci�cally, consider the following “sampling” strategy SP : “Make the �rst n3/4 comparisons
against the smaller pivot �rst. Let s′ denote the number of small elements, and let `′ denote the
number of large elements seen in these �rst comparisons. If s′ > `′, compare the remaining
elements with p �rst, otherwise compare them with q �rst.”

Theorem 4.2.4
Let ACTN and ACTSP be the ACT for classifying n elements using strategyN and strategy

SP , respectively. Then ACTSP = ACTN + o(n). When using SP in a dual-pivot quicksort

algorithm, we get E(CSPn ) = 1.8n lnn+ o(n lnn).

Proof. Fix the two pivots p and q, and thus s,m, and `. Assume that s < `. (The other case

follows by symmetry.)

Strategy N makes exactly s additional comparisons. We claim that strategy SP makes at

most s + o(n) additional comparisons. From Lemma 3.2.3, we know that the additional cost

term of SP for �xed pivot choices is

E

(
ZSPn | s, `

)
=
f

q

s,` · s+ f
p

s,` · `
n− 2

+ o(n).

We will now distinguish two cases:

Case 1: s+ 2n11/12 ≥ `. (The segment sizes s and ` are close to each other.)
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Since f
p

s,` + f
q

s,` = n− 2, we may calculate:

E(Z | s, `) =
f

q

s,` · s+ f
p

s,` · `
n− 2

+ o(n)

≤
f

q

s,` · s+ (s+ 2n11/12) · fp

s,`

n− 2
+ o(n)

= s+ o(n),

So, the di�erence between strategy N and strategy SP is o(n).

Case 2: s+ 2n11/12 < `. (The segment sizes s and ` are far away from each other.)

By Lemma 3.2.2 we know that with very high probability |s′−E(s′)| ≤ n2/3
and |`′−E(`′)| ≤

n2/3
. Now, consider a random input with s small and ` large elements such that s+2n11/12 < `

and s′ and `′ are concentrated around their expectation. We will now show that concentration

of s′ and `′ implies that s′ < `′, and hence that SP (correctly) compares all elements to p �rst.

By assumption, we have that∣∣∣∣s′ − n3/4 · s

n− 2

∣∣∣∣ ≤ n2/3
and

∣∣∣∣`′ − n3/4 · `

n− 2

∣∣∣∣ ≤ n2/3.

So, we conclude that in this case s′ < s · n−1/4 + n2/3
and `′ > ` · n−1/4− n2/3

. We calculate:

s′ <
s

n1/4
+ n2/3 <

`− 2n11/12

n1/4
+ n2/3 =

`

n1/4
− 2n2/3 + n2/3 =

`

n1/4
− n2/3 < `′.

Thus, whenever s′ and `′ are close enough to their expectation, and s and ` far away from each

other, strategy SP chooses the correct pivot for the �rst comparison. So, if s and ` are far away

from each other, then the di�erence between the average classi�cation cost of N and SP is

o(n).

We note that in the case that ` > s, strategy SP chooses the wrong pivot for the �rst n2/3

classi�cations. This contributes o(n) to the average comparison count, which does not a�ect

the dominating term of the average comparison count.

So, ACTSP = ACTN + o(n), and applying Theorem 3.1.2 gives a total average comparison

count of 1.8n lnn+ o(n lnn).

4.3. Discussion

In this section we analyzed some known classi�cation strategies. We described two new clas-

si�cation strategies, which both achieve the minimum possible average comparison count up

to lower order terms. The minimum average comparison count is 1.8n lnn+O(n).

We will now experimentally evaluate the in�uence of the lower order terms to the average

comparison count of the algorithms considered in this section. For this, we sorted random per-
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Figure 4.2.: Average comparison count (scaled by n lnn) needed to sort a random input of up to

n = 229
integers. We compare classical quicksort (QS), Yaroslavskiy’s algorithm

(Y), the optimal sampling algorithm (N ), the optimal counting algorithm (C), the

modi�ed version of Sedgewick’s algorithm (S ′), and the simple strategy “always
compare to the larger pivot �rst” (L). Each data point is the average over 400 trials.

mutation of {1, . . . , n} using implementations of the classi�cation strategies. The pseudocode

of these algorithms can be found in Appendix A. Figure 4.2 shows the results of this experi-

ment. We make two observations: (i) Lower order terms have a big in�uence on the average

comparison count for “real-life” values of n. (ii) For n large enough, the relations between the

di�erent algorithms re�ect the relation of the theoretical average comparison count nicely: the

counting strategy C has the lowest comparison count, the sampling strategyN follows closely.

(Note that while they share the same factor in the n lnn term, the di�erence due to lower or-

der terms is clearly visible.) Subsequently, the modi�ed version of Sedgewick’s algorithm has

a lower average comparison count than Yaroslavskiy’s algorithm. Next, strategy L is slightly

better for practical input sizes than classical quicksort. (This is also known from theory: on av-

erage classical quicksort makes 2n lnn−1.51n+O(lnn) [Sed75] comparisons, while strategy

Lmakes 2n lnn−2.75n+O(lnn) comparisons. The latter result can be obtained by plugging

in the exact average partition cost of L, which is 5/3(n− 2) + 1, into the exact solution of the

recurrence (3.1), see [WN12, Section 3.1].)
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5. Choosing Pivots From a Sample

In this section we consider the variation of dual-pivot quicksort where the pivots are chosen

from a small sample. Intuitively, this guarantees better pivots in the sense that the partition

sizes are more balanced. For classical quicksort, the median-of-k strategy is optimal w.r.t. min-

imizing the average comparison count [MR01], which means that the median in a sample of k
elements is chosen as the pivot. The standard implementation of Yaroslavskiy’s algorithm in

Oracle’s Java 7 uses an intuitive generalization of this strategy: it chooses the two tertiles in a

sample of �ve elements as pivots.

We will compare classical quicksort and dual-pivot quicksort algorithms which use the two

tertiles of the �rst �ve elements of the input, i. e., the second- and the fourth-largest element

in the sample, as the two pivots. Moreover, we will see that the optimal pivot choices for dual-

pivot quicksort are not the two tertiles of a sample of k elements, but rather the elements of

rank k/4 and k/2.

We remark that while preparing this thesis, Nebel and Wild provided a much more detailed

study of pivot sampling in Yaroslavskiy’s algorithm [NW14].

5.1. Choosing the Two Tertiles in a Sample of Size 5 as Pivots

We sort the �rst �ve elements and take the second- and the fourth-largest elements as pivots.

The probability that p and q, p < q, are chosen as pivots is exactly (s ·m · `)/
(
n
5

)
. Following

Hennequin [Hen91, pp. 52–53], for average partitioning cost E(Pn) = a · n+O(1) we get

E(Cn) =
1

H6 −H2
· a · n lnn+O(n) =

20

19
· a · n lnn+O(n), (5.1)

where Hn denotes the n-th harmonic number.

When applying Lemma 3.2.3, we have average partitioning cost a · n + o(n). To show that

the average comparison count becomes 20/19 · a · n lnn + o(n lnn) in this case, we would

have to redo the proof of Theorem 3.1.2. Fortunately, this has already been done by Nebel and

Wild in [NW14, Appendix E] for a much more general case of pivot sampling in dual-pivot

quicksort.

We will now investigate the e�ect of pivot sampling on the average number of key com-

parisons in Yaroslavskiy’s and the (optimal) sampling strategy SP , respectively. The average
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5. Choosing Pivots From a Sample

number of medium elements remains (n− 2)/3. For strategy Y , we calculate using Maple
®

E

(
PYn
)

=
4

3
n+

1(
n
5

) ∑
s+`≤n−5

` · (2s+m) · s ·m · `
n− 5

+ o(n) =
34

21
n+ o(n).

Applying (5.1), we get E

(
CYn
)

= 1.704n lnn + o(n lnn) key comparisons on average. (Note

that Wild et al. [Wil+13] calculated this leading coe�cient as well.) This is slightly better than

“clever quicksort”, which uses the median of a sample of three elements as pivot and achieves

1.714n lnn + O(n) key comparisons on average [Hoa62]. For the sampling strategy SP , we

get

E

(
PSPn

)
=

4

3
n+

2(
n
5

) ∑
s+`≤n−5

s≤`

s · s ·m · `+ o(n) =
37

24
n+ o(n).

Again using (5.1), we obtain E(CSPn ) = 1.623n lnn + o(n lnn), improving further on the

leading coe�cient compared to clever quicksort and Yaroslavskiy’s algorithm.

5.2. Pivot Sampling in Classical �icksort and Dual-Pivot
�icksort

In the previous subsection, we have shown that optimal dual-pivot quicksort using a sample

of size 5 clearly beats clever quicksort which uses the median of three elements. We will now

investigate how these two variants compare when the sample size grows.

The following proposition, which is a special case of [Hen91, Proposition III.9 and Proposi-

tion III.10], will help in this discussion.

Proposition 5.2.1
Let a ·n+O(1) be the average partitioning cost of a quicksort algorithmA that chooses the

pivot(s) from a sample of size k, for constants a and k. Then the following holds:

1. If k+ 1 is even andA is a classical quicksort variant that chooses the median of these

k elements as pivot, then the average sorting cost is

1

Hk+1 −H(k+1)/2
· a · n lnn+O(n).

2. If k + 1 is divisible by 3 and A is a dual-pivot quicksort variant that chooses the two

tertiles of these k elements as pivots, then the average sorting cost is

1

Hk+1 −H(k+1)/3
· a · n lnn+O(n).
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5. Choosing Pivots From a Sample

Sample Size 5 11 17 41

Median (QS) 1.622n lnn 1.531n lnn 1.501n lnn 1.468n lnn

Tertiles (DP QS) 1.623n lnn 1.545n lnn 1.523n lnn 1.504n lnn

Table 5.1.: Comparison of the leading term of the average cost of classical quicksort and dual-

pivot quicksort for speci�c sample sizes. Note that for real-life input sizes, however,

the linear term can make a big di�erence.

Note that for classical quicksort we have partitioning cost n−1. Thus, the average sorting cost

becomes
1

Hk+1−H(k+1)/2
n lnn+O(n).

For dual-pivot algorithms, the probability that p and q, p < q, are the two tertiles in a sample

of size k, where k + 1 is divisible by 3, is exactly( p−1
(k−2)/3

)( q−p−1
(k−2)/3

)( n−q
(k−2)/3

)(
n
k

) .

Thus, the average partitioning cost E

(
PSPn,k

)
of strategy SP using a sample of size k can be

calculated as follows:

E

(
PSPn,k

)
=

4

3
n+

2(
n
k

)∑
s≤`

(
s

(k − 2)/3

)(
m

(k − 2)/3

)(
`

(k − 2)/3

)
· s+ o(n). (5.2)

Unfortunately, we could not �nd a closed form of E

(
PSPn,k

)
. Some calculated values obtained

via Maple
®

in which classical and dual-pivot quicksort with strategy SP use the same sample

size can be found in Table 5.1. These values clearly indicate that starting from a sample of

size 5, asymptotically, classical quicksort has a smaller average comparison count than dual-

pivot quicksort. This raises the question whether dual-pivot quicksort is inferior to classical

quicksort using the median-of-k strategy with regard to minimizing the average comparison

count.

5.3. Optimal Segment Sizes for Dual-Pivot �icksort

It is known from, e. g., [MR01] that for classical quicksort in which the pivot is chosen as the

median of a �xed-sized sample, the leading term of the average comparison count converges

with increasing sample size to the lower bound of (1/ ln 2) ·n lnn = 1.4426..n lnn. Nebel and

Wild observed in [NW14] that this is not the case for Yaroslavskiy’s algorithm, which makes

at least 1.4931n lnn+ o(n lnn) comparisons on average. In this section, we will show how to

match the lower bound for comparison-based sorting algorithms with a dual-pivot approach.

We study the following setting, which was considered in [MR01; NW14] as well. We assume
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5. Choosing Pivots From a Sample

that for a random input of n elements
1

we can choose (for free) two pivots w.r.t. a vector ~τ =
(τ1, τ2, τ3) such that the input contains exactly τ1n small elements, τ2nmedium elements, and

τ3n large elements. Furthermore, we consider the (simple) classi�cation strategy L: “Always
compare with the larger pivot �rst.”

The following lemma says that this strategy achieves the minimum possible average compar-

ison count for comparison-based sorting algorithms, 1.4426..n lnn, when setting τ = (1
4 ,

1
4 ,

1
2).

Lemma 5.3.1
Let ~τ = (τ1, τ2, τ3) with 0 < τi < 1 and

∑
i τi = 1, for i ∈ {1, 2, 3}. Assume that for each

input size n we can choose two pivots such that there are exactly τ1 ·n small, τ2 ·n medium,

and τ3 · n large elements. Then the comparison count of strategy L is

p~τ (n) ∼ 1 + τ1 + τ2

−
∑

1≤i≤3 τi ln τi
n lnn.

This value is minimized for ~τ∗ = (1/4, 1/4, 1/2) giving

p~τ
∗
(n) ∼

(
1

ln 2

)
n lnn = 1.4426..n lnn.

Proof. On an input consisting of n elements, strategy L makes n + (τ1 + τ2)n comparisons.

Thus, the comparison count of strategy L follows the recurrence

p~τ (n) = n+ (τ1 + τ2)n+ p~τ (τ1 · n) + p~τ (τ2 · n) + p~τ (τ3 · n).

Using the Discrete Master Theorem from [Rou01, Theorem 2.3, Case (2.1)], we obtain the fol-

lowing solution for this recurrence:

p~τ (n) ∼ 1 + τ1 + τ2

−
∑3

i=1 τi ln τi
n lnn.

Using Maple
®

, one �nds that p~τ is minimized for~τ∗ = (1
4 ,

1
4 ,

1
2), giving p~τ

∗
(n) ∼ 1.4426..n lnn.

The reason why strategy L with this particular choice of pivots achieves the lower bound is

simple: it makes (almost) the same comparisons as does classical quicksort using the median of

the input as pivot. On an input of length n, strategy L makes 3/2n key comparisons and then

makes three recursive calls to inputs of length n/4, n/4, n/2. On an input of length n, classical

quicksort using the median of the input as pivot makes n comparisons to split the input into

two subarrays of length n/2. Now consider only the recursive call to the left subarray. After

1

We disregard the two pivots in the following discussion.
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5. Choosing Pivots From a Sample

n/2 comparisons, the input is split into two subarrays of size n/4 each. Now there remain

two recursive calls to two subarrays of size n/4, and one recursive call to a subarray of size

n/2 (the right subarray of the original input), like in strategy L. Since classical quicksort using

the median of the input clearly makes n log n key comparisons, this bound must also hold for

strategy L.
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In this section we generalize our theory with respect to the average comparison count of dual-

pivot quicksort algorithms to the case that we use more than two pivots. Some of this content,

speci�cally the generalization of the classi�cation tree, the comparison tree as a tool for clas-

si�cation, and all statements of theorems and lemmas already appeared in the Master’s thesis

of Pascal Klaue [Kla14], which was prepared under the guidance of the author. The details of

the calculations for 3-pivot quicksort in Section 6.3 can be found in [Kla14, Section 4.3], too. I

am a very thankful that he allowed me to include these parts in this thesis. The general setup

has been simpli�ed a little and the proofs presented here di�er signi�cantly from the ones

given in [Kla14]. (We use a general concentration argument similar to Lemma 3.2.2, while in

[Kla14] speci�c concentration arguments were used.) Moreover, we solve the cost recurrence

for k-pivot quicksort directly, and give a proof of Theorem 6.4.2 (which was only conjectured

in [Kla14]). Also, Section 6.5 is new. The topics presented here are part of a future publication

of the author, Martin Dietzfelbinger, and Pascal Klaue, which is in preparation.

6.1. General Setup

We assume that the input is a random permutation (e1, . . . , en) of {1, . . . , n}. Let k ≥ 1 be an

integer. The method “k-pivot quicksort” works as follows: If n ≤ k then sort the input directly.

For n > k, sort the �rst k elements such that e1 < e2 < . . . < ek and set p1 = e1, . . . , pk = ek.

In the partition step, the remaining n−k elements are split into k+1 groups A0, . . . ,Ak, where

an element x belongs to group Ah if ph < x < ph+1, see Figure 6.1. (For the ease of discussion,

we set p0 = 0 and pk+1 = n + 1.) The groups A0, . . . ,Ak are then sorted recursively. We

never compare two non-pivot elements against each other. This preserves the randomness in

the groups A0, . . . ,Ak.

Solving the Recurrence for k-Pivot �icksort. Let k ≥ 1 be �xed. As for dual-pivot

quicksort, we let Cn and Pn denote the random variables that count the comparisons made for

sorting and partitioning, respectively.
1

The total cost of sorting inputs of length n′ ≤ k in the

recursion is O(n). We shall ignore this linear term in the following, assuming the cost for the

base cases is 0. The average comparison count of k-pivot quicksort clearly obeys the following

recurrence.

1

We omit the dependency on k for random variables in the notation.
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. . . ≤ p1 p1 p1 ≤ . . . ≤ p2 p2 p2 ≤ . . . ≤ p3 · · ·p3 pk ≤ . . .pk

A0 A1 A2 Ak

Figure 6.1.: Result of the partition step in k-pivot quicksort using pivots p1, . . . , pk.

E(Cn) = E(Pn) +
1(
n
k

) ∑
a0+...+ak=n−k

(E(Ca0) + . . .+ E(Cak)) , with E(Cn) = 0 for n ≤ k.

We collect terms with a common factor E(C`), for 0 ≤ ` ≤ n − k. Fix ` ∈ {0, . . . , n − k}.
There are k+ 1 ways of choosing j ∈ {0, . . . , k}with aj = `, and if j is �xed there are exactly(
n−`−1
k−1

)
ways to choose the other segment sizes ai, i 6= j, such that a0 + . . . + ak = n − k.

(Note the equivalence between segment sizes and binary strings of length n−`−1 with exactly

k − 1 ones.) Thus, we conclude that

E(Cn) = E(Pn) +
1(
n
k

) n−k∑
`=0

(k + 1)

(
n− `− 1

k − 1

)
E(C`), (6.1)

which was also observed in [Ili14]. (This generalizes the well known formula E(Cn) = n −
1 + 2/n ·

∑
0≤`≤n−1 E(C`) for classical quicksort, the formulas for k = 2 from, e. g., [WN12]

or Section 3, and k = 3 from [Kus+14].)

The Continuous Master Theorem of Roura [Rou01] can again be applied to solve this recur-

rence. For partitioning cost E(Pn) = a ·n+O(1), for constant a, the solution of this recurrence

can be found in [Hen91] and in [Ili14].

Theorem 6.1.1
LetA be a k-pivot quicksort algorithm which has for each subarray of length n partitioning

cost E(Pn) = a · n+ o(n). Then

E(Cn) =
1

Hk+1 − 1
an lnn+ o(n lnn), (6.2)

whereHk+1 =
∑k+1

i=1 (1/i) is the (k + 1)-st harmonic number.

Proof. Recall the statement of the Continuous Master Theorem, cf. Theorem 3.1.1. Recurrence

(6.1) has weight

wn,j =
(k + 1) · k · (n− j − 1) · . . . · (n− j − k + 1)

n · (n− 1) · . . . · (n− k + 1)
.
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6. Generalization to Multi-Pivot Quicksort

We de�ne the shape function w(z) as suggested in [Rou01] by

w(z) = lim
n→∞

n · wn,zn = (k + 1)k(1− z)k−1.

Using the Binomial theorem, we note that for all z ∈ [0, 1]

|n · wn,zn − w(z)| ≤ k · (k + 1) ·
∣∣∣∣(n− zn)k−1

(n− k)k−1
− (1− z)k−1

∣∣∣∣
≤ k · (k + 1) ·

∣∣∣(1− z)k−1 ·
(
1 +O

(
n−1

))
− (1− z)k−1

∣∣∣ = O(n−1),

and

|n · wn,zn − w(z)| ≤ k · (k + 1) ·
∣∣∣∣(n− zn− k)k−1

nk−1
− (1− z)k−1

∣∣∣∣
≤ k · (k + 1) ·

∣∣∣∣(n− zn)k−1

nk−1
+O

(
n−1

)
− (1− z)k−1

∣∣∣∣ = O
(
n−1

)
.

Now we have to check (3.2) to see whether the shape function is suitable. We calculate:

n−1∑
j=0

∣∣∣∣∣wn,j −
∫ (j+1)/n

j/n
w(z) dz

∣∣∣∣∣
=

n−1∑
j=0

∣∣∣∣∣
∫ (j+1)/n

j/n
n · wn,j − w(z) dz

∣∣∣∣∣
≤

n−1∑
j=0

1

n
max

z∈[j/n,(j+1)/n]
|n · wn,j − w(z)|

≤
n−1∑
j=0

1

n

(
max

z∈[j/n,(j+1)/n]
|w(j/n)− w(z)|+O

(
n−1

))

≤
n−1∑
j=0

1

n

(
max

|z−z′|≤1/n

∣∣w(z)− w(z′)
∣∣+O

(
n−1

))

≤
n−1∑
j=0

k(k + 1)

n

(
max

|z−z′|≤1/n

∣∣∣(1− z)k−1 − (1− z − 1/n)k−1
∣∣∣+O

(
n−1

))

≤
n−1∑
j=0

O
(
n−2

)
= O

(
n−1

)
,

where we again used the Binomial theorem in the last two lines.
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Thus, w is a suitable shape function. By calculating

H := 1− k(k + 1)

∫ 1

0
z(1− z)k−1

dz = 0,

we conclude that the second case of Theorem 3.1.1 applies for our recurrence. Consequently,

we have to calculate

Ĥ := −k(k + 1)

∫ 1

0
z(1− z)k−1 ln z dz.

To estimate the integral, we use the following identity for Harmonic numbers due to Sofo

[Sof12, Lemma 7]

Hk = −k
∫ 1

0
zk−1 ln z dz.

By symmetry, we may calculate

−k(k + 1)

∫ 1

0
z(1− z)k−1 ln z dz = −k(k + 1)

∫ 1

0
(1− z)zk−1 ln(1− z) dz

= −k(k + 1)

(∫ 1

0
zk−1 ln(1− z) dz −

∫ 1

0
zk ln(1− z) dz

)
= −k(k + 1)

(
Hk+1

k + 1
− Hk

k

)
= Hk+1 − 1.

As in the case of dual-pivot quicksort, very small subarrays of size n0 ≤ n1/ ln lnn
occurring in

the recursion require special care for some algorithms that are described in the next section.

However, similar statements to the ones given in Section 3.1 (“Handling Small Subarrays”)

show that the total cost of sorting such subarrays in the recursion is bounded by o(n lnn) in

the multi-pivot case as well.

The Classification Problem. As before, it su�ces to study the classi�cation problem: Given

a random permutation (e1, . . . , en) of {1, . . . , n}, choose the pivots p1, . . . , pk and classify each

of the remaining n − k elements as belonging to the group A0, A1, . . . , Ak−1, or Ak. In this

setting, we have ai := |Ai| = pi+1 − pi − 1 for i ∈ {0, . . . , k}.
Next, we will introduce our algorithmic model for solving the classi�cation problem. Of

course, this model will share a lot of similarities with the classi�cation tree of dual-pivot quick-

sort. The main di�erence to dual-pivot quicksort, where an element was classi�ed by either

comparing it to p or to q �rst, is the classi�cation of a single element.
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6. Generalization to Multi-Pivot Quicksort

Algorithmically, the classi�cation of a single element x with respect to the pivots p1, . . . , pk
is done by using a comparison tree t. In a comparison tree the leaf nodes are labeled A0, . . . ,Ak,

from left to right, the inner nodes are labeled p1, . . . , pk, in inorder. Figure 6.2 depicts a com-

parison tree for 5 pivots. A comparison tree with a particular pivot choice p1, . . . , pk gives rise

to a binary search tree. Classifying an element means searching for this element in the search

tree. The group to which the element belongs is the label of the leaf reached in that way.

A classi�cation strategy is formally described as a classi�cation tree as follows. A classi�ca-

tion tree is a (k + 1)-way tree with a root and n − k levels of inner nodes as well as one leaf

level. Each inner node v has two labels: an index i(v) ∈ {k+ 1, . . . , n}, and a comparison tree

t(v). The element ei(v) is classi�ed using the comparison tree t(v). The k + 1 edges out of a

node are labeled 0, . . . , k, resp., representing the outcome of the classi�cation as belonging to

group A0, . . . ,Ak, respectively. On each of the (k+1)n−k paths each index from {k+1, . . . , n}
occurs exactly once. An input (e1, . . . , en) determines a path in the classi�cation tree in the ob-

vious way: sort the pivots, then use the classi�cation tree to classify ek+1, . . . , en. The groups

to which the elements in the input belong can then be read o� from the nodes and edges along

the path from the root to a leaf in the classi�cation tree.

To �x some more notation, for each node v, and for h ∈ {0, . . . , k}, we let avh be the number

of edges labeled “h” on the path from the root to v. Furthermore, let Ch,i denote the random

variable which counts the number of elements classi�ed as belonging to group Ah, for h ∈
{0, . . . k}, in the �rst i levels, for i ∈ {0, . . . , n − k}, i. e., Ch,i = avh when v is the node on

level i of the classi�cation tree reached for an input. Analogously to the dual-pivot case, in

many proofs we will need that Ch,i is not far away from its expectation ah/(n − i − k) for

�xed pivot choices. As in Section 3, one can use the method of averaged bounded di�erences to

show concentration despite dependencies between tests.

Lemma 6.1.2
Let the pivots p1, . . . , pk be �xed. Let Ch,i be de�ned as above. Then for each h with h ∈
{0, . . . , k} and for each i with 1 ≤ i ≤ n− k we have that

Pr
(
|Ch,i − E(Ch,i)| > n2/3

)
≤ 2exp

(
−n1/3/2

)
.

Proof. The proof is analogous to the proof of Lemma 3.2.2 in the dual-pivot quicksort case.

6.2. The Average Comparison Count for Partitioning

In this section, we will obtain a formula for the average comparison count of an arbitrary

classi�cation tree. We make the following observations for all classi�cation strategies: We

need k log k = O(1) comparisons to sort e1, . . . , ek, i. e., to determine the k pivots p1, . . . , pk
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p2

p1

A0 A1

p4

p3

A2 A3

p5

A4 A5

Figure 6.2.: A comparison tree for 5 pivots.

in order. If an element x belongs to group Ai, it must be compared to pi and pi+1. (Of course,

no real comparison takes place against p0 and pk+1.) On average, this leads to
2k
k+1n + O(1)

comparisons—regardless of the actual classi�cation strategy.

For the following paragraphs, we �x a classi�cation strategy, i. e., a classi�cation tree T . Let

v be an arbitrary inner node of T .

If ei(v) belongs to group Ah, exactly deptht(v)(Ah) comparisons are made to classify the

element. We let CTv denote the number of comparisons that take place in node v during clas-

si�cation. Clearly, P Tn =
∑

v∈T C
T
v . For the average classi�cation cost E(P Tn ) we get:

E(P Tn ) =
1(
n
k

) ∑
1≤p1<p2<...<pk≤n

E(P Tn | p1, . . . , pk).

We de�ne pvp1,...,pk
to be the probability that node v is reached if the pivots are p1, . . . , pk. We

may write:

E(P Tn | p1, . . . , pk) =
∑
v∈T

E(CTv | p1, . . . , pk) =
∑
v∈T

pvp1,...,pk
· E(CTv | p1, . . . , pk, v reached).

(6.3)

For a comparison tree t and group sizes a′0, . . . , a
′
k, we de�ne the cost of t on these group sizes

as the number of comparisons it makes for classifying an input with these group sizes, i. e.,

cost
t(a′0, . . . , a

′
k) :=

∑
0≤i≤k

deptht(Ai) · a′i.
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6. Generalization to Multi-Pivot Quicksort

Furthermore, we de�ne its average cost ct
avg

(a′0, . . . , a
′
k) as follows:

ct
avg

(a′0, . . . , a
′
k) :=

cost
t(a′0, . . . , a

′
k)∑

0≤i≤k a
′
i

. (6.4)

Under the assumption that node v is reached and that the pivots are p1, . . . , pk, the probability

that the element ei(v) belongs to group Ah is exactly (ah − avh)/(n − k − level(v)), for each

h ∈ {0, . . . , k}, with avh de�ned as in Section 6.1. Summing over all groups, we get

E(CTv | p1, . . . , pk, v reached) = c
t(v)
avg (a0 − av0, . . . , ak − avk).

Plugging this into (6.3) gives

E(P Tn | p1, . . . , pk) =
∑
v∈T

pvp1,...,pk
· ct(v)

avg (a0 − av0, . . . , ak − avk). (6.5)

Remark 6.2.1. From (6.5) it is clear that the order in which elements are tested has no in�uence

on the average classi�cation cost of a classi�cation strategy. So, we may always assume that

the element tests are made in some �xed order, e. g., ek+1, . . . , en.

Let Tk be the set of all possible comparison trees. For each t ∈ Tk, we de�ne the random variable

F t that counts the number of times t is used during classi�cation. For given p1, . . . , pk, and

for each t ∈ Tk, we let

f tp1,...,pk
:= E(F t | p1, . . . , pk) =

∑
v∈T
t(v)=t

pvp1,...,pk
(6.6)

be the average number of times comparison tree t is used in T under the condition that the

pivots are p1, . . . , pk.

Now, if it was decided in each step by independent random experiments with the correct

expectation ah/(n−k), for 0 ≤ h ≤ k, whether an element belongs to group Ah or not, it would

be clear that for each t ∈ Tk the contribution of t to the average classi�cation cost is f tp1,...,pk
·

ct
avg

(a0, . . . , ak). We can prove that this intuition is true for all classi�cation trees, excepting

that one gets an additional o(n) term due to the elements tested not being independent.

Lemma 6.2.2
Let T be a classi�cation tree. Then

E(P Tn ) =
1(
n
k

) ∑
1≤p1<p2<...<pk≤n

∑
t∈Tk

f tp1,...,pk
· ct

avg
(a0, . . . , ak) + o(n).
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6. Generalization to Multi-Pivot Quicksort

Proof. Fix a set of pivots p1, . . . , pk. Using the de�nition of f tp1,...,pk
from (6.6), we can re-write

(6.5) as follows:

E(P Tn | p1, . . . , pk) =
∑
v∈T

pvp1,...,pk
· ct(v)

avg (a0 − av0, . . . , ak − avk)

=
∑
t∈Tk

f tp1,...,pk
· ct

avg
(a0, . . . , ak)−∑

v∈T
pvp1,...,pk

(
c
t(v)
avg (a0, . . . , ak)− c

t(v)
avg (a0−av0, . . . , ak−avk)

)
. (6.7)

For a node v in the classi�cation tree, we say that v is good if

∣∣ct(v)
avg (a0, . . . , ak)− c

t(v)
avg (a0 − av0, . . . , ak − avk)

∣∣ ≤ k2

n1/12
.

Otherwise, v is called bad. By considering good and bad nodes in (6.7) separately, we obtain

E(P Tn | p1, . . . , pk)≤
∑
t∈Tk

f tp1,...,pk
· ct

avg
(a0, . . . , ak) +

∑
v∈T

v is good

pvp1,...,pk
· k2

n1/12
+

∑
v∈T
v is bad

pvp1,...,pk
·
(
c
t(v)
avg (a0, . . . , ak)− c

t(v)
avg (a0−av0, . . . , ak−avk)

)
≤
∑
t∈Tk

f tp1,...,pk
· ct

avg
(a0, . . . , ak) + k ·

∑
v∈T
v is bad

pvp1,...,pk
+ o(n)

=
∑
t∈Tk

f tp1,...,pk
· ct

avg
(a0, . . . , ak) +

k ·
n−k∑
i=1

Pr(a bad node is reached on level i) + o(n). (6.8)

It remains to bound the second summand of (6.8). We observe that∣∣ct(v)
avg (a0, . . . , ak)− c

t(v)
avg (a0 − av0, . . . , ak − avk)

∣∣
≤ (k − 1) ·

k∑
h=0

∣∣∣∣ ah
n− k

−
ah − avh

n− k − level(v)

∣∣∣∣
≤ (k − 1) · (k + 1) · max

0≤h≤k

{∣∣∣∣ ah
n− k

−
ah − avh

n− k − level(v)

∣∣∣∣} .
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6. Generalization to Multi-Pivot Quicksort

Thus, by de�nition, whenever v is a bad node, there exists h ∈ {0, . . . , k} such that∣∣∣∣ ah
n− k

−
ah − avh

n− k − level(v)

∣∣∣∣ > 1

n1/12
.

Recall from Section 6.1 the de�nition of the random variable Ch,i and its connection to the

values avh on level i of the classi�cation tree. For �xed i ∈ {1, . . . , n−k}, assume that the ran-

dom variables Ch,i, h ∈ {0, . . . , k}, are tightly concentrated around their expectation. (From

Lemma 6.1.2 we know that this is true with very high probability). For each h ∈ {0, . . . , k},
and each level i ∈ {1, . . . , n− k} we calculate∣∣∣∣ ah

n− k
−
ah − Ch,i
n− k − i

∣∣∣∣ ≤ ∣∣∣∣ ah
n− k

− ah(1− i/(n− k))

n− k − i

∣∣∣∣+

∣∣∣∣∣ n2/3

n− k − i

∣∣∣∣∣ =
n2/3

n− k − i
.

That means that for each of the �rst i ≤ n − n3/4
levels with very high probability we are

in a good node on level i, because the deviation from the ideal case that the element test on

level i reveals an “Ah”-element with probability ah/(n−k) is smaller than n2/3/(n−k− i) ≤
n2/3/n3/4 = 1/n1/12

. Thus, for the �rst n − n3/4
levels the contribution of the sums of the

probabilities of bad nodes in (6.8) is o(n). For the last n3/4
levels of the tree, we use that the

contribution of the probabilities that we reach a bad node on level i is at most 1 for a �xed

level.

This shows that the second summand in (6.8) is o(n). The lemma now follows from averaging

over all possible pivot choices. A lower bound follows in an analogous way.

6.3. Example: 3-pivot �icksort

Here we study some variants of 3-pivot quicksort algorithms in the light of Lemma 6.2.2. This

paradigm got recent attention by the work of Kushagra et al. [Kus+14], who provided evidence

that in practice a 3-pivot quicksort algorithm might be faster than Yaroslavskiy’s dual-pivot

quicksort algorithm.

In 3-pivot quicksort, we might choose from �ve di�erent comparison trees. These trees,

together with their comparison cost, are depicted in Figure 6.3. We will study the average

comparison count of three di�erent strategies in an arti�cial setting: We assume, as in the

analysis, that our input is a permutation of {1, . . . , n}. So, after choosing the pivots the al-

gorithm knows the exact group sizes in advance. Generalizing this strategy is a topic of the

subsequent section.

All considered strategies will follow the same idea: After choosing the pivots, they will check

which comparison tree has the smallest average cost for the group sizes found in the input; this

tree is used for all classi�cations. The di�erence will be in the set of comparison trees we allow

the algorithm to choose from. In the next section we will explain why deviating from such a

strategy, i. e., using di�erent trees during the classi�cation for �xed group sizes, does not help
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p1

A0 p2

A1 p3

A2 A3

p1

A0 p3

p2

A1 A2

A3

p2

p1

A0 A1

p3

A2 A3

p3

p1

A0 p2

A1 A2

A3

p3

p2

p1

A0 A1

A2

A3

l0 : l1 : l2 :

l3 : l4 :

a0 + 2a1 + 3a2 + 3a3 a0 + 3a1 + 3a2 + 2a3 2a0 + 2a1 + 2a2 + 2a3

2a0 + 3a1 + 3a2 + a3 3a0 + 3a1 + 2a2 + a3

Figure 6.3.: The di�erent comparison trees for 3-pivot quicksort with their comparison cost

(dotted boxes, only displaying the numerator).

for decreasing the average comparison count up to lower order terms, as already noticed for

dual-pivot quicksort with the optimal strategy N .

The Symmetric Strategy. In the algorithm of [Kus+14], the symmetric comparison tree l2
is used in the classi�cation of each element. Using Lemma 6.2.2, we get

2

E(Pn) =
1(
n
3

) ∑
a0+a1+a2+a3=n−3

(2a0 + 2a1 + 2a2 + 2a3) + o(n)

= 2n+ o(n).

Using Theorem 6.1.1, we conclude that

2

Of course, E(Pn) = 2(n− 3), since each classi�cation makes exactly two comparisons.
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6. Generalization to Multi-Pivot Quicksort

E(Cn) = 24/13n lnn+ o(n lnn) ≈ 1.846n lnn+ o(n lnn),

as known from [Kus+14]. This improves over classical quicksort (2n lnn+O(n) comparisons

on average), but is worse than optimal dual-pivot quicksort (1.8n lnn+O(n) comparisons on

average, see Section 4) or median-of-3 quicksort (1.714n lnn+O(n) comparisons on average,

see Section 5).

Using Three Trees. Here we restrict our algorithm to choose only among the comparison

trees {l1, l2, l3}. The computation of a cost-minimal comparison tree is then simple: Suppose

that the segment sizes are a0, . . . , a3. If a0 > a3 and a0 > a1 + a2 then comparison tree l1
has minimum cost. If a3 ≥ a0 and a3 > a1 + a2 then comparison tree l3 has minimum cost.

Otherwise l2 has minimum cost.

Using Lemma 6.2.2, the average partition cost with respect to this set of comparison trees

can be calculated (using Maple
®

) as follows
3
:

E(Pn) =
1(
n
3

) ∑
a0+...+a3=n−3

min
{
a0+2a1+3a2+3a3,2a0+2a1+2a2+2a3,

2a0+3a1+3a2+1a3

}
+ o(n)

=
17

9
n+ o(n).

This yields the following average comparison cost:

E(Cn) =
68

39
n lnn+ o(n lnn) ≈ 1.744n lnn+ o(n lnn).

Using All Five Trees. Now we let our strategies choose among all �ve trees. Using Lemma 6.2.2

and the average cost for all trees from Figure 6.3, we calculate (using Maple
®

)

E(Pn) =
1(
n
3

) ∑
a0+...+a3=n−3

min
{ a0+2a1+3a2+3a3,a0+3a1+3a2+2a3,

2a0+2a1+2a2+2a3,2a0+3a1+3a2+a3,
3a0+3a1+2a2+a3

}
+ o(n)

=
133

72
n+ o(n). (6.9)

This yields the following average comparison cost:

3

There was a lot of tweaking and manual work necessary before Maple
®

was able to �nd a closed form of the

sum. Details of these calculations can be found in [Kla14].
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E(Cn) =
133

78
n lnn+ o(n lnn) ≈ 1.705n lnn+ o(n lnn),

which is—as will be explained in the next section—the lowest possible average comparison

count one can achieve by picking three pivots directly from the input. So, using three pivots

gives a slightly lower average comparison count than quicksort using the median of three

elements as the pivot and makes about 0.1n lnn fewer comparisons as comparison-optimal

dual-pivot quicksort.

6.4. (Asymptotically) Optimal Classification Strategies

In this section, we will discuss the obvious generalizations for the optimal strategies O, C, N ,

and SP for dual-pivot quicksort to k-pivot quicksort. In di�erence to Section 4, we �rst present

the “improper” classi�cation strategy (O andN , respectively) that uses di�erent classi�cation

trees depending on the pivot choices and then directly show its connection with the imple-

mentation of that strategy (C and SP , respectively).

Since all these strategies need to compute cost-minimal comparison trees, this section starts

with a short discussion of algorithms for this problem. Then, we discuss the four di�erent

strategies.

6.4.1. Choosing an Optimal Comparison Tree

For optimal k-pivot quicksort algorithms it is of course necessary to devise an algorithm that

can compute an optimal comparison tree for group sizes a0, . . . , ak, i. e., a comparison tree that

minimizes (6.4). It is well known that the number of binary search trees with k inner nodes

equals the k-th Catalan number, which is approximately 4k/
(

(k + 1)
√
πk
)
. Choosing an

optimal tree is a standard application of dynamic programming, and is known from textbooks

as “choosing an optimum binary search tree”, see, e. g., [Knu73]. The algorithm runs in time

and space O(k2).

6.4.2. The Optimal Classification Strategy and its Algorithmic Variant

Here, we consider the following strategyOk:
4 Given a0, . . . , ak, the comparison tree t(v) is one

that minimizes costt(a0 − av0, . . . , ak − avk) over all comparison trees t.
Although being unrealistic, since the exact group sizes a0, . . . , ak are in general unknown to

the algorithm, strategy Ok is the optimal classi�cation strategy, i. e., it minimizes the average

comparison count.

4

For all strategies we just say which comparison tree is used in a given node of the classi�cation tree, since the

test order is arbitrary (see Remark 6.2.1).
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Theorem 6.4.1
Strategy Ok is optimal for each k.

Proof. Strategy Ok chooses for each node v in the classi�cation tree the comparison tree that

minimizes the average cost in (6.5). So, it minimizes each term of the sum, and thus minimizes

the whole sum in (6.5).

We remark here that in di�erence to strategy O2, cf. Theorem 4.2.1, we could not �nd an

argument that yields the average comparison count of strategy Ok for k ≥ 3. This is an

important open question.

As in the dual-pivot case there exist other strategies whose average comparison count di�ers

by at most o(n) from the average comparison count of Ok. Again, we call such strategies

asymptotically optimal. Strategy Ck is an algorithmic variant of Ok. It works as follows: The
comparison tree t(v) is one that minimizes costt(av0, . . . , a

v
k) over all comparison trees t.

Theorem 6.4.2
Strategy Ck is asymptotically optimal for each k.

Proof. By Remark 6.2.1, assume that strategy Ok classi�es elements in the order ek+1, . . . , en,

while strategy Ck classi�es them in reversed order, i. e., en, . . . , ek+1. Then the comparison tree

that is used by Ck for element ek+i is the same as the one that Ok uses for element ek+i+1, for

i ∈ {1, . . . , n− k − 1}. Let CTi denote the number of comparisons used to classify ek+i with

classi�cation tree T .

Fix the pivots p1, . . . , pk, let T denote the classi�cation tree of strategyOk, and let T ′ denote

the classi�cation tree of strategy Ck. Fix some integer i ∈ {1, . . . , n− k − 1}. Fix an arbitrary

sequence (a′0, . . . , a
′
k) ∈ Nk+1

, for a′h ≤ ah, h ∈ {0, . . . , k}, with a′0 + . . . + a′k = i − 1 and

|a′h − (i − 1) · ah/(n − k)| ≤ n2/3
. Assume that the elements ek+1, . . . , ek+i−1 have group

sizes a′0, . . . , a
′
k, and let t be a comparison tree with minimal cost w.r.t. (a0− a′0, . . . , ak− a′k).

For �xed i ∈ {2, . . . , n− k − 1}, we calculate:

∣∣∣E (CTi | a0, . . . , ak
)
− E

(
CT

′
i−1 | a0, . . . , ak

)∣∣∣
=
∣∣∣ct

avg
(a0 − a′0, . . . , ak − a′k)− ctavg

(a′0, . . . , a
′
k)
∣∣∣

=

∣∣∣∣∣
∑k

h=0 depth(Ah) · (ah − a′h)

n− k − i
−
∑k

h=0 depth(Ah) · a′h
i

∣∣∣∣∣
≤

∣∣∣∣∣
∑k

h=0 depth(Ah)(ah − ah·i
n−k )

n− k − i
−

∑k
h=0 depth(Ah)

(
i · ah

n−k

)
i

∣∣∣∣∣+
k2 · n2/3

n− i− k
+
k2 · n2/3

i

=
k2 · n2/3

n− i− k
+
k2 · n2/3

i
.
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Since the concentration argument of Lemma 6.1.2 holds with very high probability, the di�er-

ence between the average comparison count of element ek+i (for Ok) and ek+i−1 (for Ck) is at

most

k2 · n2/3

n− i− k
+
k2 · n2/3

i
+ o(1).

Thus, the di�erence of the average comparison count over all elements ek+i, . . . , ek+j , i ≥
n3/4, j ≤ n − n3/4

, is at most o(n). For elements outside of this range, the di�erence in the

average comparison count is at most 2k ·n3/4
. So, the total di�erence of the comparison count

between strategy Ok and strategy Ck is at most o(n).

This shows that the optimal strategy Ok can be approximated by an actual algorithm that

makes an error of up to o(n), which sums up to an error term of o(n lnn) over the whole re-

cursion. We have seen in the dual-pivot case that the di�erence betweenO2 and C2 isO(log n).

It remains an open question to prove tighter bounds than o(n) for the di�erence of the average

comparison count of Ok and Ck for k ≥ 3.

6.4.3. An Oblivious Strategy and its Algorithmic Variant

Now we turn to strategy Nk: Given a0, . . . , ak, the comparison tree t(v) used at node v is one
that minimizes costt(a0, . . . , ak) over all comparison trees t.

StrategyNk uses a �xed comparison tree for all classi�cations for given group sizes, but has

to know these sizes in advance.

Theorem 6.4.3
Strategy Nk is asymptotically optimal for each k.

Proof. According to Lemma 6.2.2 the average comparison count is determined up to lower order

terms by the parameters f tp1,...,pk
, for each t ∈ Tk. For each p1, . . . , pk, strategyNk chooses the

comparison tree which minimizes the average cost. According to Lemma 6.2.2, this is optimal

up to an o(n) term.

We will now describe how to implement strategy Nk by using sampling. Strategy SPk works

as follows: Let t0 ∈ Tk be an arbitrary comparison tree. After the pivots are chosen, inspect the

�rst n3/4
elements and classify them using t0. Let a′0, . . . , a

′
k denote the number of elements

that belonged to A0, . . . ,Ak, respectively. Let t be an optimal comparison tree for a′0, . . . , a
′
k.

Then classify each of the remaining elements by using t.

Theorem 6.4.4
Strategy SPk is asymptotically optimal for each k.
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Proof. Fix the k pivots p1, . . . , pk and thus a0, . . . , ak. Let t∗ be a comparison tree with minimal

cost w.r.t. a0, . . . , ak.

According to Lemma 6.2.2, the average comparison count E(CSPkn | p1, . . . , pk) can be cal-

culated as follows:

E(CSPkn | p1, . . . , pk) =
∑
t∈Tk

f tp1,...,pk
· ct

avg
(a0, . . . , ak) + o(n).

Let a′0, . . . , a
′
k be the group sizes after inspecting n3/4

elements. Let t be a comparison tree

with minimal cost w.r.t. a′0, . . . , a
′
k. We call t good if

ct
avg

(a0, . . . , ak)− ct
∗

avg
(a0, . . . , ak) ≤

2k

n1/12
, or equivalently

cost
t(a0, . . . , ak)− cost

t∗(a0, . . . , ak) ≤ 2kn11/12, (6.10)

otherwise we call t bad. We de�ne goodt as the event that the sample yields a good comparison

tree. We calculate:

E(CSPkn | p1, . . . , pk) =
∑
t∈Tk
t good

f tp1,...,pk
· ct

avg
(a0, . . . , ak) +

∑
t∈Tk
t bad

f tp1,...,pk
· ct

avg
(a0, . . . , ak) + o(n)

≤ n · ct∗
avg

(a0, . . . , ak) +
∑
t∈Tk
t bad

f tp1,...,pk
· ct

avg
(a0, . . . , ak) + o(n)

≤ n · ct∗
avg

(a0, . . . , ak) + k ·
∑
t∈Tk
t bad

f tp1,...,pk
+ o(n). (6.11)

Now we derive an upper bound for the second summand of (6.11). After the �rst n3/4
classi�-

cations the algorithm will either use a good comparison tree or a bad comparison tree for the

remaining classi�cations. Pr
(
goodt | p1, . . . , pk

)
is the ratio of nodes on each level from n3/4

to n− k of the classi�cation tree of nodes labeled with bad trees (in the sense of (6.10)). Sum-

ming over all levels, the second summand of (6.11) is thus at most k ·n ·Pr
(
goodt | p1, . . . , pk

)
.

Lemma 6.4.5
Conditioned on p1, . . . , pk, goodt occurs with very high probability.

Proof. For each i ∈ {0, . . . , k}, let a′i be the random variable that counts the number of ele-

ments from the sample that belong to group Ai. According to Lemma 6.1.2, with very high

probability we have that |a′i − E(a′i)| ≤ n2/3
, for each i with 0 ≤ i ≤ k. By the union bound,

with very high probability there is no a′i that deviates by more than n2/3
from its expectation

n−1/4 · ai. We will now show that if this happens then the event goodt occurs. We obtain the
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following upper bound for an arbitrary comparison tree t′ ∈ Tk:

cost
t′
(
a′0, . . . , a

′
k

)
=
∑

0≤i≤k
deptht′(Ai) · a′i

≤
∑

0≤i≤k
deptht′(Ai) · n2/3 + n−1/4 · cost

t′(a0, . . . , ak)

≤ k2n2/3 + n−1/4 · cost
t′(a0, . . . , ak).

Similarly, we get a corresponding lower bound. Thus, for each comparison tree t′ ∈ Tk it holds

that

cost
t′(a0, . . . , ak)

n1/4
− k2n2/3 ≤ cost

t′(a′0, . . . , a
′
k) ≤

cost
t′(a0, . . . , ak)

n1/4
+ k2n2/3,

and we get the following bound:

cost
t(a0, . . . , ak)− cost

t∗(a0, . . . , ak)

≤ n1/4
(
cost

t(a′0, . . . , a
′
k)− cost

t∗(a′0, . . . , a
′
k)
)

+ 2n1/4 · k2 · n2/3

≤ 2k2 · n11/12.

(The last inequality follows because t has minimal cost w.r.t. a′0, . . . , a
′
k.) Thus, t is good.

Using this lemma, the average comparison count of SPk is at most a summand of o(n) larger

than the average comparison count of Nk. Hence, SPk is asymptotically optimal as well.

Remark 6.4.6. Since the number of comparison trees in Tk is exponentially large in k, one

might want to restrict the set of used comparison trees to some subset T ′k ⊆ Tk. The strategies

presented here are optimal w.r.t. this subset of possible comparison trees as well.

6.5. Guesses About the Optimal Average Comparison Count of
k-Pivot �icksort

In this section we use the theory developed so far to consider the optimal average comparison

count of k-pivot quicksort. We compare the result to the well known median-of-k strategy of

classical quicksort.

By Lemma 6.2.2 and Theorem 6.4.3, the minimal average comparison cost for k-pivot quick-

sort, up to lower order terms, is

1(
n
k

) ∑
a0+...+ak=n−k

min
{

cost
t(a0, . . . , ak) | t ∈ Tk

}
+ o(n). (6.12)
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k opt. k-pivot median-of-k

2 1.8n lnn —

3 1.705n lnn 1.714n lnn

4 1.65n lnn —

5 1.61n lnn 1.622n lnn

6 1.59n lnn —

7 1.577n lnn 1.576n lnn

8 1.564n lnn —

9 1.555n lnn 1.549n lnn

Table 6.1.: Optimal average comparison count for k-pivot quicksort for k ∈ {2, . . . , 9}. For

k ≥ 4 these numbers are based on experiments). For odd k, we also include the

average comparison count of quicksort with the median-of-k strategy. (The numbers

for the median-of-k variant can be found in [Emd70] or [Hen91].)

Then applying Theorem 6.1.1 gives the minimal average comparison count for k-pivot quick-

sort.

Unfortunately, we were not able to solve (6.12) for k ≥ 4. (Already the solution for k = 3 as

stated in Section 6.3 required a lot of manual tweaking before using Maple
®

.) This remains an

open question. We resorted to experiments. As we have seen at the end of Section 4, estimating

the total average comparison count by sorting inputs does not allow to estimate the leading

term of the average comparison count correctly, because lower order terms have a big in�uence

on the average comparison count for real-life input lengths. We used the following approach

instead: For each n ∈ {5 · 104, 105, 5 · 105, 106, . . . , 5 · 107}, we generated 10 000 random

permutations of {1, . . . , n} and ran strategyOk for each input, i. e., we only classi�ed the input

with the optimal strategy. The �gures were constant beyond n = 5 · 105
, so we restrict our

evaluation to n = 5 · 107
. For the average partitioning cost measured in these experiments, we

then applied (6.2) to derive the leading factor of the total average comparison count. Table 6.1

shows the measurements we obtained for k ∈ {2, . . . , 9} and n = 5 · 107
. Note that the results

for k ∈ {2, 3} are almost identical to the exact theoretical bounds. Additionally, this table

shows the theoretical results known for classical quicksort using the median-of-k strategy, see

Section 5. Interestingly, from Table 6.1 we see that based on our experimental data for k-pivot

quicksort the median-of-k strategy has a slightly lower average comparison count than the

(rather complicated) optimal partitioning methods for k-pivot quicksort for k ≥ 7.

We have already seen that for classical quicksort using the median-of-k strategy, the leading

term of the average sorting cost matches the lower bound of ≈ 1.4426..n lnn + O(n) for k
large enough [MR01]. This is also true for optimal k-pivot quicksort. For a proof, observe that

optimal k-pivot quicksort is not worse than k-pivot quicksort that uses a �xed tree from Tk in

each classi�cation. Now, suppose k = 2κ − 1, for an integer κ ≥ 1. Then there exists exactly
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one tree in Tk in which all leaves are on level κ (“the symmetric tree”). Classifying the input

with this tree makes exactly κ · (n−k) comparisons. According to Theorem 6.1.1, this strategy

turned into a k-pivot quicksort algorithm has average sorting cost

κn lnn

H2κ − 1
+ o(n lnn). (6.13)

When k goes to in�nity, the average sorting cost is hence 1/(ln 2)n lnn + o(n lnn). So,

the average comparison count of optimal k-quicksort also converges to the lower bound for

comparison-based sorting algorithms.

6.6. Discussion

In this section we considered the generalization of our theory for dual-pivot quicksort to the

case that we use more than two pivots. We showed how to calculate the average comparison

count for an arbitrary k-pivot quicksort algorithm. We generalized the natural optimal dual-

pivot quicksort algorithms to k-pivot quicksort algorithms and proved their optimality with

respect to minimizing the average comparison count. While we exempli�ed our theory at

the case of three pivots, the formulas are so complicated that for k ≥ 4 we had to resort

to experiments. The results of these experiments suggested that comparison-optimal k-pivot

quicksort is not better than classical quicksort using the median-of-k strategy, even for small

k. Since this section ends our study on the average comparison count of k-pivot quicksort

algorithms, we re�ect on some open questions:

1. It would be interesting to see how one calculates the solution for (6.12) to obtain the

optimal average comparison count of k-pivot quicksort for k ≥ 4.

2. One should also study the average comparison count of strategyOk, for k ≥ 3, in terms

of a direct argument comparable to the proof of Theorem 4.2.1 for O2. Although for

k = 3 we know from the optimality of strategyN3 in connection with (6.9) that strategy

O3 makes 133/72n+ o(n) comparisons on average, we do not know how to obtain this

bound directly.

3. We conjecture that the di�erence in the average comparison count of Ok and Ck is sig-

ni�cantly smaller than o(n). Experiments suggest that the di�erence is O
(
k2 log n

)
.

4. The comparison of k-pivot quicksort and median-of-k quicksort from Table 6.1 might be

unfair. We compared these variants because each of these algorithms looks at k elements

of the input. Actually, the cost for sorting the pivots in�uences the linear term of the

average comparison count, so one should rather look for k and k′ such that optimal

k-pivot quicksort makes the same e�ort as classical quicksort using the median-of-k′

strategy with respect to lower order terms. To prove such results, the solution of the

recurrence for generalized quicksort (see Theorem 6.1.1) must involve exact lower order
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terms. Currently, such solutions are only known for partitioning cost a · n + O(1) for

constant a from [Hen91; Ili14].

We close our theoretical study of optimal k-pivot quicksort w.r.t. the average comparison count

with one remark about the practical impact of optimal k-pivot quicksort algorithms. When the

optimal comparison tree is computed by the dynamic programming algorithm mentioned in

[Knu73] for optimal binary search trees, neither strategy Ck nor SPk can compete in empirical

running times with classical quicksort. For k small enough, we can �nd out what comparisons

the dynamic programming approach makes to compute the optimal comparison tree. These

decisions can be “hard-coded” into the k-pivot quicksort algorithm. For k = 3, the results

of the experiments from [Kla14] clearly show that optimal strategies cannot compete with

classical quicksort, even when bypassing the computation of a cost-minimal comparison tree.

We will consider the case k = 2 in detail in Section 8. The experiments suggest that strategy

SP2 is faster than classical quicksort.

This immediately raises the question if there are other theoretical cost measures more suited

to explain running time behavior. This will be the topic of the next section.
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In the previous sections we focused on the average number of comparisons needed to sort a

given input in terms of solving the classi�cation problem. We have described very natural

comparison-optimal k-pivot quicksort algorithms. However, experiments suggested that the

improvements in the average comparison count can be achieved in much simpler ways, e. g.,

by using the median from a small sample as pivot in classical quicksort.

Kushagra et al. described in [Kus+14] a fast three-pivot algorithm and gave reason to believe

that the improvements of multi-pivot quicksort algorithms with respect to running times are

due to their better cache behavior. They also reported from experiments with a seven-pivot

algorithm, which ran more slowly than their three-pivot algorithm. The goal of this section is

to �nd out how their arguments generalize to quicksort algorithms that use more than three

pivots. In connection with the running time experiments from Section 8, this allows us to make

more accurate predictions than [Kus+14] about the in�uence of cache behavior to running

time. One result of this study will be that it is not surprising that their seven-pivot approach

is slower, because it has worse cache behavior than three- or �ve-pivot quicksort algorithms

using a speci�c partitioning strategy.

At the beginning of this section we will re�ect upon the importance of di�erent cost mea-

sures with respect to the running time of a sorting algorithm. Then we will specify the prob-

lem setting, introduce the basic primitive which allows “moving elements around” and discuss

related work. Next, we will describe three di�erent algorithms. These algorithms will be evalu-

ated with respect to the number of assignments they make and the number of memory accesses

they incur. The latter cost measure will allow us to speculate about the cache behavior of these

algorithms.

7.1. Why Look at Other Cost Measures Than Comparisons

Counting the average number of assignments a sorting algorithm makes on a given input is

the another classical cost measure for sorting algorithms. From a running time perspective, it

seems unintuitive that comparisons are the crucial factor, especially when key comparisons are

cheap, e. g., when comparing 32-bit integers. Counting assignments might be more important,

because an assignment usually involves access to a memory cell, which can be very slow due

to signi�cant speed di�erences between the CPU and the main memory. The situation is of

course not that simple. From an empirical point of view, a mixture of many di�erent compo-

nents makes an algorithm fast (or unavoidably slow). For example, while the comparison of two

elements is usually cheap, mispredicting the destination that a branch takes, i. e., the outcome
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of the comparison, may incur a signi�cant penalty to running time, because the CPU wasted

work on executing instructions on the wrongly predicted branch. These so-called branch mis-
predictions are an important bottleneck to the performance of modern CPU’s [HP12]. On the

other hand, the cache behavior of an algorithm is also very important to its running time, be-

cause an access to main memory in modern computers can be slower than executing a few

hundred simple CPU instructions. A cache tries to speed up access to main memory.

We �rst give a short theoretical introduction to caches. Here we adopt the cache-related

notation of Mehlhorn and Sanders [MS03]. A cache consists of m cache blocks or cache lines.
Each cache block has a certain size B. The cache size is M = m · B. (This can be measured

in bytes or the number of items of a certain data type.) Data transport from higher levels, e. g.,

other caches or main memory, is done in memory blocks. Typically, the cache is divided into

s = m/a cache sets, where a is called the associativity of the cache. A memory block with

address x · B can only be stored in the cache set x mod s. For reasons of speed, price, and

energy consumption, actual caches usually have an associativity of at most 16.

Every memory access is �rst looked up in the cache. If the cache contains the content of

the memory cell then a cache hit occurs and the data can be used. Otherwise a cache miss is

incurred and the data has to be retrieved from memory (or a higher-level cache). Then it will

be stored in the cache. Storing a memory segment usually means that another segment must

be evicted, and there exist di�erent strategies to handle this situation. Nowadays, many CPU’s

use a variant of the “least recently used” (LRU) strategy, which evicts the cache block in the

cache set whose last access lies farthest away in the past.

The cache structure of modern CPU’s is hierarchical. For example, the Intel i7 that we used

in our experiments has three data caches: There is a very small L1 cache (32KB of data) and

a slightly larger L2 cache (256KB of data) very close to the processor. Each CPU core has its

own L1 and L2 cache. They are both 8-way associative. Shared among cores is a rather big L3
cache that can hold 8MB of data and is 16-way associative. Caches greatly in�uence running

time. While a lookup in main memory costs many CPU cycles (≈ 140 cycles on the Intel i7
used in our experiments), a cache access is very cheap and costs about 4, 11, and 25 cycles

for a hit in L1, L2, and L3 cache, respectively [Lev09]. Also, modern CPU’s use prefetching
to load memory segments into cache before they are accessed. Usually, there exist di�erent

prefetchers for di�erent caches, and there exist di�erent strategies to prefetch data, e. g., “load

two adjacent cache lines”, or “load memory segments based on predictions by monitoring data

�ow”.

From a theoretical point, much research has been conducted to study algorithms with respect

to their cache behavior, see, e. g., the survey paper of Rahman [Rah02]. (We recommend this

paper as an excellent introduction to the topic of caches.) For such a study one �rst had to re�ne

the standard model of computation, because in the classical RAM model [SS63] the machine

operates on machine words with random access costing unit time. This model cannot be used to

study cache e�ects. Consequently, Aggarwal and Vitter proposed the external memory model

(EM-model) [AV88], in which the machine consists of a fast memory (“cache”) of size M and

an in�nitely large, slow memory (“disk”). Data can only be accessed from fast cache and is

62



7. The Cost of Rearranging Elements

exchanged between cache and disk in blocks of size B. The complexity of an algorithm in

this model is usually measured by the number of cache faults it incurs. An algorithm in this

model can use M and B and must work for all (suitable) values of M and B. A cache-oblivious
algorithm in the external memory model does not use M and B in its program code [Fri+12].

Hence, these algorithms show good cache behavior for arbitrary memory sizes.

In [LL99], LaMarca and Ladner gave a theoretical analysis of the cache behavior of sorting

algorithms. They compared quicksort, mergesort, heapsort and radix sort and showed that

cache misses can be analyzed rigorously. In the style of their paper, we will study three natural

partitioning strategies for k-pivot quicksort.

The �rst strategy extends the “crossing-pointer technique” of Hoare [Hoa62] for classical

quicksort, which was also the basis of Yaroslavskiy’s algorithm [WN12] and the 3-pivot algo-

rithm of Kushagra et al. [Kus+14]. The basic idea of this strategy is that one pointer scans

the array from left to right; another pointer scans the array from right to left. Misplaced el-

ements are exchanged “on the way” with the help of pointers that point to the starting cells

of group segments. Our results, with regard to the cache behavior of this partitioning strat-

egy, show that variants using 3 or 5 pivots have the best cache behavior. No bene�t with

respect to cache behavior can be achieved by using more than 5 pivots. This allows us to

study the in�uence of cache behavior to running time in much more detail than previous work

did. For example, Kushagra et al. [Kus+14] analyzed the cache behavior of classical quicksort,

Yaroslavskiy’s dual-pivot quicksort, and their own three-pivot algorithm. They drew the con-

clusion that cache behavior is the important factor to running time. Our results indicate that

this hypothesis should be used with caution, since the 5-pivot quicksort algorithm will turn

out to have even better cache behavior than the algorithm of Kushagra et al., but it will be even

slower than classical quicksort.

The second and third strategy work in a two-pass fashion and are inspired by the radix sort

implementation of McIlroy et al. [MBM93] and the sample sort implementation of Sanders and

Winkel [SW04]. Both strategies classify the input in the �rst pass to obtain the segment sizes of

the input elements. One strategy uses these group sizes to copy elements to a correct position

by allocating a second array. (Thus, it is not in-place.) The other strategy uses the segment

sizes and permutes the input to obtain the actual partition. We will show that both of these

strategies have good cache behavior when many pivots (e. g., 127 pivots) are used. However,

we shall see that it is necessary to store the element classi�cation in the �rst pass to make

this algorithm competitive with respect to running time. So, we get an interesting space-time

tradeo�.

While the importance of hardware data caches is folklore today, there are other cache like

structures which are not that well known. According to the survey paper of Rahman [Rah02],

minimizing misses in the so-called translation-lookaside bu�er (TLB) can be as important (or

more important) to the performance of programs. This bu�er accelerates the translation of

virtual addresses (used by every process in modern operation systems) to physical addresses in

memory. Whenever the physical address corresponding to a virtual address in a process cannot

be obtained from this bu�er, the hardware page walker works with the translation table of the
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operation system to obtain the mapping. The crucial limitation is the number of entries it can

hold. On our Intel i7 the TLB has two levels, consisting of 64 and 512 entries, respectively, for

each core [Lev09]. In addition, there is a TLB consisting of 32 entries for large pages. Note that

TLB misses and data cache misses can occur independently of each other, since entries in the

data cache are tagged by their physical address in main memory. The importance of the TLB in

sorting algorithms has been noted in other papers, e. g., by Agarwal in [Aga96] and Jiménez-

González et al. in [JNL02]. However, a theoretical model to address the cost of virtual address

translation has only been introduced recently by Jurkiewicz and Mehlhorn [JM13]. Their paper

is motivated by some very surprising experimental �ndings. For example, they showed that

a random scan of an array with n elements has running time behavior like O(n log n), where

standard measures would predict time O(n). As it will turn out, TLB misses will also play a

crucial role to the performance of multi-pivot quicksort algorithms.

Besides cache behavior, branch mispredictions can be another crucial factor for running time.

A study of the empirical behavior of sorting algorithms with regard to branch mispredictions is

due to Biggar et al. [Big+08]. Modern CPU’s are pipelined and use a dynamic branch predictor

to predict the outcome of a conditional branch. A mispredicted branch always means wasted

work because the wrong instructions have been executed in the pipeline. On some hardware

architectures, the pipeline must be �ushed after a branch misprediction, which usually involves

a penalty proportional to the depth of the pipeline. (This is not the case on the Intel i7 we used

in our experiments.) For general purpose programs, these predictors work rather well, see, e. g.,

the paper of Biggar et al. [Big+08] and the references therein. However, branch prediction is

hard for comparison-based sorting algorithms: Slightly extending the standard lower bound

argument based on decision trees for comparison-based sorting algorithms, Brodal and Moruz

showed in [BM05] that a comparison-based sorting algorithm which makes O(dn log n) com-

parisons, for a constant d > 1, makes Ω(n log n/ log d) branch mispredictions. (For d = 1
it must make Ω(n log n) branch mispredictions.) Making these calculations precise, in algo-

rithms which make close to n log n comparisons, each comparison has a close to 50% chance of

being true, see, e. g., [SW04].
1

When the number of comparisons is further away from n log n,

comparisons are biased. For example, Biggar et al. [Big+08] proved that in classical quicksort

with random pivot choice, key comparisons can be successfully predicted in about 71% of the

cases. A very recent, detailed analysis of classical quicksort and Yaroslavskiy’s algorithm is

due to Martínez et al. [MNW15]. They showed that branch mispredictions can be analyzed

accurately. However, they conclude that this cost measure cannot explain the actual di�erence

in running time between Yaroslavskiy’s algorithm and classical quicksort observed in practice.

Branch mispredictions can yield odd e�ects for speci�c hardware choices: Kaligosi and

Sanders [KS06] report from experiments on a Pentium 4 Prescott generation which has such

1

This can also be used to explain many insights we found in Section 5. A dual pivot approach that uses the tertiles

of a sample yields “skewed” pivots, i. e., biased comparisons. Hence it cannot make close to n logn comparisons

on average. Furthermore, it explains why strategy L using the elements of rank n/4 and n/2 as pivots makes

close to n logn comparisons. Also, Yaroslavskiy’s algorithm cannot achieve this lower bound because it uses

both pivots for comparisons and hence must have biased comparisons.
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a long pipeline (that has to be �ushed upon a misprediction) that branch mispredictions be-

come a dominating factor in the running time. In that case, choosing a skewed pivot may

actually improve running time! For example, in [KS06] the fastest quicksort variant uses the

element of rank n/10 as pivot. We will disregard branch mispredictions in this section. In the

experimental evaluation in Section 8 we will report on the behavior of our algorithms with

respect to branch mispredictions and mention some known programming techniques to lower

the number of branch mispredictions.

7.2. Problem Se�ing, Basic Algorithms and Related Work

For the analysis, we again assume that the input is a random permutation of the set {1, . . . , n}
which resides in an array A[1..n]. Fix an integer k ≥ 1. The �rst k elements are chosen as

the pivots. Our goal is to obtain a partition of the input, as depicted in Figure 6.1 on Page 43.

Here, determining whether the element A[i] belongs to group A0,A1, . . . , or Ak is for free,

and we are interested in the average number of element movements and the average number

of memory accesses needed to obtain the partition. (The latter cost measure will be de�ned

precisely in Section 7.5.)

In terms of moving elements around, one traditionally uses the “swap”-operation which

exchanges two elements. In the case that one uses two or more pivots, we we will see that it is

bene�cial to generalize this operation. We de�ne the operation rotate(i1, . . . , i`) as follows:

tmp← A[i1];A[i1]← A[i2];A[i2]← A[i3]; . . . ;A[i`−1]← A[i`];A[i`]← tmp.

Intuitively, rotate performs a cyclic shift of the elements by one position. (Aswap(A[i1], A[i2])
is a rotate(i1, i2).) A rotate(i1, . . . , i`) operation makes exactly `+ 1 assignments.

Assuming the groups of all elements are known, we can think of the problem in the following

way: Given n elements from the set {0, . . . , k}, for k being a constant, rearrange the elements

into ascending order. For k = 2, this problem is known under the name “Dutch national

�ag problem”, proposed by Dijkstra [Dij76]. (Given n elements where each element is either

“red”, “white”, or “blue”, rearrange the elements such that they resemble the national �ag of

the Netherlands.) The algorithm proposed by Dijkstra has been used to deal with the problem

of equal elements in standard quicksort and is known as “3-way partitioning” [SB]. As noticed

by Wild et al. in [WNN13], an improved algorithm for the dutch national �ag problem due

to Meyer [Mey78] is the partitioning strategy in Yaroslavskiy’s algorithm. For the analysis of

algorithms solving this problem see [McM78]. For k > 2, we only know the work of McIlroy

et al. [MBM93], who devised an algorithm they named “American �ag sort”, which will be the

topic of Section 7.3.1.
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7.3. Algorithms

We will discuss three di�erent algorithms. We shall disregard the pivots in the description of

the algorithms. We assume that they reside in the �rst k cells of the array. In a �nal step the

k pivots have to be moved into the correct positions between group segments. This is possible

with at most k rotate operations.

7.3.1. Partitioning A�er Classification

Here we assume that the elements of the input have been classi�ed in a �rst pass. Partitioning

the input with respect to the k + 1 di�erent groups is then solved via the following approach

that is an adaption of Algorithm 4.1 from [MBM93].

Each k ≥ 1 gives rise to an algorithm Permutek. It works in the following way. Suppose

the group sizes are a0, . . . , ak. For each h ∈ {0, . . . , k} let oh = k + 1 +
∑

0≤i≤h−1 ai.
Let ok+1 = n + 1. Then the segment in the array which contains the elements of group Ah

in the partition is A[oh..oh+1 − 1]. For each group Ah, h ∈ {0, . . . , k}, the algorithm uses

two variables. The variable ch (“count”) contains the number of elements in group Ah that

have not been seen so far. (Of course, initially ch = ah.) The variable oh (“o�set”) contains

the largest index where the algorithm has made sure that A[oh..oh − 1] only contains Ah-

elements. Initially, oh = oh. Basically, the algorithm scans the array from left to right until it

�nds a misplaced element at A[j] with oh ≤ j ≤ oh+1 − 1. Let this element be x and suppose

x belongs to group h′ ∈ {0, . . . , k}. Now repeat the following until an element is written into

A[j]: The algorithm scans the array from A[oh′ ] to the right until it �nds a misplaced element

y at A[j′]. (Note that j′ ≤ oh′+1 − 1.) Assume y belongs to group h′′. Write x into A[j′]. If

h′′ = h, then write y into A[j]. Otherwise, set h′ = h′′ and x = y and continue the loop.

This is iterated until the input is partitioned. The pseudocode of the algorithm is shown in

Algorithm 1. An example of this algorithm is given in Figure 7.1.

We also consider a variant of Algorithm 1 we call “Copyk”. This algorithm was the basic par-

titioning algorithm in the “super scalar sample sort algorithm” of Sanders and Winkel [SW04].

It uses the same o�set values as Algorithm 1. Instead of an in-place permutation it allocates a

new array and produces the partition by sweeping over the input array, copying elements to a

�nal position in the new array using these o�sets. So, this algorithm does not work in-place.

The pseudocode of this algorithm is given as Algorithm 2.

7.3.2. Partitioning During Classification

We now describe a family of algorithms that produce a partition in a single pass. Each k ≥ 1
gives rise to an algorithm Exchangek. The basic idea is similar to classical quicksort: One

pointer scans the array from left to right; another pointer scans the array from right to left,

exchanging misplaced elements on the way. Algorithm 3 uses k − 1 additional pointers to

store the start of groups A1, . . . ,Ak−1. Figure 7.3 shows the idea of the algorithm for k = 6;
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A0 A1 A2? ? ? ? ? ?

o0 o1 o2

Figure 7.1.: General memory layout of Algorithm 1 for k = 2.

A0 A1 A2A2 A1 A0A2? ? ?

1. 3.

2.

4.

A0 A1 A2? ? ?

o0 o1 o2

Figure 7.2.: Top: Example for the cyclic rotations occurring in one round of Algorithm 1 starting

from the example given in Figure 7.1. First, the algorithm �nds an A2-element,

which is then moved into the A2-segment (1.), replacing an A1-element which is

moved into the A1-segment (2.). It replaces an A2-element that is moved to replace

the next misplaced element in the A2-segment, an A0 element (3.). This element is

then moved to the A0-segment (4.), overwriting the misplaced A2-element, which

ends the round. Bottom: Memory layout and o�set indices after moving the

elements from the example.
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Algorithm 1 Permute elements to produce a partition

procedure Permutek(A[1..n])
Requires: Segment sizes are a0, . . . , ak.

1: ∀h ∈ {0, . . . , k} : ch ← ah;oh = k + 1 +
∑h−1

i=0 ai;
2: for h from 0 to k − 1 do
3: while ch > 0 do
4: while A[oh] belongs to group Ah do . Find misplaced element

5: oh ← oh + 1; ch ← ch − 1;

6: if ch = 0 then
7: break;

8: home← oh;
9: from← home;

10: x← A[from];
11: while true do . Move elements cyclicly

12: Ag ← Group of x;

13: while A[og] belongs to group Ag do . Skip non-misplaced elements

14: og ← og + 1;cg ← cg − 1;

15: to← og; og ← og + 1; cg ← cg − 1;
16: from← to;
17: if home 6= from then
18: r← A[to];A[to]← x;x← r;
19: else
20: A[from]← x;

21: break;

Figures 7.4–7.6 show the di�erent rotations being made by Algorithm 3 in lines 8, 13, and 17.

This algorithm is used for k = 3 in the implementation of the 3-pivot algorithm of Kushagra et
al. [Kus+14]. For k = 2 it can be used to improve the basic implementation of Yaroslavskiy’s

algorithm from [WN12], see [WNN13].

We now study these algorithms with respect to the average number of assignments and the

average number of memory accesses they make.

7.4. Assignments

Since we are interested in cost measures for predicting empirical running time, we only count

assignments involving an array access. For example, in Line 18 of Algorithm 1 we count two

assignments. Here we assume that variables which are needed frequently are in registers of

the CPU. An assignment between two registers is much cheaper.

We start by �xing notation. Let ASn and PASn be the total number of assignments needed

68



7. The Cost of Rearranging Elements

A0 A1 A2 A3 A4 A5 A6? ?

g1 g2 g3 i j g4 g5

Figure 7.3.: General memory layout of Algorithm 3 for k = 6. Two pointers i and j are

used to scan the array from left-to-right and right-to-left, respectively. Pointers

g1, . . . , gk−1 are used to point to the start of segments.

A0 A1 A2 A3 A4 A5 A6A1 ?

g1 g2 g3 i j g4 g5

Figure 7.4.: The rotate operation in Line 8 of Algorithm 3. An element that belongs to

group A1 is moved into its respective segment. Pointers i, g2, g3 are increased by 1
afterwards.

A0 A1 A2 A3 A4 A5 A6A5 A6

g1 g2 g3 i j g4 g5

Figure 7.5.: The rotate operation in Line 13 of Algorithm 3. An element that belongs to

group A6 is moved into its respective segment. Pointers j, g4, g5 are decreased

by 1 afterwards.

A0 A1 A2 A3 A4 A5 A6A5 A1

g1 g2 g3 i j g4 g5

Figure 7.6.: Example for the rotate operation in Line 17 of Algorithm 3. The element found at

position i is moved into its speci�c segment. Subsequently, the element found at

position j is moved into its speci�c segment.
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Algorithm 2 Copy elements to produce a partition

procedure Copyk(A[1..n])
Requires: Segment sizes are a0, . . . , ak.

1: ∀h ∈ {0, . . . , k} : oh = k + 1 +
∑h−1

i=0 ai;
2: allocate a new array B[1..n];
3: for i from k + 1 to n do
4: Ap ← group of A[i];
5: B[o[p]]← A[i];
6: o[p]← o[p] + 1;

7: Copy the content of B to A;

for sorting and partitioning, resp., a given input of length n. For the average number of assign-

ments, we get the recurrence

E(ASn) = E(PASn) +
1(
n
k

) ∑
a0+...+ak=n−k

(E(ASa0) + . . .+ E(ASak)).

This recurrence has the same form as (6.1), so we may apply (6.2) and focus on a single par-

tition step. We consider Algorithm 1. In each round, Algorithm 1 makes one assignment in

Line 10 and two assignments involving array access for each iteration that reaches Line 18.

At the end of the loop it makes one assignment in Line 20. We charge two assignments to

each element that is moved to its �nal location in Line 18. (Recall that we only account for

assignments involving array cells.) Furthermore, the assignment in Line 10 is charged extra

to the assignment in Line 20. Thus, each misplaced element incurs exactly two assignments.

Furthermore, we charge for an input of n elements cost n − k for the classi�cation step that

precedes partitioning.

By a simple calculation it follows that on average there are k(n − k)/(k + 2) misplaced

elements. Hence,

E (PASn) =
3k + 4

k + 2
· (n− k), (7.1)

and by applying (6.2) we conclude that

E (ASn) =
3k + 4

(k + 2) · (Hk+1 − 1)
· n lnn+ o(n lnn). (7.2)

In particular, the average partitioning cost will converge to 3(n− k) for large k.

The analysis of Algorithm 2 is even simpler. It makes exactly n− k assignments to produce

a partition (Line 5 in Algorithm 2). In addition, we charge n− k assignments for copying the

input back (Line 7 in Algorithm 2), and n−k assignments for the classi�cation step, which we
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Algorithm 3 Move elements by rotations to produce a partition

procedure Exchangek(A[1..n])

1: i← k + 1;j← n;
2: k′ ← dk−1

2 e;
3: g1, . . . ,gk′ ← i;
4: gk′+1, . . . ,gk−1 ← j;
5: p,q← −1; . p and q hold the group indices of the elements indexed by i and j.

6: while i < j do
7: while A[i] belongs to group Ap with p ≤ k′ do
8: if p < k′ then
9: rotate(i,gk′ , . . . ,gp+1);

10: gp+1++; . . . ;gk′++;

11: i++;

12: while A[j] belongs to group Aq with q > k′ do
13: if q > k′ + 1 then
14: rotate(j,gk′+1, . . . ,gq−1);

15: gq−1--; . . . ;gk′+1--;

16: j--;

17: if i < j then
18: rotate(i,gk′ , . . . ,gq+1,j,gk′+1, . . . ,gp−1);

19: i++;gq+1++; . . . ;gk′++;
20: j--;gk′+1--; . . . ;gp−1--;

charge to Line 4 in Algorithm 2. So, it makes 3(n − k) assignments in one partitioning step,

and the average number of assignments for sorting is

3n lnn/(Hk+1 − 1) + o(n lnn). (7.3)

Counting assignments in Algorithm 3 is a little bit harder. Fix the pivots and hence the group

sizes a0, . . . , ak. Let k′ = d(k − 1)/2e, and let H := a0 + . . . + ak′ . We charge the number

of assignments in Algorithm 3 to the two pointers i and j separately in the following way:

Let p and q hold the content of the variables p and q, respectively, when the pointer i is at

position i, and the pointer j is at position j. The rotate operation in Line 8 is charged to the

pointer i. One rotation of an element that belongs to group Ap, p < k′, makes 2 + k′ − p
assignments. Similarly, the rotate operation in Line 13 is charged to the pointer j and has cost

1 + q−k′. The rotate operation in Line 17 makes exactly 2 +p− q assignments and is charged

as follows: We charge p−k′−1 assignments to pointer i, and 3+k′−q assignments to pointer
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j. Consequently, we de�ne

costi(p) =


2 + k′ − p, if p < k′,

p− k′ − 1, if k′ + 1 < p,

0, otherwise,

and

costj(q) =


3 + k′ − q, if q < k′,

1 + q − k′, if k′ + 1 < q,

0, otherwise.

Let Ai,p and Aj,q be the number of elements inspected by i and j that belong to group Ap and

Aq , respectively. The exact assignment count for partitioning an input of n elements is then

PAn =

k∑
p=0

Ai,p · costi(p) +

k∑
q=0

Aj,q · costj(q). (7.4)

For a random input (excepting the pivot choices) the average number of assignments can be

calculated as follows: Pointer i is increased by one whenever an element is found that belongs

to group Ap, p ≤ k′. Thus, it inspects exactly H array cells. Analogously, pointer j inspects

n − k − H array cells.
2

So, the pointer i incurs assignments for the array segment A[k +
1..k + H + 1], while the pointer j makes assignments for A[k + H + 2..n]. Now, consider

E(Ai,p | a0, . . . , ak) for a �xed integer p, with 0 ≤ p ≤ k. There are exactly ap elements of

group Ap in the input. The positions of these elements are drawn from the n − k possible

positions by sampling without replacement. Hence, we know that

E(Ai,p | a0, . . . , ak) = H · ap
n− k

.

Analogously, for a �xed integer q, with 0 ≤ q ≤ k, we have that

E(Aj,q | a0, . . . , ak) = (n− k −H) · aq
n− k

.

2

They may cross over by one element. We disregard this case; it costs no additional assignments.
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Plugging this into (7.4) and rearranging terms yields, for odd k, the formula

E(PASn | a0, . . . , ak) =

(
H

n− k

)
·

 k′∑
j=1

(
(2 + j) · ak′−j + j · ak′+1+j

)
+

(
n− k −H
n− k

)
·

3ak′ +
k′∑
j=1

(
(3 + j) · ak′−j + (2 + j) · ak′+1+j

) . (7.5)

For even k, we have that:

E(PASn | a0, . . . , ak) =

(
H

n− k

)
·

 k′∑
j=1

(
(2 + j) · ak′−j + (j − 1) · ak′+j

)
+

(
n− k −H
n− k

)3ak′ + (3 + k′)a0 +

k′−1∑
j=1

(
(3 + j)ak′−j + (1 + j)ak′+1+j

) . (7.6)

Using Maple
®

we calculated the average number of assignments of Algorithm 1–Algorithm 3

for k ∈ {1, . . . , 9}. Since Algorithm 1 and Algorithm 2 bene�t from larger values of k, we

also calculated the average assignment count for using them with 15, 31, 63, and 127 pivots.

Table 7.1 shows the results of these calculations. The average assignment count of Algorithm 1

slowly increases for k getting larger. The average assignment count for sorting decreases, �rst

rapidly, then more slowly. For k ≥ 31, Algorithm 1 makes fewer assignments than classical

quicksort, which makes n lnn assignments. Algorithm 2 makes exactly 3(n− k) assignments

on each input. The average assignment count of this algorithm decreases for growing k, and

is for k ≥ 31 practically the same as the average assignment count of Algorithm 1. For Al-

gorithm 3, the average number of assignments rapidly increases from classical quicksort to

quicksort variants with at least two pivots. Afterwards, it slowly increases. Interestingly, Al-

gorithm 3 is slightly better for three pivots than for two pivots.
3

In summary, Algorithm 1 and Algorithm 2 make many assignments for small values of k. For

k ≥ 31, they achieve a lower average assignment count than classical quicksort. Algorithm 3

does not bene�t from using more than one pivot. We will now compare these calculations with

measurements we got from experiments.

Empirical Verification. Figure 7.7 shows the measurements we got with regard to the aver-

age number of assignments for implementations of the algorithms described before. In the ex-

periment, we sorted 600 random permutations of {1, . . . , n} for each n = 2i with 9 ≤ i ≤ 27.

For Algorithm 3, we see that the measurements agree with our theoretical study (cf. Ta-

ble 7.1). There is a big gap between the average assignment count for one pivot (“Exchange1”)

3

This has been observed in the experiments in [Kus+14], too.
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k E(PASn)
(Algorithm 1)

E(ASn)
(Algorithm 1)

E(PASn)
(Algorithm 2)

E(ASn)
(Algorithm 2)

E(PASn)
(Algorithm 3)

E(ASn)
(Algorithm 3)

1 2.33n 4.66n lnn 3n 6n lnn 0.5n n lnn

2 2.5n 3n lnn 3n 3.6n lnn 1.33n 1.6n lnn

3 2.6n 2.4n lnn 3n 2.77n lnn 1.70n 1.57n lnn

4 2.66n 2.08n lnn 3n 2.34n lnn 2.13n 1.66n lnn

5 2.71n 1.87n lnn 3n 2.07n lnn 2.40n 1.66n lnn

6 2.75n 1.73n lnn 3n 1.88n lnn 2.75n 1.73n lnn

7 2.77n 1.62n lnn 3n 1.75n lnn 3n 1.75n lnn

8 2.8n 1.53n lnn 3n 1.64n lnn 3.31n 1.81n lnn

9 2.82n 1.46n lnn 3n 1.56n lnn 3.55n 1.84n lnn

15 2.88n 1.21n lnn 3n 1.26n lnn — —

31 2.94n 0.96n lnn 3n 0.98n lnn — —

63 2.97n 0.79n lnn 3n 0.80n lnn — —

127 2.98n 0.67n lnn 3n 0.68n lnn — —

Table 7.1.: Average number of assignments for partitioning (E(PASn)) and average number

of assignments for sorting (E(ASn)) an array of length n disregarding lower order

terms using Algorithm 1, Algorithm 2, and Algorithm 3. We did not calculate the

average comparison count for Algorithm 3 for k ∈ {15, 31, 63, 127}. For compari-

son, note that classical quicksort (“Exchange1”) makes n lnn assignments involving

array accesses on average.

and the variants using more than one pivot. Also, the 3-pivot algorithm makes fewer assign-

ments (on average) than the 2-pivot algorithm. In order, it follows the 5-pivot, 7-pivot (omitted

in the plots), and 9-pivot algorithm. Their average assignment count is very close to our cal-

culations. For Algorithm 1, we see that lower order terms have a big in�uence on the actual

measurements. In all measurements, the average assignment count is slightly lower than what

we expect from the leading term disregarding lower order terms. For large k the in�uence

of lower order terms seems to decrease. We see that Algorithm 1 makes fewer assignments

than classical quicksort for k large enough. Our experiments for Algorithm 2 showed that—as

expected—there is almost no di�erence to Algorithm 1 for large values of k. Consequently,

variants of Algorithm 2 are omitted from the plots.

Generalization of Algorithm 3. The �gures from Table 7.1 show that the average assign-

ment count of Algorithm 3 rapidly increases from one pivot to variants using more than one

pivot. We make the following observations about a generalization of Algorithm 3. For this

algorithm, the parameter k′ (cf. Algorithm 3, Line 2) can be set to an arbitrary value from

{0, . . . , k − 1} and the formulae (7.5) and (7.6) still hold. For k = 2, due to symmetry, setting

k′ = 0 or k′ = 1 yields the same values. As in the sampling strategy SP for comparison-

optimal multi-pivot quicksort algorithms, we can make use of unbalanced inputs, i. e., inputs
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Figure 7.7.: The average number of assignments for sorting an input consisting of n elements

using Algorithm 1 (“Permutek”) and Algorithm 3 (“Exchangek”) for certain values

of k. Each data point is the average over 600 trials.

where there are much more/less small elements than large elements, as follows. Suppose the

group sizes are a0, a1, and a2. If a0 > a2, the algorithm should use k′ = 0, because it makes

fewer assignments for elements that belong to group A0. If a2 ≥ a0, analogous arguments

show that the variant with k′ = 1 should be used. If the partitioning process would correctly

choose the parameter k′ depending on the relation of a0 and a2, the average assignment count

for partitioning decreases from 1.333n+O(1) to 1.15n+O(1) in Table 7.1. For an actual im-

plementation, one would look at the �rst n3/4
elements and decide whether to choose k′ = 0

or k′ = 1 according to ratio of small/large element in the sample.

We did not look into generalizing this approach to k ≥ 3. We remark that the analysis

should be simpler than calculating the average comparison count for comparison-optimal k-

pivot quicksort, since there are fewer cost terms. (For k pivots, k′ ∈ {0, ..., k − 1}. So for

each group size we have to calculate the minimum over k cost terms, whereas for comparison-
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optimal k-pivot quicksort this minimum was taken over exponentially many cost terms.)

In summary, only Algorithm 1 and Algorithm 2 are better than classical quicksort with re-

spect to counting assignments, but only for a large number of pivots. In particular, Algorithm 3

does not bene�t from using more than one pivot, which was also observed for the case k = 2
by Wild and Nebel [WN12] and k = 3 by Kushagra et al. [Kus+14]. In the next section, we will

consider a di�erent cost measure that shows that partitioning using Algorithm 3 requires less

e�ort when using more than one pivot.

7.5. Memory Accesses and Cache Misses

We will now study how many array accesses the pointers of the partitioning algorithms Al-

gorithm 1–3 require to sort an input. As we will show this cost measure can be analyzed

rigorously. From an empirical point of view the cost measure gives a lower bound on the num-

ber of clock cycles the CPU spends just waiting for memory. It can also be used to predict the

cache behavior of Algorithm 1–3. We will see that it gives good estimates for the cache misses

in L1 cache which we observed in our experiments.

A memory access occurs whenever the CPU reads the content of a memory address or writes

to it. (We do not distinguish between read and write access, which is common when the ar-

chitecture uses write-back caches [Rah02].) Let the random variable MAn count the number

of memory accesses that a k-pivot quicksort algorithm requires until an input of length n is

sorted. Let PMAn denote the number of memory accesses that the algorithm requires in the

�rst partitioning step. In general, we get the recurrence:

E(MAn) = E(PMAn) +
1(
n
k

) ∑
a0+...+ak=n−k

(E(MAa0) + . . .+ E(MAak)) .

Again, this recurrence has the form of (6.1), so we may apply (6.2). Thus, from now on we

focus on a single partitioning step.

We charge memory accesses for Algorithm 1 as follows: During the classi�cation phase each

array cell is accessed exactly once. In the partitioning phase each element that is already at a

�nal position is accessed exactly once. All other elements are accessed twice, once for reading

the element, once for writing it into another table cell. Comparing with the analysis of the

assignments that Algorithm 1 makes, there is exactly one array access per assignment, so we

get (see Section 7.4)

E(PMAn) =
3k + 4

k + 2
(n− k). (7.7)

For Algorithm 2, we charge n − k memory accesses for the �rst classi�cation step. Then, we

charge 2(n − k) array accesses for the partitioning step. Finally, we charge 2(n − k) array
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accesses for copying the input back. So we have

E(PMAn) = 5(n− k). (7.8)

Again, the analysis of Algorithm 3 is more di�cult. For this algorithm, the number of memory

accesses is the sum over all i ∈ {1, . . . , k − 1} of the number of array cells visited by pointer

gi plus the number of array cells visited by pointers i and j. Let the pivots and thus a0, . . . , ak
be �xed. The pointers i,j scan the whole array, and thus inspect n − k array cells. When

Algorithm 3 terminates, g1 points to A[k + a0 + 1], having visited exactly a0 array cells.

An analogous statement can be made for the pointers g2, . . . ,gk−1. On average, we have

(n−k)/(k+ 1) elements of each groupA0, . . . , Ak, so g1 and gk−1 each visit (n−k)/(k+ 1)
array cells on average, g2 and gk−2 each visit 2(n− k)/(k + 1) array cells, and so on.

For the average number of memory accesses during a partitioning step we consequently get

E(PMAn) =

{
2 ·
∑dk/2e

i=1
i·(n−k)
k+1 , for odd k,

2 ·
∑k/2

i=1
i·(n−k)
k+1 + k/2+1

k+1 · (n− k), for even k,

and a simple calculation shows

E(PMAn) =

{
k+3

4 · (n− k), for odd k,(
k+3

4 + 3
k+1

)
· (n− k), for even k.

(7.9)

We calculated the average number of memory accesses for k ∈ {1, . . . , 9, 15, 31, 63, 127} using

(7.7), (7.8), (7.9), and (6.2). Table 7.2 shows the results of these calculations. As before, with

respect to the average assignment count, Algorithm 1 bene�ts from large k. For k ∈ {1, 2}
it has very high cost. For k ≥ 5, it outperforms classical quicksort. Starting from k ≥ 15
(for values of k considered in the calculations) it improves over Algorithm 3. Algorithm 2

also bene�ts from k getting larger. For large k, it makes about 5/3 times as many memory

accesses as Algorithm 1. More interestingly, and in big di�erence to counting assignments,

Algorithm 3 actually improves over classical quicksort when using more than one pivot. A 3-

pivot quicksort algorithm, using this partitioning algorithm, has lower cost than classical and

dual-pivot quicksort. Interestingly, the average number of memory accesses is minimized by

the 5-pivot partitioning algorithm. The di�erence to the 3-pivot algorithm is, however, only

small. Using more than 5 pivots increases the average number of memory accesses. Since each

memory access, even when it can be served from L1 cache, is much more expensive than other

operations like simple subtraction or addition on registers, this shows that are big di�erences

in the time the CPU has to wait for memory between multi-pivot quicksort algorithms.

We now face the question what the considerations we have made so far could mean for the

cache behavior. Intuitively, fewer memory accesses should yield better cache behavior, when

memory accesses are done “scan-like” as in the algorithms considered here. The argument used

in [LL99] and [Kus+14] is as follows: When each of the m cache memory blocks holds exactly
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k E(PMAn)
(Algorithm 1)

E(MAn)
(Algorithm 1)

E(PMAn)
(Algorithm 2)

E(MAn)
(Algorithm 2)

E(PMAn)
(Algorithm 3)

E(MAn)
(Algorithm 3)

1 2.33n 4.66n lnn 5n 10n lnn 1n 2n lnn

2 2.5n 3n lnn 5n 6n lnn 1.33n 1.6n lnn

3 2.6n 2.4n lnn 5n 4.62n lnn 1.5n 1.385n lnn

4 2.66n 2.08n lnn 5n 3.89n lnn 1.8n 1.402n lnn

5 2.71n 1.87n lnn 5n 3.45n lnn 2n 1.379n lnn

6 2.75n 1.73n lnn 5n 3.14n lnn 2.29n 1.435n lnn

7 2.77n 1.62n lnn 5n 2.91n lnn 2.5n 1.455n lnn

8 2.8n 1.53n lnn 5n 2.73n lnn 2.77n 1.519n lnn

9 2.82n 1.46n lnn 5n 2.59n lnn 3n 1.555n lnn

15 2.88n 1.21n lnn 5n 2.1n lnn 4.5n 1.89n lnn

31 2.94n 0.96n lnn 5n 1.63n lnn 8.5n 2.78n lnn

63 2.97n 0.79n lnn 5n 1.34n lnn 16.5n 4.41n lnn

127 2.98n 0.67n lnn 5n 1.18n lnn 32.5n 7.33n lnn

Table 7.2.: Average number of memory accesses for partitioning (E(PMAn)) and average num-

ber of memory accesses for sorting an array (E(MAn)) of length n disregarding

lower order terms. Note that classical quicksort makes 2n lnn memory accesses

on average.

B keys, then a scan of n′ array cells (that have never been accessed before) incurs dn′/Be
cache misses. In theoretical models that allow control over the cache replacement strategy,

this can easily be proven to be true for the algorithms considered here. However, suppose that

k is large and we use Algorithm 1. With respect to the fact that a memory block can only be

placed into a small number of di�erent cache lines, it seems hard to believe that such a simple

argument should hold. For example, suppose “many” elements have been moved in the loop

in Line 11 of Algorithm 1. Then the access to A[from] on Line 20 might incur a second cache

miss, since the last access to this memory cell lies far away in the past. Moreover, when k is

“large” it might also happen that particular segments are stored in cache lines and get evicted

before they are read from/written to again. We observe that in Algorithm 1 the situation is

very much like having k + 1 sequences of total length n′ that are scanned concurrently. The

decision which pointer is to be moved next is based on the classi�cation of an element. This

problem (with an adversary that picks the pointer to be advanced next at random) has been

studied by Mehlhorn and Sanders in [MS03]. Assuming that the starting addresses of these

sequences are random they showed that the cache misses incured by such a scanning task are

bounded byO(n′/B) as long as k = O(m/B1/a), where a is the associativity of the cache. For

example, the L1 cache of the Intel i7 CPU used in our experiments can store m = 512 cache

lines of size B = 64 byte and is 8-way associative. In this case, m/B1/a
is about 300, so we

may assume that as long as k is small enough, our assumption for the relation between memory

accesses and cache misses only is a constant factor higher than our estimate. Of course in our
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Algorithm Ex1 Ex2 Ex5 Ex9 Perm1 Perm7 Perm31 Perm127

avg. L1 misses / n 0.125 0.163 0.25 0.378 0.25 0.25 0.25 0.28

Table 7.3.: Cache misses incured by Algorithm 1 (“Permk”) and Algorithm 3 (“Exk”) in a single

partitioning step. All values are averaged over 600 trials.

setting we care about these constants. Consequently, we are going to compare our estimate to

measurements from experiments.

Empirical Verification. We implemented multi-pivot quicksort algorithms using Algorithm 1,

Algorithm 2 and Algorithm 3, resp., for partitioning. For Algorithm 1 and Algorithm 2, “Permutek”

and “Copyk” denote the variants that classify each element twice: once during the classi�ca-

tion phase and once during the partitioning phase. As we shall see later, it will be bene�cial

to consider these strategies with the modi�cation that element groups are stored in the classi-

�cation phase. Consequently, “Permute
′
k” and “Copy

′
k” are the variants that store the element

groups in an auxiliary array and use these classi�cations as an oracle in the second phase.

(Note that this introduces a linear memory overhead, which is often considered undesirable.)

We measured cache misses for each algorithm on inputs of size 2i with 9 ≤ i ≤ 27, for certain

values of k. These measurements were obtained with the help of the “performance application

programming interface” (PAPI), which is available at http://icl.cs.utk.edu/papi/. In-

dependently, we measured the number of misses in the translation-lookaside bu�er (TLB) using

the linux tool “perf ”.

First, we check whether the assumption that partitioning an input of n elements using Al-

gorithm 1 or Algorithm 3 incurs dE (PMAn) /Be cache misses or not. (Recall that B is the

number of elements in one cache line and E (PMAn) is the average number of memory ac-

cesses during partitioning.) In the experiment, we partitioned 600 inputs consisting of n = 227

items using Algorithm 1, for 1, 7, 31, and 127 pivots, and Algorithm 3, for 1, 2, 5, and 9 pivots.

The measurements with respect to L1 cache misses are shown in Table 7.3. Theoretically, Al-

gorithm 3 should incur 0.125n, 0.166n, 0.25n, and 0.375n L1 cache misses for k ∈ {1, 2, 5, 9},
respectively. The results from Table 7.3 show that the empirical measurements are very close

to these values. On the other hand, the measurements for Algorithm 1 are much lower than

what we would expect by calculating E (PMAn) /B, cf. Table 7.2. This is easily explained: We

have charged two array accesses for a misplaced element. However, the second array access

should always be cached, see Line 18 in Algorithm 1. Keeping this in mind, we should assume

that the algorithm requires 2n memory accesses, which re�ects the measurements, except for

the case of 127 pivots. There we have to deal with the problem mentioned on the previous

page: Cache blocks are evicted before they are accessed again. However, even for such a large

number of pivots our prediction is accurate.

Table 7.4 shows the exact measurements regarding L1 cache misses for sorting 600 random

inputs consisting of n = 227
elements and relates them to each other. We �rst consider our
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Algo E(MAn) L1 Cache Misses

Exchange1 2n lnn (+ 45.0%) 0.14n lnn (+ 48.9%)

Exchange2 1.6n lnn (+ 16.0%) 0.11n lnn (+ 16.9%)

Exchange3 1.385n lnn (+ 0.4%) 0.096n lnn (+ 1.3%)

Exchange5 1.379n lnn ( — ) 0.095n lnn ( — )

Exchange7 1.455n lnn (+ 5.5%) 0.1n lnn (+ 5.3%)

Exchange9 1.555n lnn (+ 12.8%) 0.106n lnn (+ 12.2%)

Permute1 4.66n lnn (+237.9%) 0.29n lnn (+177.5%)

Permute3 2.4n lnn (+ 74.0%) 0.17n lnn (+ 67.1%)

Permute7 1.62n lnn (+ 17.5%) 0.098n lnn (+ 3.2%)

Permute15 1.21n lnn (− 14.0%) 0.07n lnn (− 36.6%)

Permute31 0.96n lnn (− 43.6%) 0.06n lnn (− 66.9%)

Permute63 0.79n lnn (− 74.6%) 0.05n lnn (− 90.9%)

Permute127 0.67n lnn (−105.8%) 0.05n lnn (− 99.3%)

Permute
′
127 1.12n lnn (− 23.1%) 0.067n lnn (− 49.5%)

Copy
′
127 1.575n lnn (+ 14.2%) 0.11n lnn (+ 18.9%)

Table 7.4.: Average number of L1 cache misses compared to the average number of memory

accesses. Measurements have been obtained for n = 227
. Cache misses are scaled

by n lnn. In parentheses, we show the ratio to the best algorithmic variant of Al-

gorithm 3 w.r.t. memory/cache behavior (k = 5), calculated from the non-truncated

experimental data.

results with respect to Algorithm 3 (“Exchangek”). The �gures indicate that the relation with

respect to the measured number of L1 cache misses of the di�erent algorithms exactly re�ect

their relation with respect to the average number of memory accesses. However, while the

average number of cache misses correctly re�ects the relative relations, the measured values

(scaled by n lnn) are lower than we would expect by simply dividing E(MAn) by the block

size B. We suspect this is due to (i) the in�uence of lower order terms and (ii) array segments

considered in the recursion already being present in cache. For variants of Algorithm 1, the

relation with respect to memory accesses predicts cache behavior correctly, as well. However,

the exact ratio with respect to memory accesses does not translate to the ratio between cache

misses. (It should be noted that the ordering with respect to memory accesses equals—only with

the exception of Permute7—the ordering with respect to L1 cache misses.) We also tested the

variant of the Permutek algorithm that stores the groups of elements in the �rst pass. Of course,

Permute
′
127 makes more cache misses than Permute127. By using one byte per element group—

which is su�cient for at most 255 pivots—, it incurs about 33% more L1 cache misses than

Permute127. Finally, we consider one speci�c variant of Algorithm 2 (“Copyk”) that also stores

element groups. For the variant “Copy
′
127”, results are not surprising. It incurs about twice

as many cache misses as Permute127 with an additional overhead due to the auxiliary array.

In summary, memory accesses are a suitable cost measure to predict the L1 cache behavior

of Algorithm 1—3. (For Algorithm 1 and Algorithm 2 some manual tweaking was necessary.)
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Algorithm avg. TLB load misses

Exchange1 0.0407n lnn( 0.0%)
Exchange9 0.0412n lnn( 1.2%)
Permute

′
7 0.0421n lnn( 3.5%)

Permute15 0.0416n lnn( 2.2%)
Permute

′
15 0.0498n lnn( 22.4%)

Permute127 0.0716n lnn( 76.0%)
Permute

′
127 0.1203n lnn(195.7%)

Permute512 0.0873n lnn(114.5%)
Permute

′
512 0.1401n lnn(244.4%)

Copy
′
127 0.041n lnn( 0.8%)

Table 7.5.: Average number of TLB misses for random inputs with 227
items over 100 trials.

Load misses are scaled by n lnn. The number in parentheses shows the relative

di�erence to algorithm Exchange1.

However, this is not true with regard to L2 and L3 cache behavior of these algorithms. In our

experiments, the best algorithm with respect to L2 cache behavior was Permute15. The worst

algorithm due to L2 cache behavior was Copy
′
127, incuring more than 6 times more L2 cache

misses than Permute
′
15. This picture was strengthend even more for L3 cache behavior. There,

Copy
′
127 made about 10 times as many cache misses as Permute15, which in turn was only

slightly worse than Exchange7, the best algorithm with respect to L3 cache behavior. Detailed

experimental data can be found in Table B.2 in Appendix B.

To �nd out how large values of k make partitioning hard, we now consider the behavior of

the algorithms regarding load misses in the translation-lookaside bu�er (TLB misses). (Recall

that the TLB is the cache that speeds up the translating between virtual and physical address

space.) Figure 7.8 shows the measurements we got for some selected algorithms. (The results

for all algorithms can be found in Table B.3 in Appendix B.) For arrays with no more than

222
items, no misses in the TLB occur. This drastically changes for larger inputs. Each algo-

rithm su�ers from a growing number of TLB misses. The algorithms based on Exchangek, and

the algorithms Copy
′
127, Permute

′
7, and Permute15 su�er the fewest TLB misses. For larger

k, algorithms based on Permutek or Permute
′
k incur much more TLB misses. For example,

Permute127 su�ers 1.76 times more TLB misses than Exchange1. Permute
′
512 shows the worst

behavior with respect to TLB misses, incuring 3.44 times more TLB misses than Exchange1.

This shows that algorithms based on “Permutek” su�er in performance for large k because of

TLB misses. More detailed results with respect to TLB misses are shown in Table 7.5.

In summary this section described general partitioning strategies for multi-pivot quicksort.

We considered the average number of assignments and the average number of memory ac-

cesses. We have shown that studying memory accesses allows us to predict empirical di�er-

ences in cache misses between these algorithms. For a small number of pivots, none of these

strategies make fewer assignments than classical quicksort. With respect to memory accesses
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Figure 7.8.: TLB misses for Algorithms 1–3. Each data point is averaged over 500 trials, TLB

load misses are scaled by n lnn.

and cache misses, Algorithm 3 (“Exchangek”) can improve on classical quicksort and shows

very good memory behavior for three or �ve pivots. For a large number of pivots, Algorithm 1

(“Permutek”) improves over classical quicksort and over Algorithm 3 in general. However, for

a large number of pivots it incurs many TLB misses. Algorithm 2 (“Copyk”) uses a simpler par-

titioning strategy that avoids problems regarding the TLB even for a large number of pivots,

but has worse cache behavior than Algorithm 1.

In the next section, we will consider running time measurements of multi-pivot quicksort

algorithms and try to explain our �ndings by linking them to the theoretical cost measures

considered here.
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We have implemented the methods presented in this thesis in C++. Details about the ma-

chine used in our experiments can be found in Section 1. For compiling C++ code, we used

gcc in version 4.8. We did no manual tweaking to the produced assembler code. We used

the compiler �ags -O3 and -funroll-loops. The option -funroll-loops tells the compiler to “op-

timize” loop statements, e. g., by unrolling the loop body for loops which consist only of a

few iterations. (In general this might slow an algorithm down.) In all settings, we used -
march=native, which means that the compiler tries to optimize for the speci�c CPU architec-

ture we use during compilation. We remark that these optimization �ags have a big impact

on observed running times. While there is only a small di�erence between the settings -O2
and -O3 in our setup, some algorithms bene�t signi�cantly from unrolling loops. The in�u-

ence will be described later in more detail. However, we stress that our results do not allow

�nal statements on the running time behavior of quicksort variants. (Since such a small com-

piler �ag has such an impact on running time.) The source code of our algorithms can be

found at http://eiche.theoinf.tu-ilmenau.de/maumueller-diss/. The experi-

mental framework to measure running time and generate inputs is based on source code writ-

ten by Timo Bingmann.

Since we consider many di�erent algorithms, we structure this section as follows: First, we

consider the dual-pivot quicksort strategies from Section 4. Next, we consider k-pivot quicksort

algorithms based on the partitioning algorithm “Exchangek” (Algorithm 3). Subsequently, we

will compare k-pivot quicksort algorithms based on algorithm “Permutek” (Algorithm 1) and

“Copyk” (Algorithm 2). At the end, we will summarize our �ndings with respect to the running

time of multi-pivot quicksort algorithms.

In each experiment, we sort random permutations of {1, . . . , n}. Usually, we test input sizes

n = 2i, for 17 ≤ i ≤ 27, and average our results over 500 trials. We consider the signi�cance
of running time di�erences by letting each algorithm sort the same 500 inputs containing 227

items. This allows us to compare running times in more detail, for example, by saying that

algorithm A was faster than algorithm B for at least 95% of the inputs.

Detailed experimental data has been moved to the appendix to keep this section readable.

Appendix B contains exact measurements for all algorithms considered here.

8.1. Running Times of Dual-Pivot �icksort Algorithms

For better readability, the algorithms considered in this section are presented in Table 8.1. Pseu-

docode for the dual-pivot methods is provided in Appendix A. In the following, we use a calli-
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Abbreviation Full Name Strategy Pseudocode

Y Yaroslavskiy’s Algorithm Section 4.1 Algorithm 6 (Page 199)

L Larger Pivot First Section 4.1 Algorithm 7 (Page 200)

SP Sample Algorithm Section 4.2 Algorithm 10 (Page 204)

C Counting Algorithm Section 4.2 Algorithm 11 (Page 205)

Table 8.1.: Overview of the dual-pivot quicksort algorithms considered in the experiments.

graphic letter both for the classi�cation strategy and the actual dual-pivot quicksort algorithm.

The running time results we obtained are shown in Figure 8.1. We see that Yaroslavskiy’s

algorithm and the simple strategy L (“Always compare to the larger pivot �rst”) are the fastest

algorithms. The comparison-optimal sampling algorithm SP cannot compete with these two

algorithms with respect to running time. On average it is about 5.1% slower than algorithm Y .

The slowest algorithm is the counting algorithm C; on average it is about 14.3% slower than

Y . We see that only the running time of strategy SP seems to be a�ected by the input size.

This is due to the fact that it sorts inputs that contain at most 1024 items with Yaroslavskiy’s

algorithm, which makes it faster for small inputs. (For such small inputs, the sampling step adds

too much overhead.) We note that our implementations of dual-pivot quicksort algorithms did

not bene�t from loop unrolling.

Now, we consider the signi�cance of di�erences in running time. In Table 8.2 we consider

the number of cases which support the hypothesis that an algorithm is a given percentage

faster than another algorithm. The table shows that the di�erence in running time is about 1%
smaller than the average running time suggested if we consider only “signi�cant” running time

di�erences, i. e., di�erences that were observed for at least 95% of the inputs. In particular, we

conclude that there is no signi�cant di�erence in running time between L and Y . This result

surprises, for algorithm Y makes fewer comparisons (1.9n lnn vs. 2n lnn) than algorithm L.

Furthermore, both algorithms require the same number of assignments and have similar cache

behavior. From Table B.4 (in Appendix B) we conclude that L executes about 10% fewer in-

structions than Y . This is mainly caused by avoiding the test whether or not the two pointers

that move towards each other have crossed more often in L. (See Line 2 in Algorithm 6 on

Page 199 and the same line in Algorithm 7.) Since these instructions are fairly simple and pre-

dictable, the di�erence in instruction count does not translate into signi�cantly better running

time.

8.2. Running Times of k-Pivot �icksort Algorithms based on
“Exchangek”

We now consider the running times of k-pivot quicksort algorithms implementing the parti-

tioning strategy “Exchangek” (Algorithm 3), for k ∈ {1, 2, 3, 5, 7, 9}. We use classical quicksort
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Figure 8.1.: Running time experiments for dual-pivot quicksort algorithms. Each data point is

the average over 500 trials. Times are scaled by n lnn.

for k = 1, we use strategy L for k = 2. For k = 3, we use the recently discovered algorithm

of Kushagra et al. [Kus+14], which combines Algorithm 3 with the symmetrical comparison

tree l2 from Figure 6.3. For 5, 7, and 9 pivots, we use Algorithm 3 with the comparison trees

depicted in Figure 8.2. We remark that the source code becomes quite complicated for algo-

rithms based on Exchangek for large k. For example, the implementation of “Exchange9” with

the comparison tree from Figure 8.2 has about 400 lines of C++ code.

The results of our experiments can be seen in Figure 8.3. With respect to the average running

time, we see that the 3-pivot algorithm of Kushagra et al. and the dual-pivot algorithm L are

the fastest algorithms. All other algorithms are signi�cantly slower. Among the remaining

algorithms, classical quicksort is slightly faster than 5-pivot quicksort. The 7-pivot algorithm

and the 9-pivot algorithm are slowest. With respect to signi�cant di�erences in running time,

i. e., running times observed for at least 95% of the test inputs, we cannot spot a di�erence

between the 2- and 3-pivot algorithm. Classical quicksort, the 5-pivot algorithm, the 7-pivot

algorithm, and the 9-pivot algorithm are 6.5%, 7.7%, 13.7%, and 16.5% slower than the 3-pivot

algorithm, respectively. The scaled times are almost constant for all algorithms.
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Y L SP C
Y — –/–/0.5% 4.5%/5.1%/5.9% 13.4%/14.3%/15.6%

L –/0.1%/0.7% — 4.2%/5.1%/6.8% 13.3%/14.3%/15.9%

SP — — — 7.8%/8.6%/9.9%

C — — — —

Table 8.2.: Comparison of the actual running times of the algorithms on 500 di�erent inputs

of size 227
. A table cell in a row labeled “A” and a column labeled “B” contains a

string “x%/y%/z%” and is read as follows: “In about 95%, 50%, and 5% of the cases

algorithmAwas more thanx, y, and z percent faster than algorithmB, respectively.”

8.3. Running Times of k-Pivot �icksort Algorithms based on
“Permutek” and “Copyk”

Here we consider the running times of k-pivot quicksort algorithms implementing the parti-

tioning strategies “Permutek” (Algorithm 1) and “Copyk” (Algorithm 2), respectively. We �rst

remark that both algorithms are only competitive when element groups are stored during the

classi�cation phase. When classifying each element twice, the running times of all these algo-

rithms are a factor of at least 1.7 higher than the running time of classical quicksort. One byte

per element su�ces to store the outcome of the classi�cation for fewer than 256 pivots. When

sorting 64-bit integers as in our experiments, the memory overhead is thus roughly 12.5%. In

the further discussion, we assume element groups to be stored. We refer to the algorithms by

Permute
′
k and Copy

′
k.

In our experiments, variants of Permute
′
k and Copy

′
k which use fewer than seven pivots were

much slower than the algorithms based on Exchangek. Consequently, we omit the results here

and report on the results we obtained for k ∈ {7, 15, 31, 127, 255, 511}. The group of an

element is determined using the obvious symmetrical comparison tree for 2κ − 1 pivots, for

κ ≥ 1, in which all leaves are on the same level. For the implementation of this strategy, we

used a nice trick due to Sanders and Winkel [SW04] communicated to us with source code

by Timo Bingmann. We store the symmetrical classi�cation tree implicitly in an array as it

is known from binary heaps, i. e., the left and right child of a node stored at position j in the

array is at positions 2j and 2j+1 in the array, respectively. For the classi�cation of an element,

we use a standard binary search in this implicit representation. Suppose for a speci�c element

this binary search ended at position j with j > k. The group the element belongs to is then

j−k. This classi�cation strategy does incur only few branch mispredictions on modern CPU’s,

because the decision whether to continue at array position 2j or 2j + 1 after comparing an

element with the pivot at array position j can be implemented by a predicated move. (This was

done automatically by the compiler in our experiments.) We used the source code of Timo

Bingmann for the implementation of the classi�cation strategy. We remark that algorithms

based on “Permutek” and “Copyk” strongly bene�t from loop unrolling.
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Figure 8.4.: Running time experiments for k-pivot quicksort algorithms based on the

“Permutek” partitioning algorithm. Each data point is the average over 500 trials.

Times are scaled by n lnn.

Figure 8.4 shows the results of our experiments with respect to algorithms based on Permute
′
k.

We see that the variant using 127 pivots provides the best running times. For n = 227
, it is

about 10.5%, 12.5%, 17.5%, 31%, and 34% faster, for at least 95% of the inputs, than the

variants using 255, 31, 15, 511, and 7 pivots, respectively. Furthermore, the 15-pivot variant

becomes faster for larger n. On the other hand, the 31-pivot variant becomes slightly slower.

The 127- and 255-pivot algorithms and especially the 511-pivot algorithm become slower for

larger inputs. We suspect that this is due to misses in the TLB, as studied in the previous section.

From that section we also known that TLB misses do not have a strong impact for algorithms

based on Copy
′
k. Our experiments show that for this variant, using 127 pivots is also the best

choice.

Last of all, we compare Copy
′
127, which is the super scalar sample sort algorithm of Sanders

and Winkel [SW04], with the fastest algorithm based on the Exchangek strategy (“Exchange3”)

and the fastest algorithm based on the Permutek strategy (“Permute
′
127”). For reference to li-

brary algorithms, we also show the results we got with respect to the well-engineered quicksort

variant in the C++ standard library (std::sort). (This algorithm is a variant of introsort, a

quicksort variant with worst-case O(n log n) running time [Mus97].)

The result of this experiment is shown in Figure 8.5. The super scalar sample sort algorithm
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Figure 8.5.: Final Running time experiments for k-pivot quicksort algorithms based in C++.

Each data point is the average over 500 trials. Times are scaled by n lnn.

of Sanders and Winkel is fastest in our setup. For n = 227
it is on average about 17.3%

faster than Permute
′
127, which needs roughly half the space. (Only classi�cation results are

stored.) Since our implementation of Copy
′
127 and Permute

′
127 only di�er in the partitioning

phase, this strongly supports the hypothesis that the running time of Permute
′
127

is strongly

in�uenced by TLB misses. Exchange3 needs no additional space and is about 23.4% slower

than Permute
′
127. Both Copy

′
127 and Permute

′
127 bene�t from using Exchange3 for handling

small subarrays of size at most 1024. std::sort is the slowest algorithm, being about 13.3%
slower than Exchange3.

In summary, the answer to the question “Which is the fastest quicksort variant?” strongly

depends on the amount of additional space one is willing to allocate. Only considering variants

that work in-place (except for the recursion stack), the three-pivot algorithm of Kushagra et al.
[Kus+14] seems to be the best choice. In our setup, there is almost no di�erence in running

time to the dual-pivot algorithms Y and L. If we allow an additional overhead of one byte

per item, running times greatly improve by using Permute
′
127. However, we suspect that the

behavior of this strategy with regard to TLB misses could make it slower than algorithms based

on Exchangek on some architectures. Furthermore, it is important that the CPU supports the

predicated move instruction to save branch mispredictions. Finally, if space is no limiting factor,

then Copy
′
127, i. e., the super scalar sample sort algorithm of Sanders and Winkel from [SW04]

is the method of choice. With such a large space overhead other sorting methods, e. g., radix

sort variants, should also be considered when sorting integers. ([Big+08] report that on their

setup a radix sort variant was faster than classical quicksort.) We did not test these methods

due to time constraints.

In the last section, we try to link our experimental �ndings to our theoretical cost measures.
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8.4. Do Theoretical Cost Measures Help Predicting Running
Time?

The running time experiments showed that multi-pivot quicksort makes it possible to achieve

a better running time than classical quicksort, as observed in Java with the introduction of

Yaroslavskiy’s algorithm as the standard sorting algorithm in Java 7, and in the paper [Kus+14].

We now evaluate how the theoretical performance of an algorithm coincidences with its run-

ning time in practice.

Combining the theoretical cost measures “comparisons”, “assignments”, and “memory ac-

cesses”, algorithms using the “Permutek” partitioning strategy should—for k large enough—

outperform algorithms based on the “Exchangek” partitioning strategy. We have observed this

in our experiments. However, it was necessary to store the element groups. For a large num-

ber of pivots, the TLB adds a signi�cant overhead to the running time of algorithms based on

Permutek.

With respect to di�erences in running times of the “Exchangek”-based algorithms, the the-

oretical cost measures “memory accesses” and “assignments” show disadvantages of this par-

titioning strategy for larger k. This agrees with our measurements from Figure 8.3. So, these

cost measures make us believe that the “Exchangek” partitioning strategy is only fast for a

small number of pivots. However, for small values of k these cost measures cannot explain

speci�c observations, e. g., (i) why “Exchange9” is signi�cantly slower than classical quick-

sort (“Exchange1”), and (ii) why there is no signi�cant di�erence between the 2- and 3-pivot

quicksort algorithm.

In our tests, we also counted the average number of instructions and the average number

of branch mispredictions, see Table B.4 on Page 211 for details. We believe that a theoreti-

cal study on the average number of instructions in the style of Wild et al. [WNN13] would

have been bene�cial to explain our �ndings. From our measurements, “Exchange3” executes

fewest instructions, closely followed by L. Also, Permute
′
127 and Copy

′
127 executes the fewest

instructions of the tested algorithms based on the strategies Permute
′
k and Copy

′
k, which nicely

re�ects the empirical running time behavior.

With respect to branch mispredictions, we see that implementing the binary search in the

symmetrical classi�cation tree by predicated moves decreases the average number of branch

mispredictions. (Variants based on the Exchangek strategy incur almost four times as much

branch mispredictions as algorithms based on Permutek and Copyk.) From di�erences in

branch mispredictions, one might also �nd reasons for Exchange1 being faster than Exchange9.

(In our experiments, Exchange1 makes 0.1n lnn fewer branch mispredictions than Exchange9,

while having almost the same average instruction count.)

Linking our measurements of cache misses and TLB misses with the often known penalties

for these events, we can also speculate about the number of CPU cycles the algorithm has to

wait for memory. Dividing these numbers by the total number of CPU cycles needed to sort the

input gives us an idea of how much of the sorting time is mandatory, i. e., cannot be avoided.
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The exact description of the methodology and detailed results of this approach can be found in

Appendix B. Our basic results are as follows. Copy
′
127 shows the highest ratio of CPU cycles

necessary for memory accesses divided by the total number of CPU cycles needed for sorting.

In this algorithm, about 92% of the CPU cycles needed for sorting the input are necessary for

memory accesses anyway. (This is achieved by “decoupling” the classi�cations, because each

element can be classi�ed independently in the �rst pass.) In comparison, only 47% of the CPU

cycles have to be used just for memory accesses by Exchange3. For classical quicksort, about

63% of the CPU cycles are mandatory for memory accesses.
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9. Conclusion and Open �estions

In the �rst part of this thesis, we studied quicksort algorithms that use more than one pivot.

Motivated by the recently discovered dual-pivot algorithm of Yaroslavskiy [Yar09] and the

three-pivot algorithm of Kushagra et al. [Kus+14], we provided a detailed analysis of multi-

pivot quicksort algorithms w.r.t. three di�erent cost measures: comparisons, assignments, and

memory accesses.

We have described natural strategies that achieve the minimal possible average comparison

count for k-pivot quicksort. These strategies either count the group sizes observed so far or

use a small sampling step to decide how to classify the next element. More generally, we

showed how to calculate the average comparison count of a multi-pivot quicksort algorithm.

The calculation turned out to be di�cult and we were only able to estimate the minimal average

comparison count of multi-pivot quicksort for the case of using at most three pivots. For more

than three pivots, we resorted to experiments to obtain rough approximations of the minimum

average comparison count. This led us conjecture that optimal k-pivot quicksort is inferior

to the standard median-of-k approach for classical quicksort. Already for four pivots, optimal

classi�cation strategies were too complex to yield improvements in empirical running time.

Next, we studied the cost of the actual partitioning step with respect to the average assign-

ment count and the average number of memory accesses. We described three general parti-

tioning algorithms. The �rst two algorithms partitioned the input in two passes, classifying the

input in the �rst pass and producing the actual partition in the second pass. One of these strate-

gies obtained this partition with an in-place permutation, the other strategy allocated a new

array. These strategies turned out to make fewer assignments, memory accesses and L1 cache

misses than classical quicksort when used with many pivots. Our experiments showed that it

is necessary to store the element classi�cations after the �rst pass to make these algorithms

competitive. Then, both algorithms were much faster than classical quicksort in practice, on

the cost of an additional memory overhead. We also studied a partitioning strategy that pro-

duced the partition in a single pass, generalizing the partitioning strategy of classical quicksort,

Yaroslavskiy’s algorithm and the three-pivot algorithm of Kushagra et al. [Kus+14]. This strat-

egy showed very good cache behavior when used with three or �ve pivots. In experiments,

the variants using two and three pivots were the fastest algorithms, but were slower than the

two-pass algorithms. We saw that memory accesses predicted the running time di�erences in

many cases very well.

In addition to the open questions from Section 6.6, we pose the following directions for future

work:
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9. Conclusion and Open Questions

1. Usually, pivots are chosen from a sample to balance the size of subproblems, as shown

for dual-pivot quicksort in Section 5. It would be interesting to see how the theoretical

cost measures change when using pivot sampling in a multi-pivot quicksort algorithm.

2. Memory accesses could not explain the L2 and L3 cache behavior of our algorithms. It

would be interesting to see how this can be analyzed.

3. Our partitioning algorithms were not optimal with respect to the average number of

assignments they required to rearrange the input. (It is a simple exercise to describe

inputs in which Algorithm 1 requires too many assignments.) It would be interesting

to describe “assignment-optimal” multi-pivot quicksort algorithms. Here it seems like

one should look for permute sequence (in the sense of Algorithm 1) that are as long as

possible.

4. Our running time experiments were conducted on random permutations of {1, . . . , n}.
For practical purposes, other input distributions are also important, e. g., inputs with

equal keys or inputs with some kind of “presortedness”.
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10. Introduction

Hashing is a central technique in the design of (randomized) algorithms and data structures. It

�nds application in such diverse areas as hash tables, load balancing, data mining, and machine

learning. The basic idea of hashing is to map elements from a (usually very large) universeU to

some smaller rangeR. To simplify the analysis of a hashing-based algorithm or data structure,

one traditionally assumes that a hash function is “fully random”, i. e., hash values are distributed

uniformly and independently in the range R. Additionally, their use is “free of charge”, i. e.,

a hash function consumes no space and its evaluation takes unit time. Unfortunately, such

functions are not e�cient, since their representation takes |U | log |R| bits. Consequently, many

scienti�c papers were devoted to the construction of explicit hash functions, which are not

fully random, but usually just “good enough” for running a speci�c application. This part of

the thesis pursues exactly this goal.

While a considerable amount of CPU time is spent in storing and reading data from hash

tables—many programming languages implement associative arrays as a standard data struc-

ture and recommended their use in most cases—, little e�ort is put into the calculation of hash

values. Often, hash values are deterministic and collisions are easy to �nd. According to Pagh

[Pag14], in Oracle’s Java 7 the hash value h(x) of a string x = a1 . . . an follows the recursion

h(a1 . . . an) = ord(an) + 31 · h(a1 . . . an−1), with h(ε) = 0, in signed 32-bit arithmetic. Sets

of elements that all have the same hash value are easy to �nd: First, observe that the strings

“Aa” and “BB” collide. With this knowledge and the recursive formula from above, one can

see that all strings (Aa|BB)n, for n ≥ 1, collide as well. Since hash tables are often used by

web servers to parse packets, attackers were able to render servers unusable with little tra�c,

see, e. g., [CW03]. As of today, at least three major programming languages adopted stronger

hash functions (e. g., Murmur3 [App] or SipHash [AB12]). These hash functions are nowadays

salted with a random seed when starting the program to make it harder to �nd collisions among

keys. In this thesis, we do not further discuss such hash functions; we only consider them in

the experimental evaluation in the last section.

Hash functions considered in theory use randomization to avoid worst-case inputs, i. e., the

use of the hash function will have provable guarantees on every possible input, which is a

fundamental di�erence to deterministic hashing. The aim is to �nd practical, i. e., fast hash

functions with provable theoretical guarantees. While researchers started to work on this task

almost 35 years ago, many important open problems have only been solved recently. Selected

results will be discussed in the next paragraphs.

Traditionally, explicit hash function constructions build upon the work of Carter and Weg-

man [CW79]. They proposed a technique called universal hashing. In universal hashing, a
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hash function is picked at random from a set H ⊆ {h | h : U → R}. (We call such a set H a

hash family or hash class.) The in�uential notions in universal hashing are “universality” and

“independence”, introduced by Carter and Wegman in [CW79]. The rigorous mathematical

de�nition of these concepts will be provided in Section 11. Informally, H is called universal if

choosing a hash function h ∈ H at random guarantees that the probability that for two dis-

tinct keys x, y ∈ U we have h(x) = h(y) is close to what we get in the fully random case.

Universality of a hash family su�ces for applications such as chained hashing where the ex-

pected number of colliding elements is central in the analysis. For a �xed integer k, we callH
k-independent, if for a randomly chosen h ∈ H the hash values of each set of at most k dis-

tinct keys are uniform and independent. The canonical representation of a k-independent hash

family is the family of all degree k− 1 polynomials over some prime �eld. For the representa-

tion of such a polynomial, we just store its k coe�cients (k words). The evaluation is possible

in time O(k). A large body of work has been devoted to the applicability of k-independent

hash families. One of the most surprising results, due to Pagh, Pagh, and Ruciz [PPR09], is

that 5-wise independence su�ces for running linear probing—the most often used hash table

implementation—, where “su�ces” will always mean that the guarantees are close to what we

would get when using fully random hash functions. Interestingly, this degree of independence

is also necessary, for Pǎtraşcu and Thorup [PT10] constructed an arti�cial 4-wise independent

hash family which does not allow running linear probing robustly. Another example where

a constant degree of independence is su�cient is frequency estimation. In [AMS99], Alon,

Matias, and Szegedy showed that 4-wise independence su�ces for F2-estimation. For such ap-

plications, both storing and evaluating the polynomial is possible in constant space and time.

For many other applications, such as cuckoo hashing [PR04] and ε-minwise independent hash-

ing [Ind01], we know that a logarithmic degree of independence su�ces (in the size of the key

set for the former, in 1/ε for the latter). In that case, polynomials use logarithmic space and

evaluation time. If one aims for constant evaluation time, there exist the construction of Siegel

[Sie04]—although Siegel states that his construction has constant albeit impractical evaluation

time—and, more recently, the simple yet powerful construction of Thorup [Tho13].

Finding a proof that a certain degree of independence allows running a speci�c application

has the advantage that one can choose freely from the pool of available hash families that

achieve the necessary degree of independence. If a faster hash family becomes known in future

research, one can just switch to this hash function. For example, this has happened with the

introduction of Thorup and Zhang’s fast tabulation-hashing class [TZ04; TZ12]. On the other

hand, lower bounds on a certain degree of independence often use arti�cial constructions and

do not rule out the possibility that “weak hash functions” (based on their universality or degree

of independence) actually su�ce for running a speci�c application. Notable exceptions are the

analysis of Dietzfelbinger and Schellbach [DS09a; DS09b], who showed that cuckoo hashing

cannot be run with the so-called class of linear hash functions and the class of multiplicative

hash functions in certain situation, and Pǎtraşcu and Thorup [PT10], who demonstrated that

linear probing is not robust when using the multiplicative class of hash functions.

Only in the last decade, the analysis of speci�c explicit hash families has been a fruitful
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research area. Dietzfelbinger and Woelfel [DW03] showed in 2003 that a hash family intro-

duced by Dietzfelbinger and Meyer auf der Heide in [DM90] allows running cuckoo hashing.

In 2006, Woelfel [Woe06a] demonstrated that the same hash class could be used for running

the GoLeft allocation algorithm of Voecking [Vöc03] in the area of load balancing. In 2011,

Pǎtraşcu and Thorup [PT11] (full version [PT12]) analyzed a simple tabulation class of hash

functions known at least since Zobrist’s use of it in the 1970-ies [Zob70]. They proved that

it has su�cient randomness properties in many applications, including static cuckoo hashing,

linear probing, and ε-minwise independent hashing, despite of the fact that it is only 3-wise

independent. In tabulation hashing, each key is a tuple (x1, . . . , xc) which is mapped to the

hash value f1(x1) ⊕ · · · ⊕ fc(xc) by c uniform random hash functions f1, . . . , fc, each with

a domain of cardinality U1/c
. Two years later, the same authors introduced “twisted tabula-

tion hashing” [PT13], which gives even stronger randomness properties in many applications.

Recently, Dahlgaard, Knudsen, Rotenberg, and Thorup extended the use of simple tabulation

to load balancing [Dah+14], showing that simple tabulation su�ces for sequential load bal-

ancing with two choices. Furthermore, Dahlgaard and Thorup proved that twisted tabulation

is ε-minwise independent [DT14]. While these hash functions provide constant evaluation

time, their description length is polynomial in the size of the key set. With respect to descrip-

tion length, Celis, Reingold, Segev, and Wieder [Cel+13] presented a new hash class which is

more concerned about space complexity. In 2014, Reingold, Rothblum, and Wieder [RRW14]

showed that this class of hash functions has strong enough randomness properties for run-

ning a slightly modi�ed version of cuckoo hashing and sequential allocation with two hash

functions (“the power of two choices”). While it has non-constant evaluation time, its descrip-

tion length is notably smaller than what one gets using the standard polynomial approach

(O(log n log logn) vs. O(log2 n) bits).

Several techniques to circumvent or justify the uniform hashing assumption have been pro-

posed. The most general one is to “simulate” uniform hashing. Suppose we want to construct

a hash function that takes on fully random values from R. The idea is to generate a family H
of hash functions at random such that with high probability H is “uniform” on S ⊆ U , which

means that a random hash function h ∈ H restricted to the domainS is a true random function.

Such a simulation was presented by Pagh and Pagh in [PP08], by Dietzfelbinger and Woelfel in

[DW03], and by Dietzfelbinger and Rink in [DR09]. In this thesis, we will provide a simple alter-

native construction which builds upon the work of [PP08]. However, such simulations require

at least a linear (in |S| · log |R|) number of bits of additional space, which is often undesirable.

Another perspective on uniform hashing is to assume that the key set S = {x1, . . . , xn} ⊆ U
is “su�ciently random”. Speci�cally, Mitzenmacher and Vadhan showed in [MV08] that when

the distribution that governs {x1, . . . , xn} has a low enough collision probability, then even

using a hash function h from a 2-wise independent hash class H ⊆ {h | h : U → R} makes

the sequence (h, h(x1), . . . , h(xn)) distributed close to the uniform distribution on H × Rn
(see also [Die12]). An alternative is the so-called split-and-share technique [Fot+05; Die07;

DR09; BPZ13], in which S is �rst partitioned by a top-level hash function into smaller sets of

keys, called bins. Then, a problem solution is computed for each bin, but all bins share the
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same hash functions. Since the size of each bin is signi�cantly smaller than the size of S, it

is possible to use a hash function that behaves like a true random hash function on each bin.

Finally, the problem solution of all bins is combined to a solution of the original problem. This

technique cannot be employed uniformly to all applications, as ad-hoc algorithms depending

on the application are required to merge the individual solutions for each bin to a solution of

the original problem. In some scenarios, e. g., balanced allocation with high loads, the small

deviations in the bin sizes incurred by the top-level hash function are undesirable. Moreover,

additional costs in space and time are caused by the top-level splitting hash function and by

compensating for a larger failure probability in each of the smaller bins.

The Contribution. We generalize a hash family construction proposed by Dietzfelbinger

and Woelfel in [DW03]. To put our contribution in perspective, we �rst review some back-

ground. Building upon the work of Dietzfelbinger and Meyer auf der Heide [DM90], Dietzfel-

binger and Woelfel showed in [DW03] that a class of simple hash functions has strong random-

ness properties in many di�erent applications, e. g., in standard cuckoo hashing [PR04], to sim-

ulate a uniform hash function, and in the context of simulations of shared memory situations

on distributed memory machines. Their analysis is based on studying randomness properties

of graphs built in the following way: Consider a set S of n keys chosen from a �nite setU and a

pair (h1, h2) of hash functions h1, h2 : U → [m] = {0, . . . ,m−1} for some positive integerm.

Then, S and (h1, h2) naturally de�ne a bipartite graphG(S, h1, h2) := (V,E) with V = Vm,2,

where Vm,2 is the union of two disjoint copies of [m] and E = {(h1(x), h2(x)) | x ∈ S}.
Dietzfelbinger and Woelfel studied the randomness properties of G(S, h1, h2) when it is con-

structed using a certain explicit hash family. They showed that the connected components

of this graph behave, in some technical sense, very close to what is expected of the graph

G(S, h1, h2) when h1, h2 were to be fully random. Later, Woelfel described in [Woe06a] how

the construction from [DW03] extends to hypergraphs and analyzed the allocation algorithm

of Voecking [Vöc03] using this hash class.

We extend the hash class described in [DW03; Woe06a] to a hash class we call Z . We pro-

vide a general framework that allows us to analyze applications whose analysis is based on

arguments on the random graph described above when hash functions from Z are used in-

stead of fully random hash functions. To argue whether the hash class can run a certain

application or not, only random graph theory is applied, no details of the actual hash class

are exposed. Using this framework, we show that hash functions from Z have randomness

properties strong enough for many di�erent applications, e. g., cuckoo hashing with a stash as

described by Kirsch, Mitzenmacher, and Wieder in [KMW09], generalized cuckoo hashing as

proposed by Fotakis, Pagh, Sanders, and Spirakis in [Fot+05] with two recently discovered in-

sertion algorithms due to Khosla [Kho13] and Eppstein, Goodrich, Mitzenmacher and Pszona

[Epp+14] (in a sparse setting), the construction of a perfect hash function of Botelho, Pagh

and Ziviani [BPZ13], the simulation of a uniform hash function of Pagh and Pagh [PP08], and

di�erent types of load balancing as studied by Schickinger and Steger [SS00]. The analysis is
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done in a uni�ed way which we hope will be of independent interest. We will �nd su�cient

conditions under which it is possible to replace the full randomness assumption of a sequence

of hash functions with explicit hash functions. Furthermore, our small modi�cation of the

construction of [DW03; Woe06a] makes the analysis easier and the hash functions faster in

practice.

The General Idea. We will describe the class Z of hash function tuples
~h = (h1, . . . , hd),

hi : U → [m]. For each keyx ∈ U , the hash function valueshi(x) can be computed with a small

(constant) number of arithmetic operations and lookups in small (cache-friendly) tables. For

a set S ⊆ U we then consider properties of the random graph G(S,~h), which is the obvious

hypergraph extension of G(S, h1, h2) to d ≥ 3 hash functions, motivated by the following

observation.

The analysis of hashing applications is often concerned with bounding (from above) the

probability that random hash functions h1, . . . , hd map a given setS ⊆ U of keys to some “bad”

hash function values. Those undesirable events can often be described by certain properties

exhibited by the random graph G(S,~h). For example, in the dictionary application cuckoo

hashing, a bad event occurs whenG(S, h1, h2) contains a very long simple path or a connected

component with at least two cycles.

If h1, . . . , hd are uniform hash functions, then often a technique called �rst moment method
(see, e.g., [Bol85]) is employed to bound the probability of undesired events: In the standard

analysis, one calculates the expectation of the random variable X that counts the number of

subsets T ⊆ S such that the subgraphG
(
T,~h

)
forms a “bad” substructure, as e.g., a connected

component with two or more cycles. This is done by summing the probability that the subgraph

G
(
T,~h

)
forms a “bad” substructure over all subsets T ⊆ S. One then shows that E(X) =

O(n−α) for some α > 0 and concludes that Pr(X > 0)—the probability that an undesired

event happens—is at most O(n−α) by Markov’s inequality.

We give general su�cient conditions allowing us to replace uniform hash functionsh1, . . . , hd
with hash function sequences from Z without signi�cantly changing the probability of the oc-

currence of certain undesired substructuresG
(
T,~h

)
. On a high level, the idea is as follows: We

assume that for each T ⊆ U we can split Z into two disjoint parts: hash function sequences

being T -good, and hash function sequences being T -bad. Choosing
~h = (h1, . . . , hd) at ran-

dom from the set of T -good hash functions ensures that the hash values hi(x) with x ∈ T and

1 ≤ i ≤ d are uniformly and independently distributed. Fix some set S ⊆ U . We identify

some “exception set” BS ⊆ Z (intended to be very small) such that for all T ⊆ S we have: If

G(T,~h) has an undesired property (e.g., a connected component with two or more cycles) and

~h is T -bad, then
~h ∈ BS .

For T ⊆ S, disregarding the hash functions fromBS will allow us to calculate the probability

that G(T,~h) has an undesired property as if
~h were a sequence of uniform hash functions. It

is critical to �nd subsets BS of su�ciently small probability. Whether or not this is possible

depends on the substructures we are interested in. However, we provide criteria that allow us
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to bound the size of BS from above entirely by using graph theory. This means that details

about the hash function construction need not be known to argue that random hash functions

from Z can be used in place of uniform random hash functions for certain applications.

Outline and Suggestions. Section 11 introduces the considered class Z of hash functions

and provides the general framework of our analysis. Because of its abstract nature, the details of

the framework might be hard to understand. A simple application of the framework is provided

in Section 11.4. There, we will discuss the use of hash class Z in static cuckoo hashing. The

reader might �nd it helpful to study the example �rst to get a feeling of how the framework

is applied. Another way to approach the framework is to �rst read the paper [ADW14]. This

paper discusses one example of the framework with an application-speci�c focus, which might

be easier to understand.

The following sections then deal with applications of the hash function construction. Be-

cause of the diverse applications, the background of each application will be provided in the

respective subsection right before the analysis.

Sections 12 and 13 deal with randomness properties ofZ on (multi-)graphs. Here, Section 12

provides some groundwork for bounding the impact of using Z in our applications. Section 13

discusses the use of Z in cuckoo hashing (with a stash), the simulation of a uniform hash

function, the construction of a perfect hash function, and the behavior of Z on connected

components of G(S, h1, h2).

The next section (Section 14) discusses applications whose analysis builds upon hypergraphs.

As an introduction, we study generalized cuckoo hashing with d ≥ 3 hash functions when

the hash table load is low. Then, we will discuss two recently described, alternative insertion

algorithms for generalized cuckoo hashing. Finally, we will prove that hash class Z provides

strong enough randomness properties for many di�erent load balancing schemes.

In Section 15 we show how our analysis generalizes to the case that we use more involved

hash functions as building blocks of hash class Z , which lowers the total number of needed

hash functions and the space consumption.

As performance is a key component of a good hash function, we evaluate the running time

of hash functions from classZ and compare it to many other hash functions, e. g., simple tabu-

lation hashing [PT12] and deterministic hash functions such as Murmur3 [App] in Section 16.

Summary of Results. The most important result of this part of the thesis is the general

framework developed in Section 11. It states su�cient (and often “easy to check”) conditions

when one can use hash class Z in a speci�c application. Its usefulness is demonstrated by

analyzing many di�erent, sometimes very recent algorithms and data structures. In some cases,

we are the �rst to prove that an explicit construction has good enough randomness properties

for a speci�c application. In some applications, we get guarantees that match what one would

get in the fully random case, e. g., for cuckoo hashing (with a stash). In other cases, the analysis

does only allow to get close to what one achieves with fully random hash functions, e. g., in
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the construction of a perfect hash function. Sometimes, our theoretical bounds are far away

from what we get in the fully random case, e. g., for generalized cuckoo hashing. The results of

our experiments suggest that variants of hash classZ are quite fast while providing theoretical

guarantees not known from other hash function constructions.
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11. Basic Setup and Groundwork

Let U and R be two �nite sets with 1 < |R| ≤ |U |. A hash function with range R is a mapping

from U to R. In our applications, a hash function is applied on some key set S ⊆ U with

|S| = n. Furthermore, the range of the hash function is the set [m] = {0, . . . ,m − 1} where

often m = Θ(n). In measuring space, we always assume that log |U | is a small enough term

that vanishes in big-Oh notation when compared with terms depending on n. If this is not the

case, one �rst applies a hash function to collapse the universe to some size polynomial in n
[Sie04]. We say that a pair x, y ∈ U, x 6= y collides under a hash function g if g(x) = g(y).

The term universal hashing introduced by Carter and Wegman in [CW77] refers to the tech-

nique of choosing a hash function at random from a set Hm ⊆ {h | h : U → [m]}. Here, Hm
is an indexed family {hi}i∈I . Such an indexed family is called a hash class or hash family, and

selecting a hash function fromHm means choosing its index i ∈ I uniformly at random. Next,

we de�ne two important notions for such hash families: universality and independence.

De�nition 11.0.1 [CW77; CW79]
For a constant c ≥ 1, a hash classH with functions from U to [m] is called c-universal if for

an arbitrary distinct pair of keys x, y ∈ U we have

Prh∈H
(
h(x) = h(y)

)
≤ c/m.

We remark that there exists the concept of optimal universality, where two distinct keys collide

with probability at most (|U | −m)/(|U | ·m −m), see [Woe99]. However, 2-universal hash

classes su�ce for our applications. Examples for c-universal hash families can be found in,

e. g., [CW77; Die+97; Woe99]. In the following, Fcm denotes an arbitrary c-universal hash

family with domain U and range [m].

De�nition 11.0.2 [WC79; WC81]
For an integer κ ≥ 2, a hash class H with functions from U to [m] is called a κ-wise
independent hash family if for arbitrary distinct keys x1, . . . , xκ ∈ U and for arbitrary

j1, . . . , jκ ∈ [m] we have

Prh∈H
(
h(x1) = j1 ∧ . . . ∧ h(xκ) = jκ

)
= 1/mκ.

In other terms, choosing a hash function uniformly at random from a κ-wise independent class

of hash functions guarantees that the hash values are uniform in [m] and that each key from
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an arbitrary set of at most k keys from the universe is mapped independently. The classical

κ-wise independent hash family construction is based on polynomials of degree κ − 1 over a

�nite �eld [WC79]. Other constructions are based on combining values that are picked from

small tables �lled with random elements from [m] with bitwise exclusive or (tabulation-based
hashing). To pick these values, we can, e. g., split a key x into characters x1, . . . , xc over some

alphabet and pick as the i-th value the value in cell xi in table i [PT12] (and, with a small

twist, [PT13]). However, this scheme is only 3-wise independent. To achieve a higher degree

of independence, one needs to derive additional keys. See [DW03; TZ12; KW12; PT12] for

constructions using this approach. Tabulation-based constructions are often much faster in

practice than polynomial-based hashing (cf. [TZ12]) on the cost of using slightly more memory.

Throughout this thesis,Hκm denotes an arbitrary κ-wise independent hash family with domain

U and range [m].

11.1. The Hash Class

The hash class presented in this work draws ideas from many di�erent papers. So, we �rst give

a detailed overview of related work and key concepts.

Building upon the work on k-independent hash families and two-level hashing strategies,

e. g., the FKS-scheme of Fredman et al. [FKS84], Dietzfelbinger and Meyer auf der Heide studied

in [DM90; DM92] randomness properties of hash functions from U to [m] constructed in the

following way: For given k1, k2,m, n ≥ 2, and δ with 0 < δ < 1, set ` = nδ . Let f : U → [m]
be chosen from a k1-wise independent hash family, and let g : U → [`] be chosen from a k2-

wise independent hash family. Fill a table z[1..`] with random values from [m]. To evaluate a

key x, evaluate the function

h(x) = f(x) + z[g(x)] mod m. (11.1)

The idea is as follows: The g-function splits a key set S into buckets Sj = {x ∈ S | g(x) = j},
for 0, . . . , `− 1. To an element x from bucket Sj , the hash functions f(x) + z[j] is applied. So,

all elements in one row are rotated with the same random o�set. Since these o�sets are chosen

randomly, collisions of keys that lie in di�erent buckets happen like the hash values would be

fully random, and one has only to care about the dependency of keys in a �xed bucket. Here,

the focus of the analysis was the behavior of the hash class with regard to collisions of keys.

The data structure needs O(nδ) words and can be evaluated in time O(max{k1, k2}).

For m = n, the hash class of [DM90] had many randomness properties that were only

known to hold for fully random hash functions: When throwing n balls into n bins, where each

candidate bin is chosen by “applying the hash function to the ball”, the expected maximum

bin load is O(log n/ log logn), and the probability that a bin contains i ≥ 1 balls decreases

exponentially with i. Other explicit hash families that share this property were discovered by

Pǎtraşcu and Thorup [PT12] and Celis et al. [Cel+13] only about two decades later.

In 2003, Dietzfelbinger and Woelfel [DW03] generalized the construction from [DM90] to
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pairs (h1, h2) of hash functions with hi : U → [m], for i ∈ {1, 2}. Naïvely, one could just

duplicate the construction of [DM90]. They showed, however, that one should choose two f -

functions, two z-tables, but only one g-function that is shared among h1 and h2. The key idea

of the analysis was that when the g-function distributes a �xed set T ⊆ S “well enough”, then

h1 and h2 can be seen as fully random hash functions on T . They used this insight to study

the randomness properties of the graph G(S, h1, h2) whose vertex set consists of two copies

of [m] and whose edge set is {(h1(x), h2(x)) | x ∈ S}. They showed that this graph behaves

“almost fully randomly”, in some technical sense, inside its connected components. Using this

result, they proved that this explicit hash family has strong enough randomness properties that

allows us to use it in, e. g., cuckoo hashing, the simulation of a uniform hash function, and the

simulation of shared memory situations.

In 2006, Woelfel [Woe06a] generalized this construction from two to d ≥ 2 hash functions

using d f -functions, d z-tables and one shared g-function. He showed that it can run the GoLeft
algorithm of Vöcking [Vöc03] for sequential balanced allocation where each ball can choose

from d ≥ 2 bins.

We modify the construction of the hash class in two di�erent ways: First, we restrict f and

g to be from very simple, two-independent and two-universal, resp., hash classes. Second, we

compensate for this restriction by using c ≥ 1 g-functions and d · c z-tables. This modi�cation

has two e�ects: it makes the analysis simpler and it seems to yield faster hash functions in

practice, as we shall demonstrate in Section 16.

De�nition 11.1.1
Let c ≥ 1 and d ≥ 2. For integersm, ` ≥ 1, and given f1, . . . , fd : U → [m], g1, . . . , gc : U →
[`], and d two-dimensional tables z(i)[1..c, 0..`−1] with elements from [m] for i ∈ {1, . . . , d},
we let

~h = (h1, . . . , hd) = (h1, . . . , hd)〈f1, . . . , fd, g1, . . . , gc, z
(1), . . . , z(d)〉, where

hi(x) =
(
fi(x) +

∑
1≤j≤c

z(i)[j, gj(x)]
)

mod m, for x ∈ U, i ∈ {1, . . . , d}.

Let F2
` be an arbitrary two-universal class of hash functions from U to [`], and let H2

m be

an arbitrary two-wise independent hash family from U to [m]. Then Zc,d`,m(F2
` ,G2

m) is the

family of all sequences (h1, . . . , hd)〈f1, . . . , fd, g1, . . . , gc, z
(1), . . . , z(d)〉 for fi ∈ H2

m with

1 ≤ i ≤ d and gj ∈ F2
` with 1 ≤ j ≤ c.

Obviously, this hash class can be generalized to use arbitrary κ-wise independent hash families

as building blocks for the functions fi, for 1 ≤ i ≤ d, and gj , for 1 ≤ j ≤ c. However, the

simpler hash functions are much easier to deal with in the proofs of this section. We defer the

discussion of such a generalization to Section 15.

While this is not re�ected in the notation, we consider (h1, . . . , hd) as a structure from

which the components g1, . . . , gc and fi, z
(i)

, i ∈ {1, . . . , d}, can be read o� again. It is family
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Z = Zc,d`,m(F2
` ,G2

m) for some c ≥ 1 and d ≥ 2, made into a probability space by the uniform

distribution, that we will study in the following. We usually assume that c and d are �xed

and that m and ` are known. Also, the hash families F2
` and G2

m are arbitrary hash families

(providing the necessary degree of universality or independence) and will be omitted in the

further discussion.

De�nition 11.1.2
For T ⊆ U , de�ne the random variable dT , the “de�ciency” of

~h = (h1, . . . , hd) with respect

to T , by dT (~h) = |T | −max{|g1(T )|, . . . , |gc(T )|}. Further, de�ne

(i) badT as the event that dT > 1;

(ii) goodT as badT , i. e., the event that dT ≤ 1;

(iii) critT as the event that dT = 1.

Hash function sequences (h1, . . . , hd) in these events are called “T -bad”, “T -good”, and “T -
critical”, respectively.

It will turn out that if a function gj is injective on a set T ⊆ U , then all hash values on T are

independent. The de�ciency dT of a sequence
~h of hash functions measures how far away the

hash function sequence is from this “ideal” situation. If
~h is T -bad, then for each component gj

there are at least two collisions on T . If
~h is T -good, then there exists a gj-component with at

most one collision on T . A hash function
~h is T -critical if there exists a function gj such that

exactly one collision on T occurs, and for all other functions there is at least one collision. Note

that the de�ciency only depends on the gj-components of a hash function. In the following,

we will �rst �x these gj-components when choosing a hash function. If d(T ) ≤ 1 then the yet

un�xed parts of the hash function (i. e., the entries in the tables z(i)
and the f -functions) are

su�cient to guarantee strong randomness properties of the hash function on T .

Our framework will build on the randomness properties of hash classZ that are summarized

in the next lemma. It comes in two parts. The �rst part makes the role of the de�ciency of a

hash function sequence from Z precise, as described above. The second part states that for a

�xed set T ⊆ S three parameters govern the probability of the events critT or badT to occur:

The size of T , the range [`] of the g-functions, and their number. To be precise, this probability

is at most (|T |2/`)c, which yields two consequences. When |T | is much smaller than `, the

factor 1/`c will make the probability of a hash function behaving badly on a small key set

vanishingly small. But when |T | is larger than `, the in�uence of the failure term of the hash

class is signi�cant. We will see later how to tackle this problem.
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Lemma 11.1.3
Assume d ≥ 2 and c ≥ 1. For T ⊆ U , the following holds:

(a) Conditioned on goodT (or on critT ), the hash values (h1(x), . . . , hd(x)), x ∈ T , are

distributed uniformly and independently in [m]d.

(b) Pr(badT ∪ critT ) ≤
(
|T |2 /`

)c
.

Proof. Part (a): If |T | ≤ 2, then h1, . . . , hd are fully random on T simply because f1, . . . , fd
are drawn independently from 2-wise independent hash classes. So suppose |T | > 2. First,

�x an arbitrary g-part of (h1, . . . , hd) so that critT occurs. (The statement follows analogously

for goodT .) Let j0 ∈ {1, . . . , c} be such that there occurs exactly one collision of keys in T
using gj0 . Let x, y ∈ T, x 6= y, be this pair of keys (i. e., gj0(x) = gj0(y)). Arbitrarily �x all

values in the tables z(i)[j, k] with i ∈ {1, . . . , d}, j 6= j0, and 0 ≤ k ≤ ` − 1. Furthermore,

�x z(i)[j0, gj0(x)] with i ∈ {1, . . . , d}. The hash functions (h1, . . . , hd) are fully random on

x and y since f1, . . . , fd are 2-wise independent. Furthermore, the function gj0 is injective on

T − {x, y} and for each x′ ∈ (T − {x, y}) the table cell z(i)[j0, gj0(x′)] is yet un�xed, for

i ∈ {1, . . . , d}. Thus, the hash values h1(x), . . . , hd(x), x ∈ T − {x, y}, are distributed fully

randomly and are independent of the hash values of x and y.

Part (b): Assume |T | ≥ 2. (Otherwise the events critT or badT cannot occur.) Suppose critT

(or badT ) is true. Then for each component gi, 1 ≤ i ≤ c, there exists a pair x, y ∈ T, x 6= y,
such that gi(x) = gi(y). Since gi is chosen uniformly at random from a 2-universal hash class,

the probability that such a pair exists is at most

(|T |
2

)
· 2/` ≤ |T |2/`. Since all gi-components

are chosen independently, the statement follows.

11.2. Graph Properties and the Hash Class

We assume that the notion of a simple bipartite multigraph is known to the reader. A nice

introduction to graph theory is given by Diestel [Die05]. We also consider hypergraphs (V,E)
which extend the notion of a graph by allowing edges to consist of more than two vertices. For

an integer d ≥ 2, a hypergraph is called d-uniform if each edge contains exactly d vertices. It is

called d-partite if V can be split into d sets V1, . . . , Vd such that no edge contains two vertices

of the same class. A hypergraph (V ′, E′) is a subgraph of a hypergraph (V,E) if V ′ ⊆ V and

for each edge e′ ∈ E′ there exists an edge e ∈ E with e′ ⊆ e. More notation for graphs and

hypergraphs will be provided in Section 11.4 and Section 14, respectively.

We build graphs and hypergraphs from a set of keys S = {x1, . . . , xn} and a sequence of

hash functions
~h = (h1, . . . , hd), hi : U → [m], in the following way: The d-partite hyper-

graphG(S,~h) = (V,E) has d copies of [m] as vertex set and edge setE = {(h1(x), . . . , hd(x)) |
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x ∈ S}.1 Also, the edge (h1(xi), . . . , hd(xi)) is labeled “i”.2 Since keys correspond to edges,

the graph G(S,~h) has n edges and d ·m vertices, which is the standard notation from a “data

structure” point of view, but is a non-standard notation in graph theory. For a set S and an

edge-labeled graph G, we let T (G) = {xi | xi ∈ S,G contains an edge labeled i}.
In the following, our main objective is to prove that with high probability certain subgraphs

do not occur in G(S,~h). Formally, for n,m, d ∈ N, d ≥ 2, let Gdm,n denote the set of all d-

partite hypergraphs with vertex set [m] in each class of the partition whose edges are labeled

with distinct labels from {1, . . . , n}. A set A ⊆ Gdm,n is called a graph property. If for a graphG
we have thatG ∈ A, we say thatG has property A. We shall always disregard isolated vertices.

For a key set S of size n, a sequence
~h of hash functions from Z , and a graph property

A ⊆ Gdm,n, we de�ne the following random variables: For each G ∈ A, let IG be the indicator

random variable that indicates whether G is a subgraph of G(S,~h) or not. (We demand the

edge labels to coincide.) Furthermore, the random variable NA
S counts the number of graphs

G ∈ A which are subgraphs of G(S,~h), i. e., NA
S =

∑
G∈A IG.

LetA be a graph property. Our main objective is then to estimate (from below) the probability

that no subgraph ofG(S,~h) has propertyA. Formally, for givenS ⊆ U we wish to bound (from

above)

Pr~h∈Z

(
NA
S > 0

)
. (11.2)

In the analysis of randomized algorithm, bounding (11.2) is often a classical application of the

�rst moment method, which says that

Pr~h∈Z

(
NA
S > 0

)
≤ E~h∈Z

(
NA
S

)
=
∑
G∈A

Pr~h∈Z (IG = 1) . (11.3)

However, we cannot apply the �rst moment method directly to bound (11.2), since hash func-

tions from Z do not guarantee full independence on the key set, and thus the right-hand side

of (11.3) is hard to calculate. However, we will prove an interesting connection to the expected

number of subgraphs having property A when the hash function sequence
~h is fully random.

To achieve this, we will start by collecting “bad” sequences of hash functions. Intuitively,

a sequence
~h of hash functions is bad with respect to a key set S and a graph property A if

G(S,~h) has a subgraphGwithG ∈ A and for the keys T ⊆ S which formG the g-components

of
~h distribute T “badly”. (Recall the formal de�nition of “bad” from De�nition 11.1.2.)

1

In this thesis, whenever we refer to a graph or a hypergraph we mean a multi-graph or multi-hypergraph, i. e., the

edge set is a multiset. We also use the words “graph” and “hypergraph” synonymously in this section. Finally,

note that our edges are tuples instead of sets to avoid problems with regard to the fact that the hash functions

use the same range.

2

We assume (w.l.o.g.) that the universe U is ordered and that each set S ⊆ U of n keys is represented as

S = {x1, . . . , xn} with x1 < x2 < · · · < xn.
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De�nition 11.2.1
For S ⊆ U and a graph property A let BA

S ⊆ Z be the event⋃
G∈A

(
{IG = 1} ∩ badT (G)

)
.

This de�nition is slightly di�erent to the corresponding de�nition in the paper [ADW14, Def-

inition 3], which considers one application of hash class Z with an application-speci�c focus.
3

In addition to the probability space Z together with the uniform distribution, we also con-

sider the probability space in which we use d fully random hash functions fromU to [m], chosen

independently. From here on, we will denote probabilities of events and expectations of ran-

dom variables in the former case by Pr and E; we will use Pr∗ and E
∗

in the latter. The next

lemma shows that for bounding Pr
(
NA
S > 0

)
we can use E

∗ (NA
S

)
, i. e., the expected number

of subgraphs having property A in the fully random case, and have to add the probability that

the event BA
S occurs. We call this additional summand the failure term of Z on A.

Lemma 11.2.2
Let S ⊆ U be given. For an arbitrary graph property A we have

Pr
(
NA
S > 0

)
≤ Pr

(
BA
S

)
+ E

∗
(
NA
S

)
. (11.4)

Proof. We calculate:

Pr
(
NA
S > 0

)
≤ Pr

(
BA
S

)
+ Pr

({
NA
S > 0

}
∩BA

S

)
.

We only have to focus on the second term on the right-hand side. Using the union bound, we

3

In [ADW14] we de�nedBA
S =

⋃
T⊆S

{
{G(T,~h) has property A} ∩ badT

}
. This works well in the case that we

only consider randomness properties of the graphG(S, h1, h2). During the preparation of this thesis, however,

it turned out that in the hypergraph setting this approach was cumbersome. In that setting, “important” sub-

graphs ofG(S,~h) often occurred not in terms of the graphG(T,~h), for some set T ⊆ S, but by removing some

vertices from the edges of G(T,~h). In De�nition 11.2.1, we may consider exactly such subgraphs of G(T,~h)
by de�ning A properly. The edge labels of a graph are used to identify which keys of S form the graph.
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continue as follows:

Pr
({
NA
S > 0

}
∩BA

S

)
≤
∑
G∈A

Pr
(
{IG = 1} ∩BA

S

)
=
∑
G∈A

Pr

(
{IG = 1} ∩

( ⋃
G′∈A

(
{IG′ = 0} ∪ goodT (G′)

)))
≤
∑
G∈A

Pr
(
{IG = 1} ∩ goodT (G)

)
≤
∑
G∈A

Pr
(
IG = 1 | goodT (G)

)
(i)

=
∑
G∈A

Pr ∗ (IG = 1) = E
∗
(
NA
S

)
,

where (i) holds by Lemma 11.1.3(b).

This lemma encapsulates our overall strategy for bounding Pr(NA
S > 0). The second summand

in (11.4) can be calculated assuming full randomness and is often well known from the literature

in the case that the original analysis was conducted using the �rst moment method. The task

of bounding the �rst summand is tackled separately in the next subsection.

11.3. Bounding the Failure Term of Hash Class Z
As we have seen, using hash class Z gives an additive failure term (cf. (11.4)) compared to

the case that we bound Pr ∗
(
NA
S > 0

)
by the �rst moment method in the fully random case.

Calculating Pr
(
BA
S

)
looks di�cult since we have to calculate the probability that there exists

a subgraph G of G(S,~h) that has property A and where
~h is T (G)-bad. Since we know the

probability that
~h is T (G)-bad from Lemma 11.1.3(b), we could tackle this task by calculating

the probability that there exists such a subgraph G under the condition that
~h is T (G)-bad,

but then we cannot assume full randomness of
~h on T (G) to obtain a bound that a certain

subgraph is realized by the hash values. Since this is hard, we will take another approach. We

will �nd suitable events that contain BA
S and where

~h is guaranteed to behave well on the key

set in question.

Observe the following relationship that is immediate from De�nition 11.2.1.

Lemma 11.3.1
Let S ⊆ U, |S| = n, and let A ⊆ A′ ⊆ Gdm,n. Then Pr

(
BA
S

)
≤ Pr

(
BA′
S

)
.

We will now introduce two concepts that will allow us to bound the failure probability of Z
for “suitable” graph properties A.
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De�nition 11.3.2 Peelability
A graph property A is called peelable if for all G = (V,E) ∈ A, |E| ≥ 1, there exists an

edge e ∈ E such that (V,E − {e}) ∈ A.

A peelable graph property for bipartite graphs, i. e., in the case d = 2, is the set of all connected

bipartite graphs (disregarding isolated vertices), because removing an edge that lies on a cycle

or an edge incident to a vertex of degree 1 does not destroy connectivity.

Peelable graph properties will help us in the following sense: Assume that BA
S occurs, i. e.,

for the chosen
~h ∈ Z there exists some graph G ∈ A that is a subgraph of G(S,~h) and

~h is

T (G)-bad. Let T = T (G). In terms of the “de�ciency” dT of
~h (cf. De�nition 11.1.2) it holds

that dT (~h) > 1. If A is peelable, we can iteratively remove edges fromG such that the resulting

graphs still have property A. Let G′ be a graph that results from G by removing a single edge.

Then dT (G) − dT (G′) ∈ {0, 1}. Eventually, because d∅ = 0, we will obtain a subgraph G′ ∈ A

of G such that
~h is T (G′)-critical. In this case, we can again make use of Lemma 11.1.3(b) and

bound the probability that G′ is realized by the hash function sequence by assuming that the

hash values are fully random.

However, peelability does not su�ce to obtain low enough bounds for failure terms Pr
(
BA
S

)
;

we need the following auxiliary concept, whose idea will become clear in the proof of the next

lemma.

De�nition 11.3.3 Reducibility
Let c ∈ N, and let A and B be graph properties. A is called B-2c-reducible if for all graphs

(V,E) ∈ A and sets E∗ ⊆ E the following holds: if |E∗| ≤ 2c then there exists an edge set

E′ with E∗ ⊆ E′ ⊆ E such that (V,E′) ∈ B.

If a graph property A is B-2c-reducible, we say that A reduces to B. The parameter c shows

the connection to hash class Z : it is the same parameter as the number of gj-functions in hash

class Z .

To shorten notation, we let

µAt :=
∑

G∈A,|E(G)|=t

Pr ∗ (IG = 1)

be the expected number of subgraphs with exactly t edges having property A in the fully ran-

dom case. The following lemma is the central result of this section and encapsulates our overall

strategy to bound the additive failure term introduced by using hash class Z instead of fully

random hash functions.
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Lemma 11.3.4
Let c ≥ 1, S ⊆ U with |S| = n, and let A,B, and C be graph properties such that A ⊆ B, B
is a peelable graph property, and B reduces to C. Then

Pr
(
BA
S

)
≤ Pr

(
BB
S

)
≤ `−c ·

n∑
t=2

t2c · µCt .

Proof. By Lemma 11.3.1 we have Pr
(
BA
S

)
≤ Pr(BB

S ) = Pr
(⋃

G∈B({IG = 1} ∩ badT (G))
)
.

Assume that
~h is such that BB

S occurs. Then there exists a subgraph G of G(S,~h) such that

G ∈ B and dT (G)(~h) > 1. Fix such a graph.

Since B is peelable, we iteratively remove edges fromG until we obtain a graphG′ = (V,E′)
such that G′ ∈ B and critT (G′) occurs. The latter is guaranteed, for d∅(~h) = 0 and for two

graphs G and G′, where G′ results from G by removing a single edge, it holds that dT (G)(~h)−
dT (G′)(~h) ∈ {0, 1}. Since critT (G′) happens, for each gi-component of

~h, 1 ≤ i ≤ c, there is

at least one collision on T (G′). Furthermore, there exists one component gj0 , j0 ∈ {1, . . . , c},
such that exactly one collision on T (G′) occurs. For each gi, i ∈ {1, . . . , c}, let {ei, e′i}, ei 6= e′i,
be two edges of G′ such that the keys xi, yi which correspond to ei and e′i collide under gi. Let

E∗ =
⋃

1≤i≤c{ei, e′i}.
By construction |E∗| ≤ 2c. Since B reduces to C, there exists some set E′′ with E∗ ⊆

E′′ ⊆ E′ such that G′′ = (V,E′′) ∈ C. By construction of E∗, each gi-component has at

least one collision on T (G′′). Moreover, gj0 has exactly one collision on T (G′′). Thus,
~h is

T (G′′)-critical.

We calculate:

Pr
(
BA
S

)
≤Pr

(
BB
S

)
= Pr

(⋃
G∈B

(
{IG = 1} ∩ badT (G)

)) (i)

≤ Pr

( ⋃
G′∈B

(
{IG′ = 1} ∩ critT (G′)

))
(ii)

≤ Pr

( ⋃
G′′∈C

(
{IG′′ = 1} ∩ critT (G′′)

))
≤
∑
G′′∈C

Pr
(
{IG′′ = 1} ∩ critT (G′′)

)
≤
∑
G′′∈C

Pr
(
IG′′ = 1 | critT (G′′)

)
· Pr

(
critT (G′′)

)
(iii)

≤ `−c ·
∑
G′′∈C

Pr ∗ ({IG′′ = 1}) · |T (G′′)|2c

= `−c ·
n∑
t=2

t2c ∑
G′′∈C
|E(G′′)|=t

Pr ∗ ({IG′′ = 1})

 = `−c ·
n∑
t=2

t2c · µCt ,
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where (i) holds for B is peelable, (ii) is due to reducibility, and (iii) follows by Lemma 11.1.3.

We summarize the results of Lemma 11.2.2 and Lemma 11.3.4 in the following lemma.

Lemma 11.3.5
Let c ≥ 1,m ≥ 1, S ⊆ U with |S| = n, and let A,B, and C be graph properties such that

A ⊆ B, B is a peelable graph property, and B reduces to C. Assume that there are constants

α, β such that

E
∗
(
NA
S

)
:=

n∑
t=1

µAt = O
(
n−α

)
, (11.5)

and

n∑
t=2

t2cµCt = O
(
nβ
)
. (11.6)

Then setting ` = n(α+β)/c
and choosing

~h at random from Zc,d`,m yields

Pr
(
NA
S > 0

)
= O

(
n−α

)
.

Proof. Follows immediately by plugging the failure probability bound from Lemma 11.3.4 into

Lemma 11.2.2.

Remark 11.3.6. In the statement of Lemma 11.2.2 and Lemma 11.3.5 graph properties B and

C can be the same graph properties, since every graph property reduces to itself.

Lemma 11.3.5 shows the power of our framework. The conditions of this lemma can be checked

without looking at the details of the hash functions, only by �nding suitable graph properties

that have a low enough expected number of subgraphs in the fully random case. Let us compare

properties (11.5) and (11.6). Property (11.5) is the standard �rst moment method approach. So,

it can often be checked from the literature whether a particular application seems suitable for

an analysis with our framework or not. Property (11.6) seems very close to a �rst moment

method approach, but there is one important di�erence to (11.5). The additional factor t2c,
coming from the randomness properties of the hash class, means that to obtain low enough

bounds for (11.6), the average number of graphs with property C must decrease rapidly, e. g.,

exponentially, fast in t. This will be the case for almost all graph properties considered in this

thesis.

In the analysis, we will use Lemma 11.2.2 and Lemma 11.3.4 instead of Lemma 11.3.5. Often,

one auxiliary graph property su�ces for many di�erent applications and we think it is cleaner

112



11. Basic Setup and Groundwork

to �rst bound the failure term of Z on this graph property using Lemma 11.3.4; then we only

have to care about the fully random case and apply Lemma 11.2.2 at the end.

At the end of this section we discuss one generalization of the notion of “reducibility”.

De�nition 11.3.7 Generalized Reducibility
Let c ∈ N, and let A and B be graph properties. A is called weak B-2c-reducible if for all

graphs (V,E) ∈ A and sets E∗ ⊆ E the following holds: if |E∗| ≤ 2c then there exists a

subgraph (V,E′) ∈ B of (V,E) such that for each edge e∗ ∈ E∗ there exists an edge e′ ∈ E′
with e′ ⊆ e∗ having the same label as e∗.

In di�erence to De�nition 11.3.3, we can remove vertices from the edges in edge set E∗. This

notion will be used in applications of our framework to hypergraphs. A proof analogous to

the proof of Lemma 11.3.4 shows that the statement of Lemma 11.3.4 is also true if B is weak

C-2c-reducible.

This constitutes the theoretical basis of the second part of this thesis.

113



11. Basic Setup and Groundwork

11.4. Step by Step Example: Analyzing Static Cuckoo Hashing

Graph Notation. We start by �xing graph-related notation: We call an edge that is incident

to a vertex of degree 1 a leaf edge. We call an edge a cycle edge if removing it does not disconnect

any two nodes. A connected graph is called acyclic if it does not contain cycles. It is called

unicyclic if it contains exactly one cycle. The 2-core of a graph G is the maximal subgraph of

G in which each vertex has minimum degree 2. For a (hyper-)graph G = (V,E), a function

f : E → V is a 1-orientation of G if f is injective. (For each edge we pick one vertex such that

each vertex is picked at most once.)

Background. Cuckoo hashing [PR04] is a dictionary algorithm that stores a (dynamically

changing) set S ⊆ U of size n in two hash tables, T1 and T2, each of size m ≥ (1 + ε)n for

some ε > 0. It employs two hash functions h1 and h2 with h1, h2 : U → [m]. A key x can be

stored either in T1[h1(x)] or in T2[h2(x)], and all keys are stored in distinct table cells. Thus,

to �nd or remove a key it su�ces to check these two possible locations.

Cuckoo hashing deals with collisions by moving keys between the two tables. A new key

x is always inserted into T1[h1(x)]. If this cell is occupied by some key x′, then that key is

evicted from the hash table and becomes “nestless” before x is inserted. Whenever a key x′

has been evicted from Ti[hi(x
′)], i ∈ {1, 2}, it is afterwards reinserted in the other table,

T3−i[h3−i(x
′)], after possibly evicting the element stored there. This process continues until

an empty cell is found, i. e., no eviction is necessary. The procedure may cycle forever, so if it

does not terminate after a given number, MaxLoop = Θ(log n), of steps, new hash functions

h1 and h2 are chosen, and the data structure is rebuilt from scratch.

In this section, we deal with the static setting whether or not a key set S of size n can be

stored in the two tables of size (1 + ε)n each, for some ε > 0, using a pair of hash functions

(h1, h2) according to the cuckoo hashing rules. To this end, we look at the bipartite graph

G(S, h1, h2) built from S and (h1, h2). Recall that the vertices of G are two copies of [m] and

that each key xi ∈ S gives rise to an edge (h1(x), h2(x)) labeled i. If (h1, h2) allow storing S
according to the cuckoo hashing rules, i. e., independent of the actual insertion algorithm, we

call (h1, h2) suitable for S.

This section is meant as an introductory example. Already Pagh and Rodler showed in [PR04]

that using a Θ(log n)-wise independent hash class su�ces to run cuckoo hashing. Dietzfel-

binger and Woelfel showed in [DW03] that this is also possible using a speci�c variant of hash

class Z . Since standard cuckoo hashing is a special case of cuckoo hashing with a stash, the

results here can also be proven using the techniques presented in the author’s diploma the-

sis [Aum10] and the paper [ADW14]. However, the proofs here are notably simpler than the

proofs needed for the analysis of cuckoo hashing with a stash, as we shall see in Section 12 and

Section 13.

Result. We will prove the following theorem:
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11. Basic Setup and Groundwork

Figure 11.1.: The minimal obstruction graphs for cuckoo hashing.

Theorem 11.4.1
Let ε > 0 and 0 < δ < 1 be given. Assume c ≥ 2/δ. For n ≥ 1 consider m ≥ (1 + ε)n and

` = nδ . Let S ⊆ U with |S| = n. Then for (h1, h2) chosen at random from Z = Zc,2`,m the

following holds:

Pr ((h1, h2) is not suitable for S) = O(1/n).

In the following, all statements of lemmas and claims use the parameter settings of Theo-

rem 11.4.1.

By the cuckoo hashing rules, the pair (h1, h2) of hash functions is suitable if and only if

G(S, h1, h2) has a 1-orientation, i. e., if every edge can be directed in such a way that each

vertex has in-degree at most 1. It is not hard to see that (h1, h2) is suitable for S if and only if

every connected component ofG(S, h1, h2) has at most one cycle [DM03]. So, if (h1, h2) is not

suitable,G(S, h1, h2) has a connected component with more than one cycle. This motivates to

consider the following graph property.

De�nition 11.4.2
Let MOG (“minimal obstruction graphs”) be the set of all labeled graphs from G2

m,n (disre-

garding isolated vertices) that form either a cycle with a chord or two cycles connected by a

path of length t ≥ 0.

These two types of graphs form minimal connected graphs with more than one cycle, see

Figure 11.1. So, if (h1, h2) is not suitable for S, then G(S, h1, h2) contains a subgraph with

property MOG. We summarize:

Pr ((h1, h2) is not suitable for S) = Pr
(
NMOG
S > 0

)
. (11.7)

According to Lemma 11.2.2, we can bound the probability on the right-hand side of (11.7) as

follows

Pr
(
NMOG
S > 0

)
≤ Pr

(
BMOG
S

)
+ E

∗
(
NMOG
S

)
. (11.8)
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We �rst study the expected number of minimal obstruction graphs in the fully random case.

Bounding E∗
(
NMOG
S

)
. The expected number of minimal obstruction graphs in the fully

random case is well known from other work, see, e. g., [PR04; DM03]. For completeness, we

give a full proof, which can also be found in [Aum10].

Lemma 11.4.3

E
∗
(
NMOG
S

)
= O(1/m).

Proof. We start by counting unlabeled graphs with exactly t edges that form a minimal ob-

struction graph. Every minimal obstruction graphs consists of a simple path of exactly t − 2
edges and two further edges which connect the endpoints of this path with vertices on the path.

Since a minimal obstruction graph with t edges has exactly t − 1 vertices, there are no more

than (t − 1)2
unlabeled minimal obstruction graphs having exactly t edges. Fix an unlabeled

minimal obstruction graph G. First, there are two ways to split the vertices of G into the two

parts of the bipartition. When this is �xed, there are no more than mt−1
ways to label the

vertices with labels from [m], and there are no more than nt+1
ways to label the edges with

labels from {1, . . . , n}. Fix such a fully labeled graph G′.
Now draw t labeled edges

4
at random from [m]2. The probability that these edges realizeG′

is exactly 1/m2t
. We calculate:

E
∗
(
NMOG
S

)
≤

n∑
t=3

2nt ·mt−1 · (t− 1)2

m2t
≤ 2

m

n∑
t=3

t2nt

mt
=

2

m

n∑
t=3

t2

(1 + ε)t
= O

( 1

m

)
,

where the last step follows from the convergence of the series

∑∞
t=0 t

2/qt for every q > 1.

We summarize:

Pr
(
NMOG
S > 0

)
≤ Pr

(
BMOG
S

)
+O

(
1

m

)
. (11.9)

It remains to bound the failure term Pr
(
BMOG
S

)
.

Bounding Pr
(
BMOG
S

)
. In the light of De�nition 11.3.2, we �rst note that MOG is not pee-

lable. So, we �rst �nd a peelable graph property that contains MOG. Since paths are peelable,

and a minimal obstruction graph is “almost path-like” (cf. proof of Lemma 11.4.3), we relax the

notion of a minimal obstruction graph in the following way.

4

The labels of these edges are equivalent to the edge labels of G′.
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De�nition 11.4.4
Let RMOG (“relaxed minimal obstruction graphs”) consist of all graphs in G2

m,n that form

either (i) a minimal obstruction graph, (ii) a simple path, or (iii) a simple path and exactly

one edge which connects an endpoint of the path with a vertex on the path, disregarding

isolated vertices.

By the de�nition, we obviously have that MOG ⊆ RMOG.

Lemma 11.4.5
RMOG is peelable.

Proof. Let G ∈ RMOG. We may assume that G has at least two edges. We distinguish three

cases:

Case 1: G is a minimal obstruction graph. Let G′ be the graph that results from G when we

remove an arbitrary cycle edge incident to a vertex of degree 3 inG. ThenG′ has property (iii)

of De�nition 11.4.4.

Case 2: G has property (iii) of De�nition 11.4.4. Then, let G′ be the graph that results from G
when we remove an edge in the following way: IfG contains a vertex of degree 3 then remove

an arbitrary cycle edge incident to this vertex of degree 3, otherwise remove an arbitrary cycle

edge. Then G′ is a path and thus has property (ii) of De�nition 11.4.4.

Case 3: G is a simple path. LetG′ be the graph that results fromGwhen we remove an endpoint

of G with the incident edge. G′ is a path and has property (ii) of De�nition 11.4.4.

Standard cuckoo hashing is an example where we do not need every component of our frame-

work, because there are “few enough” graphs having property RMOG to obtain low enough

failure probabilities.

Lemma 11.4.6

Pr
(
BMOG
S

)
= O

( n
`c

)
.

Proof. We aim to apply Lemma 11.3.4, where MOG takes the role of A and RMOG takes the

role of B and C (cf. Remark 11.3.6), respectively, in the statement of that lemma.

Claim 11.4.7
For t ≥ 2, we have

µRMOG
t ≤ 6mt2

(1 + ε)t
.
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Proof. We �rst count labeled graphs with exactly t edges having property RMOG. From the

proof of Lemma 11.4.3, we know that there are fewer than 2 · t2 · nt · mt−1
labeled graphs

which form minimal obstruction graphs ((i) of Def. 11.4.4). Similarly, there are not more than

2 · nt ·mt+1
labeled paths ((ii) of Def. 11.4.4), and not more than 2 · t · nt ·mt

graphs having

property (iii) of Def. 11.4.4. Fix a labeled graphGwith property RMOG having exactly t edges.

Draw t labeled edges at random from [m]2. The probability that these t edges realize G is

exactly 1/m2t
. We calculate:

µRMOG
t ≤ 6t2ntmt+1

m2t
=

6mt2

(1 + ε)t
.

Using Lemma 11.3.4, we proceed as follows:

Pr
(
BMOG
S

)
≤ `−c

n∑
t=2

t2c · µRMOG
t ≤ `−c

n∑
t=2

6mt2(c+1)

(1 + ε)t
= O

( n
`c

)
.

Pu�ing Everything Together. Plugging the results of Lemma 11.4.3 and Lemma 11.4.6 into

(11.8) gives:

Pr
(
NMOG
S > 0

)
≤ Pr

(
BMOG
S

)
+ E

∗
(
NMOG
S

)
= O

( n
`c

)
+O

(
1

m

)
.

Using that m = (1 + ε)n and setting ` = nδ and c ≥ 2/δ yields Theorem 11.4.1.

Remarks and Discussion. As mentioned in the background remarks at the beginning of

this section, the actual insertion algorithm only tries to insert a new key for Θ(log n) steps,

and declares the insertion a failure if it did not �nish in that many steps. This means that an

insertion could fail although G(S, h1, h2) did not contain a component with more than one

cycle. To analyze this situation, one also has to consider the existence of paths of logarithmic

length in G(S, h1, h2). The analysis is a generalization of what we did here. In particular,

long paths are included in the graph property RMOG, so we can use Lemma 11.4.6 to bound

the failure term of Z on long paths. Calculations very similar to the ones in the proof of

Claim 11.4.7 show that the expected number of paths having at least a certain logarithmic

length in the fully random case can be made as small as O(n−α), for α ≥ 1.

This example also gives detailed insight into the situation in which our framework can be

applied. The graph property under consideration (MOG) had the property that the expected
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number of subgraphs with this property is polynomially small in n. The peeling process—

however—yields graphs which are much more likely to occur, e. g., paths of a given length.

The key in our analysis is �nding suitable graph properties of “small enough” size. (That is the

reason why the concept of “reducibility” from De�nition 11.3.3 is needed in other applications:

It makes the number of graphs that must be considered smaller.) The g-components of the hash

functions from Z provide a boost of `−c, which is then used to make the overall failure term

again polynomially small in n.

The reader might �nd it instructive to apply Lemma 11.3.5 directly. Then, graph property

MOG plays the role of graph property A in that lemma; graph property RMOG plays the role

of B and C.
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12. Randomness Properties of Z on Leafless
Graphs

In this section we study the additive failure term of hash functions fromZ on a graph property

that will be a key ingredient in future applications. First, we present a basic counting argument

for unlabeled graphs. (The graphs we shall consider here are much more complicated than the

minimal obstruction graphs of the previous section.) Subsequently, we study the failure term

of Z on the class of graphs which contain no leaf edges.

We note that the counting argument below already appeared in [Aum10]. We give the proof

for completeness. It is also present in [ADW14].

12.1. A Counting Argument

The cyclomatic number γ(G) is the dimension of the cycle space of a graph G. It is equal to

the smallest number of edges we have to remove from G such that the remaining graph is a

forest (an acyclic, possibly disconnected graph) [Die05]. Also, let ζ(G) denote the number of

connected components of G (ignoring isolated vertices).

De�nition 12.1.1
Let N(t, `, γ, ζ) be the number of unlabeled (multi-)graphs with ζ connected components

and cyclomatic number γ that have t− ` inner edges and ` leaf edges.

The following lemma generalizes a result of Dietzfelbinger and Woelfel [DW03] with regard to

the number of unlabeled connected graphs with a given cyclomatic number and a given number

of leaf edges.

Lemma 12.1.2
N(t, `, γ, ζ) = tO(`+γ+ζ).

Proof. We will proceed in three steps:

1. N(t, `, 0, 1) = tO(`)

2. N(t, `, γ, 1) = tO(`+γ)

3. N(t, `, γ, ζ) = tO(`+γ+ζ)
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Part 1. We �rst consider the case γ = 0, thus we consider trees. For ` = 2, the tree is a path

of length t. We refer to this tree with G2 (the index refers to the number of leaf edges in the

graph). For ` = 3, . . . , `, Gi is constructed using Gi−1 by taking a new path of length ti ≥ 1
such that t2 + · · · + ti ≤ t − (` − i) and identify one endpoint of the path with a vertex in

Gi−1. The length of the last path is uniquely determined by t` = t− t2− · · ·− t`−1. There are

fewer than t`−2
choices for picking these lengths. Furthermore, there are at most t`−2

choices

for the inner vertex a new path is connected to. It follows

N(t, `, 0, 1) = tO(`).

Part 2. Assume cyclomatic number γ ≥ 1 and ` ≥ 0 leaf edges. In this case, removing γ cycle

edges yields a tree. There are not more than t2γ choices for the endpoints of these edges and

the remaining tree has at most `+ 2γ leaf edges. Thus,

N(t, `, γ, 1) = tO(γ) ·N(t− γ, `+ 2γ, 0, 1) = tO(γ) · tO(`+γ) = tO(`+γ).

Part 3. Each graph G with cyclomatic number γ, ζ connected components, t − ` non-leaf

edges, and ` leaf edges can be obtained from some connected graphG′ with cyclomatic number

γ, t− `+ ζ − 1 non-leaf edges, and ` leaf edges by removing ζ − 1 non-leaf, non-cycle edges.

There are no more than (t − ` + ζ − 1)ζ−1
ways for choosing the edges to be removed. This

implies:

N(t, `, γ, ζ) ≤ N(t+ ζ − 1, `, γ, 1) · (t− `+ ζ − 1)ζ−1

≤ (t+ ζ)O(`+γ) · (t+ ζ)ζ = (t+ ζ)O(`+γ+ζ) = tO(`+γ+ζ).

12.2. The Leafless Part of G(S, h1, h2)

We let LL ⊆ G2
m,n consist of all bipartite graphs that contain no leaf edge. It will turn out

that for all our applications LL will be a suitable “intermediate” graph property, i. e., for the

graph property A interesting for the application it will hold A ⊆ LL, which will allow us to

apply Lemma 11.3.1. (For example, graph property LL could have been used instead of graph

property RMOG in the example of the previous section.) Hence our goal in this section is to

show that there exists a constant α > 0, which depends on the parameters ` and c of the hash

class Zc,2`,m, such that

Pr(h1,h2)∈Z
(
BLL
S

)
= O

(
n−α

)
.

Luckily, bounding Pr
(
BLL
S

)
is an example par excellence for applying Lemma 11.3.4. To use

this lemma we have to �nd a suitable peelable graph property (note that LL is not peelable)
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and a suitable graph property to which this graph property reduces.

We let LC consist of all graphs G from G2
m,n that contain at most one connected component

that has leaves, disregarding isolated vertices. If such a component exists, we call it the leaf
component of G.

Lemma 12.2.1
LC is peelable.

Proof. Suppose G ∈ LC has at least one edge. If G has no leaf component then all edges are

cycle edges, and removing an arbitrary cycle edge creates a leaf component. So, the resulting

graph has property LC. If G has a leaf component C , remove a leaf edge. This makes the

component smaller, but maintains property LC. So, the resulting graph has again property

LC.

We will also need the following auxiliary graph property:

De�nition 12.2.2
Let K ∈ N. Let LCY(K) ⊆ G2

m,n be the set of all bipartite graphs G = (V,E) with the

following properties (disregarding isolated vertices):

1. at most one connected component of G contains leaves (i. e., LCY(K) ⊆ LC);

2. the number ζ(G) of connected components is bounded by K ;

3. if present, the leaf component of G contains at most K leaf and cycle edges;

4. the cyclomatic number γ(G) is bounded by K .

Lemma 12.2.3
Let c ≥ 1. LC is LCY(4c)

-2c-reducible.

Proof. Choose an arbitrary graph G = (V,E) ∈ LC and an arbitrary edge set E∗ ⊆ E with

|E∗| ≤ 2c. We say that an edge that belongs to E∗ is marked. G satis�es Property 1 of graphs

from LCY(4c)
. We process G in three stages:

Stage 1: Remove all components of G without marked edges. Afterwards at most 2c compo-

nents are left, and G satis�es Property 2.

Stage 2: IfG has a leaf componentC , repeatedly remove unmarked leaf and cycle edges from

C , whileC has such edges. The remaining leaf and cycle edges inC are marked, and thus their

number is at most 2c; Property 3 is satis�ed.

Stage 3: If there is a leaf component C with z marked edges (where z ≤ 2c), then γ(C) ≤
z−1. Now consider a leafless componentC ′ with cyclomatic number z. We need the following

graph theoretic claim:
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Claim 12.2.4
Every leafless connected graph with imarked edges has a leafless connected subgraph with

cyclomatic number ≤ i+1 that contains all marked edges.

Proof. LetG = (V,E) be a leafless connected graph. If γ(G) ≤ i+1, there is nothing to prove.

So suppose γ(G) ≥ i+ 2. Choose an arbitrary spanning tree (V,E0) of G.

There are two types of edges in G: bridge edges and cycle edges. A bridge edge is an edge

whose deletion disconnects the graph, cycle edges are those whose deletion does not disconnect

the graph.

Clearly, all bridge edges are inE0. LetEmb ⊆ E0 denote the set of marked bridge edges. Re-

moving the edges ofEmb fromG splitsV into |Emb|+1 connected componentsV1, . . . , V|E
mb
|+1;

removing the edges of Emb from the spanning tree (V,E0) will give exactly the same compo-

nents. For each cyclic component Vj we choose one edge ej /∈ E0 that connects two nodes in

Vj . The set of these |Emb|+ 1 edges is called E1. Now each marked bridge edge lies on a path

connecting two cycles in (V,E0 ∪ E1).

Recall from graph theory [Die05] the notion of a fundamental cycle: Clearly, each edge

e ∈ E−E0 closes a unique cycle withE0. The cycles thus obtained are called the fundamental

cycles of G w. r. t. the spanning tree (V,E0). Each cycle in G can be obtained as an XOR-

combination of fundamental cycles. (This is just another formulation of the standard fact that

the fundamental cycles form a basis of the “cycle space” of G, see [Die05].) From this it is

immediate that every cycle edge of G lies on some fundamental cycle. Now we associate an

edge e′ /∈ E0 with each marked cycle edge e ∈ Emc. Given e, let e′ /∈ E0 be such that e is on

the fundamental cycle of e′. Let E2 be the set of all edges e′ chosen in this way. Clearly, each

e ∈ Emc is a cycle edge in (V,E0 ∪ E2).

Now letG′ = (V,E0∪E1∪E2). Note that |E1∪E2| ≤ (|Emb|+1)+ |Emc| ≤ i+1 and thus

γ(G′) ≤ i + 1. In G′, each marked edge is on a cycle or on a path that connects two cycles.

If we iteratively remove leaf edges from G′ until no leaf is left, none of the marked edges will

be a�ected. In this way we obtain the desired leafless subgraph G∗ with γ(G∗) = γ(G′) ≤
i+ 1.

This claim gives us a leafless subgraphC ′′ ofC ′ with γ(C ′′) ≤ z+1 that contains all marked

edges of C ′. We remove from G all vertices and edges of C ′ that are not in C ′′. Doing this for

all leafless components yields the �nal graph G. Summing contributions to the cyclomatic

number of G over all (at most 2c) connected components, we see that γ(G) ≤ 4c; Property 4

is satis�ed.

We now bound the additive failure term Pr
(
BLL
S

)
.
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Lemma 12.2.5
Let S ⊆ U with |S| = n, ε > 0, c ≥ 1, and let ` ≥ 1. Consider m ≥ (1 + ε)n. If (h1, h2) are

chosen at random from Zc,2`,m, then

Pr
(
BLL
S

)
≤ Pr

(
BLC
S

)
= O (n/`c) .

Proof. According to Lemma 11.3.4 and Lemma 12.2.3 it holds that

Pr
(
BLL
S

)
≤ Pr

(
BLC
S

)
≤ `−c ·

n∑
t=2

t2c · µLCY(4c)

t .

Claim 12.2.6

µLCY
(4c)

t =
2n · tO(1)

(1 + ε)t−1
.

Proof. By Lemma 12.1.2, there are at most tO(c) = tO(1)
ways to choose a bipartite graph G in

LCY(4c)
with t edges. Graph G cannot have more than t + 1 nodes, since cyclic components

have at most as many nodes as edges, and in the single leaf component, if present, the number

of nodes is at most one bigger than the number of edges. In each component of G, there are

two ways to assign the vertices to the two sides of the bipartition. After such an assignment

is �xed, there are at most mt+1
ways to label the vertices with elements of [m], and there are

not more than nt ways to label the t edges ofGwith labels from {1, . . . , n}. Assume now such

labels have been chosen for G. Draw t labeled edges according to the labeling of G from [m]2

uniformly at random. The probability that they exactly �t the labeling of nodes and edges of

G is 1/m2t
. Thus,

µLCY
(4c)

t ≤ 2 ·mt+1 · nt · tO(1)

m2t
≤ 2n · tO(1)

(1 + ε)t−1
.

We use this claim and prove the lemma by the following calculation:

Pr(BLC
S ) ≤ `−c

n∑
t=2

t2c · µLCY(4c)

t ≤ 2n

`c
·
n∑
t=2

tO(1)

(1 + ε)t−1
= O

( n
`c

)
.
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In this section, we will study di�erent applications of our hash class in algorithms and data

structures whose analysis relies on properties of the graph G(S, h1, h2). We shall study four

di�erent applications:

• A variant of cuckoo hashing called cuckoo hashing with a stash introduced by Kirsch,

Mitzenmacher, and Wieder in [KMW08].

• A construction for the simulation of a uniform hash function due to Pagh and Pagh

[PP08].

• A construction of a (minimal) perfect hash function as described by Botelho, Pagh, and

Ziviani [BPZ13].

• The randomness properties of hash class Z on connected components of G(S, h1, h2).

As in the example from Section 11.4, each section will be divided into three parts. In the �rst

part “Background”, the data structure or algorithm will be introduced and other related work

will be mentioned. The subsequent part “Result” will state the main result and give its proof. At

the end, the part “Remarks and Discussion” will provide pointers to other results and discuss

future work.

13.1. Cuckoo Hashing (with a Stash)

Background. The starting point of the ESA 2008 paper [KMW08] by Kirsch, Mitzenmacher,

and Wieder was the observation that the rehash probability in cuckoo hashing is as large as

Θ(1/n) (see Section 11.4), which can be too large for practical applications. They proposed

adding a stash, an additional segment of storage that can hold up to s keys for some (constant)

parameter s, and showed that this change reduces the rehash probability to Θ(1/ns+1). For

details of the algorithm, see [KMW09]. The analysis given by Kirsch et al. requires the hash

functions to be fully random. In the journal version [KMW09] Kirsch et al. posed “proving

the above bounds for explicit hash families that can be represented, sampled, and evaluated

e�ciently” as an open problem.

Remark: The analysis of cuckoo hashing with a stash with a hash class similar to Z was the

main topic of the author’s diploma thesis [Aum10]. The full analysis of cuckoo hashing with

a stash using hash class Z has been published in the paper [ADW14]. Here, it mainly serves
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as an example for the power of the framework developed in Section 11 in connection with the

results of Section 12.

We focus on the question whether the pair (h1, h2) allows storing the key set S in the two

tables with a stash of size s. This is equivalent to the question whether or not G(S, h1, h2) is

1-orientable if we are allowed to remove not more than s edges from it.

It is known from [KMW09; Aum10] that a single parameter ofG = G(S, h1, h2) determines

whether a stash of size s is su�cient to store S using (h1, h2), namely the excess ex(G).

De�nition 13.1.1
The excess ex(G) of a graphG is de�ned as the minimum number of edges one has to remove

from G so that all connected components of the remaining graph are acyclic or unicyclic.

The following lemma shows how the excess of a graph can be calculated.

Lemma 13.1.2 [KMW09]
Let G = (V,E) be a graph. Then

ex(G) = γ(G)− ζcyc(G),

where ζcyc(G) is the number of cyclic connected components in G.

Lemma 13.1.3 [KMW09]
The keys from S can be stored in the two tables and a stash of size s using (h1, h2) if and

only if ex(G(S, h1, h2)) ≤ s.

Result. The following theorem shows that one can replace the full randomness assumption

of [KMW09] by hash functions from hash class Z .

Theorem 13.1.4 [Aum10; ADW14]
Let ε > 0 and 0 < δ < 1, let s ≥ 0 be given. Assume c ≥ (s + 2)/δ. For n ≥ 1 consider

m ≥ (1 + ε)n and ` = nδ . Let S ⊆ U with |S| = n. Then for (h1, h2) chosen at random

from Z = Zc,2`,m the following holds:

Pr(ex(G(S, h1, h2)) ≥ s+ 1) = O(1/ns+1).

In view of Lemma 13.1.3, we identify minimal graphs with excess s+ 1.
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De�nition 13.1.5
An excess-(s + 1) core graph is a lea�ess graph G with excess exactly s + 1 in which all

connected components have at least two cycles. By CGs+1
we denote the set of all excess-

(s+ 1) core graphs in G2
m,n.

Figure 13.1.: An example of a graph that contains an excess-3 core graph (bold edges). This

subgraph certi�es that a stash of size at most 2 does not su�ce to accommodate

the key set. This �gure can also be found in [Aum10].

An example for an excess-(s+ 1) core graph is given in Figure 13.1.

Lemma 13.1.6
Let G = G(S, h1, h2) with ex(G) ≥ s+ 1. Then G contains an excess-(s+ 1) core graph as

a subgraph.

Proof. We obtain the excess-(s+1) core graph by a peeling process, i. e., by repeatedly remov-

ing edges or connected components. Since ex(G) > 0,G contains a connected component that

is neither acyclic nor unicyclic (see De�nition 13.1.1). Removing a cycle edge in such a compo-

nent decreases the cyclomatic number by 1, but leaves the component cyclic. By Lemma 13.1.2,

this decreases the excess by 1. We remove cycle edges in this way until the remaining graph

has excess exactly s+ 1. Subsequently we remove components that are trees or unicyclic. It is

clear from Lemma 13.1.2 that this keeps the excess at s+ 1. Finally we remove leaf edges one

by one until the remaining graph is leafless. Again by Lemma 13.1.2, this does not change the

excess. The resulting graph has excess exactly s + 1, no tree or unicyclic components, and is

leafless. Thus, it is an excess-(s+ 1) core graph.
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Hence, to prove Theorem 13.1.4, it su�ces to show that Pr
(
NCGs+1

S > 0
)

= O
(
1/ns+1

)
. By

Lemma 11.2.2, we know that

Pr
(
NCGs+1

S > 0
)
≤ Pr

(
BCGs+1

S

)
+ E

∗
(
NCGs+1

S

)
. (13.1)

Since CGs+1 ⊆ LL, we may apply Lemma 12.2.5 and write

Pr
(
NCGs+1

S > 0
)
≤ O

( n
`c

)
+ E

∗
(
NCGs+1

S

)
= O

(
1

ns+1

)
+ E

∗
(
NCGs+1

S

)
, (13.2)

for the parameters used in Theorem 13.1.4. Thus, it remains to analyze the fully random case.

Lemma 13.1.7 [Aum10; ADW14]
Let ε > 0 and let s ≥ 0. Furthermore, let S ⊆ U with |S| = n be given. Set m = (1 + ε)n.

Then

E
∗
(
NCGs+1

S

)
= O

(
1

ns+1

)
.

Before starting with the proof of this lemma, we remark that plugging its result into (13.2)

proves Theorem 13.1.4. The following calculations also give an alternative, simpler proof of

[KMW08, Theorem 2.1] for the fully random case, even if the e�ort needed to prove Lemma 12.1.2

is taken into account.

Proof of Lemma 13.1.7. We start by counting (unlabeled) excess-(s + 1) core graphs with t
edges. By Lemma 13.1.2, a connected componentC of such a graphGwith cyclomatic number

γ(C) (which is at least 2) contributes γ(C) − 1 to the excess of G. This means that if G has

ζ = ζ(G) components, then s+ 1 = γ(G)− ζ and ζ ≤ s+ 1, and hence γ = γ(G) ≤ 2(s+ 1).

Using Lemma 12.1.2, there are at most N(t, 0, γ, ζ) = tO(γ+ζ) = tO(s)
such graphs G. If

from each component C of such a graph G we remove γ(C)− 1 cycle edges, we get unicyclic

components, which have as many nodes as edges. This implies that G has t− (s+ 1) nodes.

Now �x a bipartite (unlabeled) excess-(s+ 1) core graph G with t edges and ζ components.

There are 2ζ ≤ 2s+1
ways of assigning the t− s− 1 nodes to the two sides of the bipartition,

and then at most mt−s−1
ways of assigning labels from [m] to the nodes. Thus, the number

of bipartite graphs with property CGs+1
, where each node is labeled with one side of the

bipartition and an element of [m], and where the t edges are labeled with distinct elements

from {1, . . . , n} is smaller than nt · 2s+1 ·mt−s−1 · tO(s)
.

Now if a labeled (s+ 1)-core graphG is �xed, and we choose t edges with the labels used in

G from [m]2 uniformly at random, the probability that all edges match the labeling is 1/m2t
.
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For constant s, this yields the following bound:

E
∗
(
NCGs+1

S

)
≤

∑
s+3≤t≤n

2s+1 ·mt−s−1 · nt · tO(s)

m2t
≤ 2s+1

ns+1
·
∑

s+3≤t≤n

nt · tO(s)

mt

=
2s+1

ns+1
·
∑

s+3≤t≤n

tO(s)

(1 + ε)t
= O

(
1

ns+1

)
. (13.3)

Remarks and Discussion. As in the previous example, our result only shows that the key

set can be stored according to the rules of cuckoo hashing with a stash with a failure probability

as low as in the fully random case. The analysis of the insertion algorithm has to consider the

probability that there exist paths of length Θ((s+1) · log n) inG(S, h1, h2). The exact analysis

can be found in [ADW14] and can be summarized as follows. For bounding the impact of using

hash classZ when considering long paths, graph property LC from the previous section shows

that the failure term of using hash class Z can be made as low as O(1/ns+1). (The graph

property LC contains such long paths.) Then, only the fully random case must be analyzed,

but the calculations are quite similar to standard calculations for cuckoo hashing, as already

presented in [PR04; DM03; DW03].

Using the result that all simple paths in G(S, h1, h2) have length Θ((s+ 1) log n) with high

probability also makes it possible to show that

(
(s+ 1)2 log n

)
-wise independence su�ces to

run cuckoo hashing with a stash, which can be achieved with constant evaluation time using

the construction of Siegel [Sie04] or Thorup [Tho13]. In a nutshell, the reason for this degree of

independence being su�cient is that the edges of an excess-(s+ 1) core graph can be covered

by s+ 1 simple paths and at most 2(s+ 1) additional edges. Since the length of a simple path

is O ((s+ 1) log n) with high probability, the required degree of independence follows. (The

sum in (13.3) must only consider values t ≤ c · (s+ 1)2 log n for a suitable constant c.) Details

can also be found in [ADW14, Section 5.3].

In another line of research, Goodrich and Mitzenmacher [GM11] considered an application

whose analysis required certain properties of cuckoo hash tables with a stash of non-constant

size. We can establish these properties even in the case of using hash class Z . The calculations

are analogous, but the failure bound we get is only O(1/ns/2). For a rough idea of the proof,

consider the calculations made in (13.3). There the tO(s)
term requires special care, because s

is non-constant. In [ADW14, Section 5.2], we approached this issue by splitting the ns+1
term

into two terms being roughly ns/2. One such term in the denominator of the calculations in

(13.3) is su�cient to make the fraction with nominator tO(s)
in the sum small enough.
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13.2. Simulation of a Uniform Hash Function

Background. Consider a universe U of keys and a �nite set R. Suppose we want to con-

struct a hash function that takes on fully random values from R on a key set S ⊆ U of size

n. The naïve construction just assigns a random hash value to each key x ∈ S and stores

the key-value pair in a hash table that supports lookup in constant time and construction in

expected time O(n), e. g., cuckoo hashing (with a stash). For information theoretical reasons,

this construction needs space at least n log |R|. (See, e. g., [Rin14, Lemma 5.3.1].) We will now

see that we can achieve much more in (asymptotically) almost the same space.

By the term “simulating uniform hashing for U and R” we mean an algorithm that does

the following. On input n ∈ N, a randomized procedure sets up a data structure DSn that

represents a hash function h : U → R, which can then be evaluated e�ciently for keys in U .

For each set S ⊆ U of cardinality n there is an event BS that occurs with small probability

such that conditioned on BS the values h(x), x ∈ S, are fully random. So, in contrast to the

naïve construction from above, one h can be shared among many applications and works on

each set S ⊆ U of size n with high probability. The quality of the algorithm is determined

by the space needed for DSn, the evaluation time for h, and the probability of the event BS ,

which we call the failure probability of the construction. It should be possible to evaluate h in

constant time. Again, the information theoretical lower bound implies that at least n log |R|
bits are needed to represent DSn.

The �rst randomized constructions which matched this space bound up to constant fac-

tors were proposed independently by Dietzfelbinger and Woelfel [DW03] and Östlin and Pagh

[ÖP03]. For S ⊆ U and a pair (h1, h2) of hash functions, both constructions rely on properties

of the bipartite graphG(S, h1, h2). Next, we sketch these constructions. In the following, letR
be the range of the hash function to be constructed, and assume that (R,⊕) is a commutative

group. (For example, we could use R = [t] with addition mod t.)
For the construction of Dietzfelbinger and Woelfel [DW03], let V and W be the vertex sets

on the two sides of the bipartition of G(S, h1, h2). In the construction phase, choose a pair

(h1, h2) from Z . Next, for an integer s ≥ 2, with each vertex v ∈ V associate a hash function

hv : U → R chosen at random from an s-independent hash family. With each vertex w ∈ W
associate a random element xw from R. The evaluation of the function on a key x ∈ U works

as follows. Let (v, w) = (h1(x), h2(x)) be the edge that corresponds to x in G(S, h1, h2).

Then the hash value of x is just h(x) = hv(x) ⊕ xw. Dietzfelbinger and Woelfel showed that

for any given S ⊆ U of size at most n this function is fully random on S with probability

1−O(n−s/2), uses (1+ε)n log |R|+1.5s2(1+ε)n log n+O(log log |U |)+o(n) bits of space
1

and has evaluation time O(s). The construction runs in time O(n).

The construction of Östlin and Pagh [ÖP03] works as follows: Each vertex v of G(S, h1, h2)
is associated with a random element xv from R. The construction uses a third hash func-

1

Here, we applied the technique collapsing the universe, see, e. g., [DW03, Section 2.1] or [Rin14, Section 5.4.1], to

reduce the universe to size n(s+4)/2
. The o(n) term comes from the description length of a hash function from

Z .
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tion h3 : U → R. All three hash functions have to be chosen from a nδ-wise independent

class of hash functions. (When this construction has been proposed, only Siegel’s class of

hash functions from [Sie04] achieved this degree of independence with constant evaluation

time. Nowadays, one can use the construction of Thorup [Tho13] to make the evaluation

more e�cient.) Let x ∈ U be an arbitrary key and let (v, w) be the edge that corresponds

to x in G(S, h1, h2). The hash value of x is h(x) = xv ⊕ xw ⊕ h3(x). This construction

uses 8n · log |R| + o(n) + O(log log |U |) bits of space ([ÖP03] assumed that m ≥ 4n in their

analysis) and achieves a failure probability of O(1/ns) for each s ≥ 1. (The in�uence of s
on the description length of the data structure is in the o(n) + O(log log |U |) term. It is also

in the construction time of the hash functions h1, h2, h3.) The evaluation time is dominated

by the evaluation time of the three highly-independent hash functions. The construction of

[ÖP03] runs in time O(n). In their full paper [PP08], Pagh and Pagh (the same authors as of

[ÖP03]) introduced a general method to reduce the description length of their data structure

to (1 + ε)n log |R| + o(n) + O(log log |U |) bits, which is essentially optimal. This technique

adds a summand of O(1/ε2) to the evaluation time.

Another construction was presented by Dietzfelbinger and Rink in [DR09]. It is based on

results of Calkin [Cal97] and the “split-and-share” approach. Without going into details too

much, the construction can roughly be described as follows: Choose d ≥ 1, δ with 0 < δ < 1,

and λ with λ > 0. Set m = (1 + ε) · nδ . Then, choose n1−δ
random tables ti[1..m], for

i ∈ [n1−δ], �lled with random elements from Rm and two hash functions hsplit : U → [n1−δ]

and hmap : U →
([m]
d

)
. The hash value of a key x ∈ U is then

⊕
j∈hmap(x) thsplit

(x)[j]. A detailed

overview over the construction and the involved hash functions can be found in [Rin14]. (Note

that hsplit uses a variant of Z .) This construction has the currently asymptotically best perfor-

mance parameters: (1 + ε)n log |R|+ o(n) +O(log log |U |) bits of space and evaluation time

O(max{log2(1/ε), s2}) for failure probability O(n1−(s+2)/9).

Our construction essentially duplicates the construction in [PP08] by replacing the highly

independent hash functions with functions from hash class Z . The data structure consists of

a hash function pair (h1, h2) from our hash class, two tables of size m = (1 + ε)n each, �lled

with random elements from R, a two-wise independent hash function with range R, O(s)
small tables with entries from R, and O(s) two-independent hash functions to pick elements

from these tables. The evaluation time of h is O(s), and for S ⊆ U , |S| = n, the event BS
occurs with probabilityO(1/ns+1). The construction requires roughly twice as much space as

the most space-e�cient solutions [DR09; PP08]. However, it seems to be a good compromise

combining simplicity and fast evaluation time with moderate space consumption.

Result. The following result is also present in [ADW12].
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Theorem 13.2.1
Given n ≥ 1, 0 < δ < 1, ε > 0, and s ≥ 0, we can construct a data structure DSn that allows

us to compute a function h : U → R such that:
(i) For each S ⊆ U of size n there is an event BS of probability O(1/ns+1)

such that conditioned on BS the function h is distributed uniformly on S.

(ii) For arbitrary x ∈ U , h(x) can be evaluated in time O(s/δ).

(iii) DSn comprises 2(1 + ε)n log |R|+ o(n) +O(log log |U |) bits.

Proof. Choose an arbitrary integer c ≥ (s + 2)/δ. Given U and n, set up DSn as follows.

Let m = (1 + ε)n and ` = nδ , and choose and store a hash function pair (h1, h2) from

Z = Zc,2`,m, with component functions g1, . . . , gc from F2
` . In addition, choose two random

vectors t1, t2 ∈ Rm, c random vectors y1, . . . , yc ∈ R`, and choose f at random from a 2-wise

independent family of hash functions from U to R.

Using DSn, the mapping h : U → R is de�ned as follows:

h(x) = t1[h1(x)]⊕ t2[h2(x)]⊕ f(x)⊕ y1[g1(x)]⊕ . . .⊕ yc[gc(x)].

DSn satis�es (ii) and (iii) of Theorem 13.2.1. (If the universe is too large, it must be collapsed to

size ns+3
�rst.) We show that it satis�es (i) as well. For this, let S ⊆ U with |S| = n be given.

First, consider only the hash functions (h1, h2) fromZ . By Lemma 12.2.5 we have Pr(BLL
S ) =

O(n/`c) = O(1/ns+1). Now �x (h1, h2) /∈ BLL
S , which includes �xing the components

g1, . . . , gc. Let T ⊆ S be such that G(T, h1, h2) is the 2-core of G(S, h1, h2). The graph

G(T, h1, h2) is leafless, and since (h1, h2) /∈ BLL
S , we have that (h1, h2) is T -good. Now we

note that the part f(x) ⊕
⊕

1≤j≤c yj [gj(x)] of h(x) acts exactly as one of our hash functions

h1 and h2, where f and y1, . . . , yc are yet un�xed. So, arguing as in the proof of Lemma 11.1.3

we see that h is fully random on T .

Now assume that f and the entries in the tables y1, . . . , yc are �xed. Following [PP08], we

show that the random entries in t1 and t2 alone make sure that h(x), x ∈ S−T , is fully random.

For the proof, let (x1, . . . , xp) be the keys in S \ T , ordered in such a way that the edge corre-

sponding to xi is a leaf edge inG(T ∪{x1, . . . , xi}, h1, h2), for each i ∈ {1, . . . , p}. (To obtain

such an ordering, repeatedly remove leaf edges fromG = G(S, h1, h2), as long as this is possi-

ble. The sequence of corresponding keys removed in this way is xp, . . . , x1.) By induction, we

show that h is uniform on T ∪{x1, . . . , xp}. In the base case, we consider the set T and reason-

ing as above shows that h is fully random on T . For the step, we �rst observe that, by construc-

tion, the edge which corresponds to the key xi is a leaf edge in G(T ∪ {x1, . . . , xi}, h1, h2).

Without loss of generality we may assume that h1(xi) is the leaf. By the induction hypoth-

esis, h is fully random on T ∪ {x1, . . . , xi−1} and no key in T ∪ {x1, . . . , xi−1} depends on

the value t1[h1(xi)]. Fix all values t1[h1(x)] for x ∈ T ∪ {x1, . . . , xi−1} and t2[h2(x)] for

x ∈ T ∪ {x1, . . . , xi}. Then h(xi) is uniformly distributed when choosing t1[h1(xi)] at ran-

dom.
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Remarks and Discussion. When this construction was �rst described in [ADW12], it was

the easiest to implement data structure to simulate a uniform hash function in almost optimal

space. Nowadays, the construction of Pagh and Pagh can use the highly-independent hash

family construction of Thorup [Tho13] instead of Siegel’s construction. However, in the orig-

inal analysis of Pagh and Pagh [PP08], the hash functions are required to be from an nδ-wise

independent hash class. It needs to be demonstrated by experiments that the construction of

Pagh and Pagh in connection with Thorup’s construction is e�cient. We believe that using

hash class Z is much faster.

Applying the same trick as in [PP08], the data structure presented here can be extended to

use only (1 + ε)n words from R. The evaluation time of this construction is O
(
max{ 1

ε2
, s}
)
.

13.3. Construction of a (Minimal) Perfect Hash Function

Background. A hash function h : U → [m] is perfect on S ⊆ U if it is injective (or 1-on-1)

on S. A perfect hash function is minimal if |S| = m. Here, S is assumed to be a static set.

Perfect hash functions are usually applied when a large set of items is frequently queried and

allows fast retrieval and e�cient memory storage in this situation.

We start by giving a short overview over the history of perfect hashing. The content is mostly

based on the survey papers of Czech, Havas and Majewski [CHM97] (for an extensive study

of the developments until 1997) and Dietzfelbinger [Die07] (for developments until 2007), and

the recent paper [BPZ13] of Botelho, Pagh, and Ziviani. For a given key set S ⊆ U with

size n and m = n2
, several constructions are known to build a perfect hash function with

constant evaluation time and space consumption O(log n + log log |U |), see, e. g., [JEB86].

With respect to minimal perfect hash functions, Fredman and Komlós [FK84] proved that at

least n log e + log log |U | − O(log n) bits are required to represent a minimal perfect hash

function when |U | ≥ nα for some constant α > 2. Mehlhorn [Meh84] showed that this

bound is essentially tight by providing a construction that needs at most n log e+log log |U |+
O(log n) bits. However, his construction has setup and evaluation time exponential in n, so it

is not practical. Hagerup and Tholey [HT01] showed how to improve this construction using a

randomized approach. Their construction achieves space consumption n log e+ log log |U |+
O(n·(log log n)2/ log n+log log log |U |), with constant evaluation time andO(n+log log |U |)
construction time in expectation. However, for values of n arising in practice, it is not practical,

as discussed in [BPZ13].

In their seminal paper, Fredman, Komlós, and Szemerédi [FKS84] introduced the FKS scheme,
which can be used to construct a minimal perfect hash function that has description length

O(n log n + log log |U |) bits and constant evaluation time. Building upon [FKS84], Schmidt

and Siegel [SS90] gave the �rst algorithm to construct a minimal perfect hash function with

constant evaluation time and space O(n + log log |U |) bits. According to [BPZ13], high con-

stants are hidden in the big-Oh notation.

There exist many constructions that are (assumed to be) more practical. Majewski, Wormald,
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Havas and Czech [Maj+96] proposed a family of algorithms to construct a minimal perfect hash

function with constant evaluation time and description lengthO(n log n) bits based on a hyper-

graph approach. Other hypergraph approaches that achieve essentially the same description

length (up to a constant factor) are [CHM92] and [BKZ05]. A di�erent approach was described

in Pagh [Pag99]. His approach used a method called hash-and-displace and achieved constant

evaluation time with space O(n log n) bits, as well. The constant in the description length of

his construction was decreased by about a factor of two by Dietzfelbinger and Hagerup [DH01].

Later, Woelfel [Woe06b] extended this construction to use onlyO(n log log n) bits. Finally, Be-

lazzougui, Botelho and Dietzfelbinger [BBD09] showed how to decrease the space further to

only O(n) bits with a practical algorithm.

The �rst explicit practical construction of a (minimal) perfect hash function which needs

only O(n) bits is due to Botelho, Pagh, and Ziviani [BPZ07] ( full version [BPZ13]) and is

again based on the hypergraph approach. The idea of their algorithm was discovered before

by Chazelle, Kilian, Rubinfeld, and Tal [Cha+04], but without a reference to its use in perfect

hashing. Furthermore, Botelho et al. discovered that acyclic hypergraphs admit a very e�cient

algorithm for the construction of a perfect hash function, a connection that was not described

in [Cha+04]. We will focus our work on their construction. In [BPZ13], explicit hash functions

based on the “split-and-share” approach were used. This technique builds upon a general strat-

egy described by Dietzfelbinger in [Die07] and Dietzfelbinger and Rink in [DR09] to make the

“full randomness assumption” feasible in the construction of a perfect hash function. Botelho

et al. showed in experiments that their construction is very practical, even when realistic hash

functions are used. Our goal is to show that hash functions from class Z can be used in a

speci�c version of their construction as well. In the remarks at the end of this section, we will

speculate about di�erences in running time between the split-and-share approach of [BPZ13]

and hash class Z .

We start by explaining the construction of [BPZ13] to build a perfect hash function from

S to [2m]. We restrict the discussion to graphs to show its simplicity. The �rst step in the

construction is to pick two hash functions h1, h2 : U → [m] and build the graph G(S, h1, h2).

If G(S, h1, h2) contains cycles, choose a new pair of hash functions (h1, h2) and rebuild the

graph. This is iterated until G(S, h1, h2) is acyclic. Then build a perfect hash function from

S to [2m] from G = G(S, h1, h2) as follows: First, obtain a 1-orientation of G by iteratively

removing leaf edges. Now, initialize two bit vectors g1[1..m] and g2[1..m]. Our goal is to set

the bits in such a way that for each edge (u, v) in G, given the 1-orientation, we have that

g1[u] + g2[v] mod 2 =

{
0, (u, v) points towards u,

1, otherwise.
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Figure 13.2.: Example for the construction of a perfect hash function for S = {a, b, c, d, e, f}
from acyclicG(S, h1, h2). The peeling process peels the labeled edges in the order

b, f , c, e, d, a. The g-value of each node is written next to it. The reader is invited

to check that the hash function described in (13.4) uses the mapping “a 7→ 1,

b 7→ 2, c 7→ 7, d 7→ 3, e 7→ 8, f 7→ 4”.

The perfect hash function h from S to [2m] is de�ned by the mapping

x 7→ j ·m+ h1+j(x), for x ∈ S, (13.4)

with j ← g1[h1(x)] + g2[h2(x)] mod 2.

Setting the bits for each vertex can be done very e�ciently when G(S, h1, h2) is acyclic and

thus can be “peeled” by iteratively removing leaf edges. It works in the following way: Initialize

both bit vectors to contain only 0-entries. Mark all vertices as being “unvisited”. Let e1, . . . , en
be the sequence of removed edges in reversed order, i. e., en is the edge that was removed �rst

when obtaining the 1-orientation, and so on. Next, consider each edge in the order e1, . . . , en.

For an edge ei = (u, v) do the following: If u is already visited, set g2[v] ← 1 − g1[u]. (The

hash value of the key associated with the edge is �xed to be m+h2(x).) If v is already visited,

set g1[u] ← g2[v]. (The hash value of the key associated with the edge is �xed to be h1(x).)

Next, mark u and v as being visited and proceed with the next edge. Note that by the ordering

of the edges it cannot happen that both vertices have been visited before. Figure 13.2 gives

an example of the construction. To build a minimal perfect hash function, Botelho et al. use a

compression technique called “ranking” well-known from succinct data structures to compress

the perfect hash function further. (See References [40,42,45] in [BPZ13].)

In [BPZ13] it is shown that the probability ofG(S, h1, h2) being acyclic, i. e., the probability

that the construction succeeds, for fully random h1, h2 and m = (1 + ε)|S| is√
1−

(
1

1 + ε

)2

. (13.5)
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Figure 13.3.: Comparison of the probability of a random graph being acyclic and the theoretical

bound following from a �rst moment approach for values ε ∈ [0.08, 4].

Result. We will show that for a key set S ⊆ U of size n, and for m ≥ 1.08n, we can build a

perfect hash function for a key set S by applying the construction of Botelho et al. a constant

number of times (in expectation). To see this, we only have to prove the following lemma.

Lemma 13.3.1
Let S ⊆ U with S = n. Let ε ≥ 0.08, and let m ≥ (1 + ε)n. Set ` = nδ and c ≥ 1.25/δ. For

a randomly chosen pair (h1, h2) ∈ Zc,2`,m, we then have

Pr(G(S, h1, h2) is acyclic) ≥ 1 +
1

2
ln

(
1−

(
1

1 + ε

)2
)
− o(1). (13.6)

Figure 13.3 depicts the di�erence between the functions (13.5) and (13.6). The theoretical bound

using a �rst moment approach is close to the behavior in a random graph when ε ≥ 1.

Proof of Lemma 13.3.1. For the proof, we let CYC be the set of all cycles in G2
m,n. (Note that

all these cycles have even length, since we consider bipartite graphs.) By Lemma 11.2.2, we

may bound Pr(NCYC
S > 0) by Pr(BCYC

S ) + E
∗(NCYC

S ). Since CYC ⊆ LL, we know that

Pr(BCYC
S ) = O(n/`c), see Lemma 12.2.5. For the parameter choices ` = nδ and c ≥ 1.25/δ we
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have Pr(BCYC
S ) = o(1). We now focus on the second summand and calculate (as in [BPZ13]):

E
∗
(
NCYC
S

)
=

n/2∑
t=1

µCYC2t ≤
n/2∑
t=1

(
n
2t

)
(2t)! ·m2t

2t ·m2·2t =

n/2∑
t=1

(
n
2t

)
· (2t)!

2t ·m2t
≤

n/2∑
t=1

n2t

2t ·m2t

=

n/2∑
t=1

1

2t · (1 + ε)2t
≤
∞∑
t=1

1

2t · (1 + ε)2t
= −1

2
ln

(
1−

(
1

1 + ε

)2
)
,

where the last step is Maclaurin expansion.

Remarks and Discussion. According to Lemma 13.3.1, we can build a perfect hash function

with range [2.16n] with a constant number of constructions of G(S, h1, h2) (in expectation).

To store the data structure we need 2.16n bits (to store g1 and g2), and o(n) bits to store the

pair (h1, h2) from Z . For example, for a set of n = 232
keys, i. e., about 4.3 billion keys, the

pair (h1, h2) may consist of ten tables with 256 entries each, �ve 2-universal hash functions,

and two 2-independent hash functions, see Lemma 13.3.1 with parameters c = 5 and δ = 1/4.

This seems to be more practical than the split-and-share approach from [BPZ13] which uses

more and larger tables per hash function, cf. [BPZ13, Section 4.2]. However, it remains future

work to demonstrate in experiments how both approaches compare to each other. To obtain

a minimal perfect hash function, one has to compress the perfect hash function further. This

roughly doubles the description length, see [BPZ13] for details.

In their paper [BPZ13], Botelho et al. showed that minimal space usage is achieved when

using three hash functions h1, h2, h3 to build the hypergraph G(S, h1, h2, h3). In this case,

one can construct a perfect hash function with range [1.23n] with high probability. Since the

g-values must then index three hash functions, 1.23n · log2 3 ≈ 1.95n bits are needed to store

the bit vectors. According to [BPZ13], the minimal perfect hash function needs about 2.62n
bits.

In Section 14.1, we will consider the orientability of the hypergraph G(S, h1, h2, h3) when

hash functions are picked from Zc,3`,m. Our result will be far away from the result of Botelho et
al.: We can prove the construction to work (with high probability) only when we aim to build

a perfect hash function with range of size at least 6(1 + ε)n, for ε > 0, which is inferior to the

construction with only two hash functions discussed here.

13.4. Connected Components of G(S, h1, h2) are small

Background. As is well known from the theory of random graphs, for a key set S ⊆ U of

size n and m = (1 + ε)n, for ε > 0, and fully random hash functions h1, h2 : U → [m] the

graphG(S, h1, h2) contains w.h.p. only components of at most logarithmic size which are trees

or unicyclic. (This is the central argument for standard cuckoo hashing to work.) We show here

that hash class Z can provide this behavior if one is willing to accept a density that is smaller

137



13. Applications on Graphs

by a constant factor. Such situations have been considered in the seminal work of Karp, Luby,

and Meyer auf der Heide [KLM96] on the simulation of shared memory in distributed memory

machines.

Result. We give the following result as a corollary. It has �rst appeared in [KLM96].

Corollary 13.4.1 [KLM96, Lemma 6.3]
Let S ⊆ U with |S| = n. Letm ≥ 6n. Then for each α ≥ 1, there are β, `, c, s ≥ 1 such that

for G = G(S, h1, h2) with (h1, h2) ∈ Zc,2`,m we have that

(a) Pr(G has a connected component with at least β log n vertices) = O(n−α).

(b) Pr(G has a connected component with k vertices and ≥ k + s− 1 edges) =
O(n−α).

Proof. We start with the proof of (b). If G = G(S, h1, h2) has a connected component A with

k vertices and at least k + s− 1 edges, then ex(G) ≥ s− 1. According to Theorem 13.1.4, the

probability that such a component appears isO(1/nα), for s = α and c ≥ 2(α+ 1). The proof

of Part (a) requires more care.

To prove (a) we may focus on the probability thatG contains a tree with k = β log n vertices.

We let T consist of all trees with k vertices in Gm,n and apply Lemma 11.2.2 to get

Pr
(
NT
S > 0

)
≤ Pr

(
BT
S

)
+ E

∗
(
NT
S

)
. (13.7)

Since T ⊆ LCY, we have that Pr(BT
S ) = O(n/`c), see Lemma 12.2.5. We now bound the

second summand of (13.7). Note that the calculations are essentially the same as the ones

made in [KLM96] to prove their Lemma 6.3. By Caley’s formula we know that there are kk−2

labeled trees with vertex set {1, . . . , k}. Fix such a tree T ∗. We can label the edges of T ∗ with

k−1 keys from S in

(
n
k−1

)
· (k−1)! many ways. Furthermore, there are two ways to �x which

vertices of T ∗ belong to which side of the bipartition. After this, there are not more than

(
2m
k

)
ways to assign the vertices of T ∗ to vertices in the bipartite graph G(S, h1, h2). Once all these

labels of T ∗ are �xed, the probability that the hash values of (h1, h2) realize T ∗ is 1/m2(k−1)
.

We can thus calculate:

E
∗(NT

S ) ≤
(
n
k−1

)
· kk−2 · 2 · (k − 1)! ·

(
2m
k

)
m2(k−1)

≤ 2k+1 ·m2 · kk−2

6k · k!

≤ 2k+1 ·m2 · kk−2

6k ·
√

2πk · (k/e)k
≤ 2m2 ·

(e
3

)k

Part (a) follows for k = Ω(log n).
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Remarks and Discussion. The authors of [KLM96] use a variant of hash class Z combined

with functions from Siegel’s hash class to obtain a hash class with high (

√
n-wise) indepen-

dence. They need this high level of independence in the proof of their Lemma 6.3, which states

properties of the connected components in the graph built from the key set and this highly

independent hash functions. Replacing Lemma 6.3 in [KLM96] with our Corollary 13.4.1 im-

mediately implies that the results of [KLM96], in particular, their Theorem 6.4, also hold when

(only) using hash functions from Z . In particular, in [KLM96] the sparse setting where m is at

least 6n was considered as well.

Moreover, this result could be applied to prove results for cuckoo hashing (with a stash),

and de-amortized cuckoo hashing of Arbitman et al. [ANS09]. However, note that while in the

fully random case the statement of Corollary 13.4.1 holds for m = (1 + ε)n, here we had to

assume m ≥ 6n, which yields only very low hash table load. We note that this result cannot

be improved to (1 + ε)n using the �rst moment approach inherent in our approach and the

approach of [KLM96] (for

√
n-wise independence), since the number of unlabeled trees that

have to be considered in the �rst moment approach is too large [Ott48]. It remains open to

show that graphs built with our class of hash functions have small connected components for

all ε > 0.
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In this chapter we discuss some applications of hash class Z in the setting that we use more

than two hash functions, i. e., each edge of G(S,~h) contains at least three vertices. We will

study three di�erent applications: Generalized cuckoo hashing with d ≥ 3 hash functions as

proposed by Fotakis, Pagh, Sanders, and Spirakis [Fot+05], two recently described insertion

algorithms for generalized cuckoo hashing due to Khosla [Kho13] and Eppstein, Goodrich,

Mitzenmacher, and Pszona [Epp+14], and di�erent schemes for load balancing as studied by

Schickinger and Steger [SS00].

For applications regarding generalized cuckoo hashing, we will study the failure term ofZ on

the respective graph properties directly. We will show thatZ allows running these applications

e�ciently. However, we have to assume that the load of the hash table is rather low. For the

application with regard to load balancing schemes, the failure term of Z will be analyzed by

means of a very general graph property. However, it requires higher parameters when setting

up a hash function from Z , which degrades the performance of these hash functions. We will

start by introducing some notation.

Hypergraph Notation. A hypergraph extends the notion of an undirected graph by allow-

ing edges to consist of more than two vertices. We use the hypergraph notation from [SPS85;

KŁ02]. A hypergraph is called d-uniform if every edge contains exactly d vertices. Let H =
(V,E) be a hypergraph. A hyperpath fromu to v inH is a sequence (u = u1, e1, u2, e2, . . . , et−1, ut =
v) such that ei ∈ E and ui, ui+1 ∈ ei, for 1 ≤ i ≤ t− 1. The hypergraph H is connected if for

each pair of vertices u, v ∈ V there exists a hyperpath from u to v.

The bipartite representation of a hypergraph H is the bipartite graph bi(H) where vertices

of H are the vertices on the right side of the bipartition, the edges of H correspond to vertices

on the left side of the bipartition, and two vertices are connected by an edge in the bipartite

graph if the corresponding edge in the hypergraph contains the corresponding vertex.

We will use a rather strict notion of cycles in hypergraphs. A connected hypergraph is

called a hypertree if bi(H) is a tree. A connected hypergraph is called unicyclic if bi(H) is

unicyclic. A connected hypergraph that is neither a hypertree nor unicyclic is called complex.

Using the standard formula to calculate the cyclomatic number of a graph
1

[Die05], we get the

following (in)equalities for a connected d-uniform hypergraphH with n edges andm vertices:

(d− 1) · n = m− 1 if H is a hypertree, (d− 1) · n = m if H is unicyclic, and (d− 1) · n > m
if H is complex.

1

The cyclomatic number of a connected graph G with m vertices and n edges is n−m+ 1.
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We remark that there are di�erent notions with respect to cycles in hypergraphs. In other

papers, e. g., [CHM97; Die07; BPZ13], a hypergraph is called acyclic if and only if there exists

a sequence of repeated deletions of edges containing at least one vertex of degree 1 that yields

a hypergraph without edges. (Formally, we can arrange the edge set E = {e1, . . . , en} of the

hypergraph in a sequence (e′1, . . . , e
′
n) such that e′j−

⋃
s<j e

′
s 6= ∅, for 1 ≤ j ≤ n.) We will call

this process of repeatedly removing edges incident to a vertex of degree 1 the peeling process,
see, e. g., [Mol05]. With respect to this de�nition, a hypergraph H is acyclic if and only if the

2-core ofH is empty, where the 2-core is the maximal subgraph ofH in which each vertex has

minimum degree 2. An acyclic hypergraph, according to this de�nition, can have unicyclic and

complex components according to the de�nition from above. In the analysis, we will remark

why it is important for our work to use the notation introduced above.

14.1. Generalized Cuckoo Hashing

Background. The obvious extension of cuckoo hashing is to use a sequence
~h = (h1, . . . , hd)

of d ≥ 3 hash functions. For a given integer d ≥ 3 and a key set S ⊆ U with |S| = n, our

hash table consists of d tables T1, . . . , Td, each of size m = O(n), and uses d hash func-

tions h1, . . . , hd with hi : U → [m], for i ∈ {1, . . . , d}. A key x can be stored either in

T1[h1(x)], T2[h2(x)], . . . , or Td[hd(x)]. Each table cell contains at most one key. Searching

and removing a key works in the obvious way. For the insertion procedure, note that evicting

a key y from a table Tj leaves, in contrast to standard cuckoo hashing, d − 1 other choices

where to put the key. To think about insertion procedures, it helps to introduce the concept

of a certain directed graph. Given a set S of keys stored in a cuckoo hash table with tables

T1, . . . , Td using
~h, we de�ne the following (directed) cuckoo allocation graph G = (V,E),

see, e. g., [Kho13]: The vertices V correspond to the memory cells in T1, . . . , Td. The edge set

E consists of all edges (u, v) ∈ V × V such that there exists a key x ∈ S so that x is stored in

the table cell which corresponds to vertex u (x occupies u) and v corresponds to one of the d−1
other choices of key x. If u ∈ V has out-degree 0, we call u free. (The table cell which corre-

sponds to vertex u does not contain a key.) Traditionally, see [Fot+05], the following strategies

were suggested for inserting a key x:

• Random Walk: Test whether one of the d possible table cells for key x is empty or

not. If this is the case, then store x in such a cell; the insertion terminates successfully.

Otherwise pick one out of the d table cells at random. Let y be the key that occupies

this table cell. The key y is evicted before x is stored into the cell. Now the insertion

continues analogously with the key y. This strategy corresponds to a random walk in

the cuckoo allocation graph. The insertion fails if the number of evicted keys is larger

than a given threshold, e. g., after poly-logarithmically many steps, see [FPS13].

• Breadth-First Search: Starting from the d choices of x, use breadth-�rst search in the

cuckoo allocation graph to systematically scan all possible eviction sequences of length
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1, 2, . . . until a free vertex, i. e., an empty cell, has been found. If such a cell exists, move

elements along the path in the cuckoo allocation graph to accommodate x. Otherwise

the insertion fails.

(In the next section, we will study two alternative insertion strategies that were suggested

recently.) If an insertion fails, a new sequence of hash functions is chosen and the data structure

is built anew.

In the original analysis, Fotakis et al. [Fot+05] proved that for given ε > 0, d ≥ 2(1 +
ε) ln(e/ε) fully random hash functions su�ce to store n elements into (1 + ε)n table cells

with high probability according to the cuckoo hashing rules. Later, it was fully understood

what table sizes m makes it possible to store w.h.p. a key set according to the cuckoo hashing

rules for a given number of hash functions. In 2009,
2

this case was settled independently

by Dietzfelbinger et al. [Die+10], Fountoulakis and Panagiotou [FP10], and Frieze and Melsted

[FM12]. Later, the random walk insertion algorithm was partially analyzed by Frieze, Melstedt,

and Mitzenmacher [FMM11] and Fountoulakis, Panagiotou, and Steger [FPS13].

Here, we study the static setting in which we ask if
~h allows accommodating a given key

set S ⊆ U in the hash table according to the cuckoo hashing rules. As in the case of standard

cuckoo hashing, this is equivalent to the question whether the hypergraph G(S,~h) built from

S and
~h is 1-orientable or not, recall the de�nition in Section 11.4. If G(S,~h) is 1-orientable,

we call
~h suitable for S.

We now discuss some known results for random hypergraphs. As for simple random graphs

[ER60] there is a sharp transition phenomenon for random hypergraphs [KŁ02]. When a ran-

dom hypergraph with m vertices has at most (1− ε)m/(d(d− 1)) edges, all components are

small and all components are hypertrees or unicyclic with high probability. On the other hand,

when it has at least (1 + ε)m/(d(d − 1)) edges, there exists one large, complex component.

We will analyze generalized cuckoo hashing under the assumption that each table has size

m ≥ (1 + ε)(d − 1)n, for ε > 0. Note that this result is rather weak: The load of the hash

table is at most 1/(d(d− 1)), i. e., the more hash functions we use, the weaker our bounds for

provable working hash functions are. At the end of this section, we will discuss whether this

result can be improved or not with the methodology used here.

Result. We will show the following theorem.

2

Technical report versions of all these papers were published at www.arxiv.org. We refer to the �nal publica-

tions.
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Theorem 14.1.1
Let ε > 0, 0 < δ < 1, d ≥ 3 be given. Assume c ≥ 2/δ. For n ≥ 1, consider m ≥
(1 + ε)(d− 1)n and ` = nδ . Let S ⊆ U with |S| = n. Then for

~h = (h1, . . . , hd) chosen at

random from Z = Zc,d`,m the following holds:

Pr
(
~h is not suitable for S

)
= O(1/n).

Lemma 14.1.2
Let H be a hypergraph. If H contains no complex component then H is 1-orientable.

Proof. We may consider each connected component ofH separately. We claim that a hypertree

and a unicyclic component always contains an edge that is incident to a vertex of degree 1. By

contraposition, we will show that if every vertex in a connected hypergraph with m vertices

and n edges has degree at least 2, then (d − 1) · n > m, i. e., the hypergraph is complex. So,

let C be an arbitrary connected hypergraph with m vertices and n edges, and let c∗ be the

minimum degree of a vertex in C . By assumption, it holds that d · n ≥ c∗ · m, and we may

calculate:

(d− 1) · n ≥ m+ (c∗ − 1) ·m− n
(!)
> m.

So, all we have to do is to show that (c∗ − 1)m > n. This follows since n ≥ c∗m/d and

c∗(1− 1/d) > 1 for d ≥ 3 and c∗ ≥ 2. So, every hypertree or unicyclic component contains a

vertex of degree 1.

Suppose C is such a hypertree or a unicyclic component. A 1-orientation of C is obtained

via the well-known “peeling process”, see, e. g., [Mol05]. It works by iteratively peeling edges

incident to a vertex of degree 1 and orienting each edge towards such a vertex.

In light of Lemma 14.1.2 we bound the probability of G(S,~h) being 1-orientable by the prob-

ability that G(S,~h) contains no complex component. A connected complex component of H
contains at least two cycles in bi(G). So, minimal obstruction hypergraphs that show that a

hypergraph contains a complex component are very much like the obstruction graphs that

showed that a graph contains more than one cycle, see Figure 11.1 on Page 115. For a clean

de�nition of obstruction hypergraphs, we will �rst introduce the concept of a strict path in

a hypergraph. A sequence (e1, . . . , et), t ≥ 1, ei ∈ E, 1 ≤ i ≤ t, is a strict path in H if

|ei ∩ ei+1| = 1, 1 ≤ i ≤ t − 1, and |ei ∩ ej | = 0 for j ≥ i + 2 and 1 ≤ i ≤ t − 2. According

to [KŁ02], a complex connected component contains a subgraph of one of the following two

types:

143



14. Applications on Hypergraphs

Type 1: A strict path e1, . . . , et, t ≥ 1, and an edge f such that |f ∩ e1| ≥ 1, |f ∩ et| ≥ 1, and∣∣∣∣∣f ∩
t⋃
i=1

ei

∣∣∣∣∣ ≥ 3.

Type 2: A strict path e1, . . . , et−1, t ≥ 2, and edges f1, f2 such that |f1 ∩ e1| ≥ 1, |f2 ∩ et−1| ≥
1, and ∣∣∣∣∣fj ∩

t−1⋃
i=1

ei

∣∣∣∣∣ ≥ 2, for j ∈ {1, 2}.

Hypergraphs of Type 1 have a cycle with a chord in their bipartite representation, hypergraphs

of Type 2 contain two cycles connected by a path of length t ≥ 0 in their bipartite representa-

tion. We call a hypergraph H in Gdm,n which is of Type 1 or Type 2 a minimal complex obstruc-
tion hypergraph. Let MCOG denote the set of all minimal complex obstruction hypergraphs in

Gdm,n. In the following, our objective is to apply Lemma 11.2.2, which says that

Pr
(
NMCOG
S > 0

)
≤ Pr

(
BMCOG
S

)
+ E

∗ (NMCOG
S

)
. (14.1)

Bounding E∗
(
NMCOG
S

)
. We will now prove the following lemma:

Lemma 14.1.3
Let S ⊆ U with |S| = n, d ≥ 3, and ε > 0 be given. Set m ≥ (1 + ε)(d− 1)n. Then

E
∗ (NMCOG

S

)
= O(1/n).

Proof. The proof follows [KŁ02]. We begin by counting the numberw1(d, t+1) of fully labeled

hypergraphs of Type 1 having exactly t+1 edges. There are not more than dmd ·((d−1)m)t−1

ways to choose a strict path e1, . . . , et. When such a path is �xed, there are at most td3 ·
md−3

ways to choose the additional edge f from the de�nition of Type 1 minimal complex

obstruction hypergraphs. So, we obtain the bound

w1(d, t+ 1) ≤dmd ·
(

(d− 1) ·md−1
)t−1

· td3 ·md−3. (14.2)

By a similar argument, for the number w2(d, t + 1) of fully labeled hypergraphs of Type 2
having exactly t+ 1 edges we get

w2(d, t+ 1) ≤ dmd ·
(

(d− 1) ·md−1
)t−2

· t2d4 ·m2(d−2). (14.3)
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In total, the number of fully labeled minimal complex obstruction hypergraphs with exactly

t+ 1 edges not larger than((
n

t+ 1

)
· (t+ 1)!

)
· (w1(d, t+ 1) + w2(d, t+ 2))

≤ nt+1 · dmd ·
(

(d− 1)md−1
)t−2

· t2d4 ·
(

(d− 1)md−1 ·md−3 +m2(d−2)
)

= nt+1 · d6 ·m(d−1)(t+1)−1 · t2 · (d− 1)t−2

≤ nd(t+1)−1 · d6 · t2 · (1− ε)(d−1)(t+1)−1 · (d− 1)(d−1)(t+1)+t−3

= nd(t+1)−1 · d6 · t2 · (1 + ε)(d−1)(t+1)−1 · (d− 1)d(t+1)−4.

Let H be a fully labeled minimal complex obstruction hypergraph with t+ 1 edges.

Draw t + 1 edges at random from [m]d according to the labels in H . The probability that

the hash values realize H is 1/md(t+1) ≤ 1/ ((1 + ε) (d− 1)n)d(t+1)
.

We calculate

E
∗ (NMCOG

S

)
≤

n∑
t=1

d6 · t2 · (1 + ε)(d−1)·(t+1)−1 · (d− 1)d·(t+1)−4 · nd·(t+1)−1

((1 + ε) (d− 1)n)d(t+1)

≤ d6

(d− 1)4n
·
n∑
t+1

t2

(1 + ε)t−1
= O

(
1

n

)
.

Bounding Pr
(
BMCOG
S

)
. We will now prove the following lemma.

Lemma 14.1.4
Let S ⊆ U with |S| = n, d ≥ 3, and ε > 0 be given. Set m ≥ (1 + ε)(d− 1)n. Let `, c ≥ 1.

Choose
~h ∈ Zc,d`,m at random. Then

Pr
(
BMCOG
S

)
= O

( n
`c

)
.

To use our framework from Section 11, we have to �nd a suitable peelable hypergraph property

that contains MCOG. Since minimal complex obstruction hypergraphs are path-like, we relax

their notion in the following way.
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De�nition 14.1.5
Let P∗ be the set of all hypergraphsH from Gdm,n which have one of the following properties:

1. H has property MCOG.

2. H is a strict path.

3. H consists of a strict path e1, . . . , et, t ≥ 1, and an edge f such that |f ∩ (e1∪et)| ≥ 1
and ∣∣∣∣∣f ∩

t⋃
i=1

ei

∣∣∣∣∣ ≥ 2.

Note that property 3 is somewhat arti�cial to deal with the case that a single edge of a minimal

complex obstruction hypergraph of Type 2 is removed. Obviously, MCOG is contained in P∗

and P∗ is peelable. We can now prove Lemma 14.1.4.

Proof of Lemma 14.1.4. We apply Lemma 11.3.4 which says that

Pr
(
BP∗
S

)
≤ 1

`c

n∑
t=1

t2cµP
∗
t .

We start by counting fully labeled hypergraphs G ∈ P∗ having exactly t + 1 edges. For the

hypergraphs having Property 1 of De�nition 14.1.5, we may use the bounds (14.2) and (14.3) on

w1(d, t+ 1) and w2(d, t+ 1) in the proof of Lemma 14.1.3. Let w0(d, t+ 1) be the number of

such hypergraphs which are strict paths, i. e., have Property 2 of De�nition 14.1.5. We obtain

the following bound:

w0(d, t+ 1) ≤dmd ·
(

(d− 1) ·md−1
)t
.

Let w3(d, t + 1) be the number of hypergraphs having Property 3 of De�nition 14.1.5. We

observe that

w3(d, t+ 1) ≤dmd ·
(

(d− 1) ·md−1
)t−1

· 2d2 · t ·md−2.
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So, the number of fully labeled hypergraphs having exactly t+ 1 edges is at most((
n

t+ 1

)
· (t+ 1)!

)
· (w0(d, t+ 1) + w1(d, t+ 1) + w2(d, t+ 1) + w3(d, t+ 1))

≤ nt+1 · dmd ·
(

(d− 1) ·md−1
)t−2

·(
d2m2(d−1) + d4tm2(d−2) + d4t2m2(d−2) + 2d3tm2d−3

)
≤ 4 · d5 · t2 · nt+1 ·m(d−1)(t+1)+1 · (d− 1)t−2

≤ 4 · d5 · t2 · nd(t+1)+1 · (1 + ε)(d−1)(t+1)+1 · (d− 1)d(t+1)−2.

We may thus calculate:

Pr
(
BP∗
S

)
≤ 1

`c

n∑
t=1

t2c · 4 · d5 · t2 · (1 + ε)(d−1)(t+1)+1 · (d− 1)d(t+1)−2 · nd(t+1)+1

((1 + ε)(d− 1)n)d(t+1)

≤ n

`c

n∑
t=1

4 · d5 · t2+2c

(d− 1)2 · (1 + ε)t−1
= O

( n
`c

)
.

Pu�ing Everything Together. Substituting the results of Lemma 14.1.3 and Lemma 14.1.4

into (14.1) yields

Pr
(
NMCOG
S > 0

)
≤ O

(
1

n

)
+O

( n
`c

)
.

Theorem 14.1.1 follows by setting c ≥ 2/δ and ` = nδ .

Remarks and Discussion. Our result shows that with hash functions from Z there exists

w.h.p. an assignment of the keys to memory cells (according to the cuckoo hashing rules)

when each table has size at least (1 + ε)(d− 1)n, where n is the size of the key set. Thus, the

load of the hash table is smaller than 1/(d(d − 1)). In the fully random case, the load of the

hash table rapidly grows towards 1, see, e. g., the table on Page 5 of [Die+10]. For example,

using 5 hash functions allows the hash table load to be ≈ 0.9924. The approach followed in

this section cannot yield such bounds for the following reason. When we look back at the

proof of Lemma 14.1.2, we notice that it gives a stronger result: It shows that when a graph

does not contain a complex component, it has an empty two-core, i. e., it does not contain a

non-empty subgraph in which each vertex has minimum degree 2. It is known from random

hypergraph theory that the appearance of a non-empty two-core becomes increasingly likely
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for d getting larger.
3

So, we cannot rely on hypergraphs with empty two-cores to prove bounds

for generalized cuckoo hashing that improve for increasing values of d.

However, one can also approach orientation thresholds by means of matchings in random

hypergraphs. It is well known from Hall’s theorem that a bipartite graph G(L,R,E) has an

L-perfect matching if and only if every set of verticesX ⊆ L has at least |X| adjacent vertices

in R [Die05]. (An L-perfect matching is a matching M ⊆ E that contains every vertex of

L.) Now, think of the hypergraph G = G(S,~h) as a bipartite graph bi(G) = (L,R,E) in the

standard way. An L-perfect matching M induces a 1-orientation of G in the obvious way.

The statement of Hall’s theorem in hypergraph terminology is: There exists a 1-orientation
of G(S,~h) if and only if for every T ⊆ S the graph G(T,~h) (disregarding isolated vertices) has
at least as many vertices as it has edges. For the analysis, let D (“dense”) contain all connected

hypergraphs from Gdm,n which have more edges than vertices. Then G(S,~h) contains a 1-

orientation if and only if ND
S = 0. As before, we apply Lemma 11.2.2 and obtain the bound

Pr
(
ND
S > 0

)
≤ Pr

(
BD
S

)
+ E

∗
(
ND
S

)
. (14.4)

The calculations from the proof in [Fot+05, Lemma 1] show that for d ≥ 2(1 + ε) ln(e/ε) we

have that E
∗ (ND

S

)
= O(n4−2d). To bound the failure term of hash classZ , we �rst need to �nd

a peelable graph property. For this, let C denote the set of all connected hypergraphs in Gdm,n.

Of course, D ⊆ C, and C is peelable. However, it remains an open problem to �nd good enough

bounds on Pr
(
BC
S

)
. Section 14.3 will contain some progress towards achieving this goal. There

we will prove that when considering connected hypergraphs with at most O (log n) edges, we

can bound the failure term of Z by O(n−α) for an arbitrary constant α > 0 which depends on

d and the parameters of the hash class. However, the successful analysis of generalized cuckoo

hashing requires this result to hold for connected hypergraphs with more edges. The situation

is much easier in the sparse setting, since we can compensate for the additional label choices of

a d-partite hypergraph with the d−1 factor in the number of vertices, see, e. g., the calculations

in the proof of Lemma 14.1.4.

Another approach is the one used by Chazelle, Kilian, Rubinfeld, and Tal in [Cha+04, Section

4]. They proved that a 1-orientation of the hypergraph G(S,~h) can be obtained by the simple

peeling process, if for each set T ⊆ S the graph G(T,~h) (disregarding isolated vertices) has at

most d/2 times more edges than it has vertices. This is weaker than the requirement of Hall’s

theorem, but we were still not able to prove low enough failure terms for hash class Z .

3

According to [MM09, p. 418] (see also [Maj+96]) for large d the 2-core of a random d-uniform hypergraph with

m vertices and n edges is empty with high probability if m is bounded from below by dn/ log d.
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14.2. Labeling-based Insertion Algorithms For Generalized
Cuckoo Hashing

In the previous section we showed that when the tables are large enough, the hash functions

allow storing S according to the cuckoo hashing rules with high probability. In this section

we prove that such an assignment can be obtained (with high probability) with hash functions

from Z using two recently described insertion algorithms.

Background. In the last section, we pointed out two natural insertion strategies for gener-

alized cuckoo hashing: breadth-�rst search and random walk, described in [Fot+05]. Very re-

cently, Khosla [Kho13] (2013) and Eppstein et al. [Epp+14] (2014) gave two new insertion strate-

gies, which will be described next. In both algorithms, each table cell i in table Tj has a label (or

counter) l(j, i) ∈ N, where initially l(j, i) = 0 for all j ∈ {1, . . . , d} and i ∈ {0, . . . ,m − 1}.
The insertion of a key x works as follows: Both strategies �nd the table index

j = arg min
j∈{1,...,d}

{l(j, hj(x))}.

If Tj [hj(x)] is free then x is stored in this cell and the insertion terminates successfully. Other-

wise, let y be the key which resides in Tj [hj(x)]. Store x in Tj [hj(x)]. The di�erence between

the two algorithms is how they adjust the labeling. The algorithm of Khosla sets

l(j, hj(x))← min{l(j′, hj′(x)) | j′ ∈ ({1, . . . , d} \ {j})}+ 1,

while the algorithm of Eppstein et al. sets l(j, hj(x)) ← l(j, hj(x)) + 1. Now insert y in the

same way. This is iterated until an empty cell is found or it is noticed that the insertion cannot

be performed successfully.
4

In Khosla’s algorithm, the content of the label l(j, i) is a lower

bound for the minimal length of an eviction sequences that allows to store a new element into

Tj [i] (moving other elements around)[Kho13, Proposition 1]. In the algorithm of Eppstein et
al., the label l(j, i) contains the number of times the memory cell Tj [i] has been overwritten.

According to [Epp+14], it aims to minimize the number of write operations to a memory cell.

This so-called “wear” of memory cells is an important issue in modern �ash memory. In our

analysis, we show that in the sparse setting with m ≥ (1 + ε)(d − 1)n, the maximum label

in the algorithm of Eppstein et al. is log logn+O(1) with high probability and the maximum

label in the algorithm of Khosla is O(log n) with high probability.

4

Neither in [Epp+14] nor in [Kho13] it is described how this should be done in the cuckoo hashing setting. From

the analysis presented there, when deletions are forbidden, one should do the following: Both algorithms have

a counter MaxLabel, and if there exists a label l(j, i) ≥ MaxLabel, then one should choose new hash functions

and re-insert all items. For Khosla’s algorithm, MaxLabel = Θ(logn); for the algorithm of Eppstein et al., one

should set MaxLabel = Θ(log logn).
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Result. Our result when using hash functions from Z is as follows. We only study the case

that we want to insert the keys from a set S sequentially without deletions.

Theorem 14.2.1
Let ε > 0, 0 < δ < 1, d ≥ 3 be given. Assume c ≥ 2/δ. For n ≥ 1 consider m ≥ (1 +

ε)(d−1)n and ` = nδ . Let S ⊆ U with |S| = n. Choose
~h ∈ Zc,d`,m at random. Insert all keys

from S in an arbitrary order using the algorithm of Khosla using
~h. Then with probability

O(1/n) (i) all key insertions are successful and (ii) max{l(j, i) | i ∈ {0, . . . ,m − 1}, j ∈
{1, . . . , d}} = O(log n).

Theorem 14.2.2
Let ε > 0, 0 < δ < 1, d ≥ 3 be given. Assume c ≥ 2/δ. For n ≥ 1 consider m ≥
(1 + ε)(d − 1)n and ` = nδ . Let S ⊆ U with |S| = n. Choose

~h ∈ Zc,d`,m at random.

Insert all keys from S in an arbitrary order using the algorithm of Eppstein et al. using
~h.

Then with probability O(1/n) (i) all key insertions are successful and (ii) max{l(j, i) | i ∈
{0, . . . ,m− 1}, j ∈ {1, . . . , d}} = log log n+O(1).

For the analysis of both algorithms we assume that the insertion of an element fails if there

exists a label of size n+ 1. (In this case, new hash functions are chosen and the data structure

is built anew.) Hence, to prove Theorem 14.2.1 and Theorem 14.2.2 it su�ces to show that

statement (ii) holds. (An unsuccessful insertion yields a label with value > n.)

Analysis of Khosla’s Algorithm. We �rst analyze the algorithm of Khosla. We remark

that in our setting, Khosla’s algorithm �nds an assignment with high probability. (In [Kho13,

Section 2.1] Khosla gives an easy argument why her algorithm always �nds an assignment

when this is possible. In the previous section, we showed that such an assignment exists with

probability 1−O(1/n).) It remains to prove that the maximum label has sizeO(log n). We �rst

introduce the notation used by Khosla in [Kho13]. Recall the de�nition of the cuckoo allocation

graph from the beginning of Section 14.1. Let G be a cuckoo allocation graph. Let FG ⊆ V
consist of all free vertices in G. Let dG(u, v) be the distance between u and v in G. De�ne

dG(u, F ) := min ({dG(u, v) | v ∈ F} ∪ {∞}) .

Now assume that the key set S is inserted in an arbitrary order. Khosla de�nes a move as every

action that writes an element into a table cell. (So, the i-th insertion is decomposed into ki ≥ 1
moves.) The allocation graph at the end of the p-th move is denoted by Gp = (V,Ep). Let M

denote the number of moves necessary to insert S. (Recall that we assume that
~h is suitable

for S.) Khosla shows the following connection between labels and distances to a free vertex.
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Proposition 14.2.3 [Kho13, Proposition 1]
For each p ∈ {0, 1, . . . ,M} and each v ∈ V it holds that

dGp(v, FGp) ≥ l(j, i), (14.5)

where Tj [i] is the table cell that corresponds to vertex v.

Now �x an integer L ≥ 1. Assume that there exists an integer p, for 0 ≤ p ≤M, and a vertex

v such that d(v, FGp) = L. Let (v = v0, v1, . . . , vL−1, vL) be a simple path p of length L inGp
such that vL is free. Let x0, . . . , xL−1 ⊆ S be the keys which occupy v0, . . . , vL−1. Then the

hypergraph G(S,~h) contains a subgraph H that corresponds to p in the obvious way.

De�nition 14.2.4
For given integers L ≥ 1,m ≥ 1, n ≥ 1, d ≥ 3, let SPL (“simple path”) consist of all

hypergraphs H = (V, {e1, . . . , eL}) in Gdm,n with the following properties:

1. For all i ∈ {1, . . . , L} we have that |ei| = 2. (So, H is a graph.)

2. For all i ∈ {1, . . . , L− 1}, |ei ∩ ei+1| = 1.

3. For all i ∈ {1, . . . , L− 2} and j ∈ {i+ 2, . . . , L}, |ei ∩ ej | = 0.

Our goal in the following is to show that there exists a constant c such that for all L ≥ c log n

we have Pr
(
NSPL
S > 0

)
= O(1/n). From Lemma 11.2.2 we obtain the bound

Pr
(
NSPL
S > 0

)
≤ E

∗
(
NSPL
S

)
+ Pr

(
BSPL
S

)
. (14.6)

Bounding E∗
(
NSPL
S

)
. We show the following lemma.

Lemma 14.2.5
Let S ⊆ U with |S| = n, d ≥ 3, and ε > 0 be given. Consider m ≥ (d− 1)(1 + ε)n. Then

E
∗
(
NSPL
S

)
≤ md

(1 + ε)L
.

Proof. We count fully labeled hypergraphs with property SPL. Let P be an unlabeled simple

path of length L. There are d · (d− 1)L ways to label the vertices on P with {1, . . . , d} to �x

the class of the partition they belong to. Then there are not more than mL+1
ways to label the

vertices with labels from [m]. There are fewer than nL ways to label the edges with labels from
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{1, . . . , n}. Fix such a fully labeled path P ′. Now draw 2L hash values from [m] according to

the labels of P ′. The probability that these random choices realize P ′ is 1/m2L
. We calculate:

E
∗
(
NSPL
S

)
≤ d · (d− 1)L ·mL+1 · nL

m2L
=

m · d · (d− 1)L

((d− 1) (1 + ε))L
=

md

(1 + ε)L
.

Bounding Pr
(
BSPL
S

)
. Note that SPL is not peelable. We relax SPL in the obvious way and

de�ne RSPL =
⋃

0≤i≤L SP
L

. Graph property RSPL is peelable.

Lemma 14.2.6
Let S ⊆ U with |S| = n and d ≥ 3 be given. For an ε > 0, set m ≥ (1 + ε)(d − 1)n. Let

`, c ≥ 1. Choose
~h ∈ Zc,d`,m at random. Then

Pr
(
BSPL

S

)
= O

( n
`c

)
.

Proof. Since SPL ⊆ RSPL and RSPL is peelable, we may apply Lemma 11.3.4 and obtain the

bound

Pr
(
BSPL
S

)
≤ 1

`c
·
n∑
t=1

t2c · µRSPLt .

By the de�nition ofRSPL and using the same counting argument as in the proof of Lemma 14.2.5,

we calculate:

Pr
(
BSPL
S

)
≤ 1

`c
·
n∑
t=1

t2c · md

(1 + ε)t
= O

( n
`c

)
.

Pu�ing Everything Together. Plugging the results of Lemma 14.2.5 and Lemma 14.2.6 into

(14.6) shows that

Pr
(
NSPL
S > 0

)
≤ md

(1 + ε)L
+O

( n
`c

)
.

Setting L = 2 log1+ε(n), ` = nδ , and c ≥ 2/δ �nishes the proof of Theorem 14.2.1.
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Analysis of the Algorithm of Eppstein et al. We now analyze the algorithm of Eppstein

et al. [Epp+14]. We use the witness tree technique to prove Theorem 14.2.2. This proof tech-

nique was introduced by Meyer auf der Heide, Scheideler, and Stemann [HSS96] in the context

of shared memory simulations, and is one of the main techniques to analyze load balancing

processes, see, e. g., [Col+98a; Col+98b; Ste96; SS00; Vöc03], which will be the topic of the next

section.

Central to our analysis is the notion of a witness tree for wear k, for an integer k ≥ 1.

(Recall that in the algorithm of Eppstein et al., the label l(j, i) denotes the number of times

the algorithm has put a key into the cell Tj [i]. This is also called the wear of the table cell.)

For given values n and m, a witness tree for wear k is a (d − 1)-ary tree with k + 1 levels in

which each non-leaf node is labeled with a tuple (j, i, κ), for 1 ≤ j ≤ d, 0 ≤ i ≤ m − 1, and

1 ≤ κ ≤ n, and each leaf is labeled with a tuple (j, i), 1 ≤ j ≤ d and 0 ≤ i ≤ m − 1. Two

children of a non-leaf node v must have di�erent �rst components (j-values) and, if they exist,

third components (κ-values) Also the κ-values of a node and its children must di�er.

We say that a witness tree is proper if no two di�erent non-leaf nodes have the same labeling.

We say that a witness tree T can be embedded intoG(S,~h) if for each non-leaf node vwith label

(j0, i0, κ) with children labeled (j1, i1), . . . , (jd−1, id−1) in the �rst two label components in T ,

hjk(xκ) = ik, for each 0 ≤ k ≤ d−1. We can think of a proper witness tree as an edge-labeled

hypergraph from Gdm,n by building from each non-leaf node labeled (j0, i0, κ) together with

its d − 1 children with label components (j1, i1), . . . , (jd−1, id−1) a hyperedge (i′0, . . . , i
′
d−1)

labeled “κ”, where i′0, . . . , i
′
d−1 are ordered according to the j-values.

Suppose that there exists a label l(j, i) with content k for an integer k > 0. We now argue

about what must have happened that l(j, i) has such a label. In parallel, we construct the

witness tree for wear k. Let T be an unlabeled (d− 1)-ary tree with k + 1 levels. Let y be the

key residing in Tj [i]. Label the root of T with (j, i, κ), where y = xκ ∈ S. Then for all other

choices of y in tables Tj′ , j
′ ∈ {1, . . . , d}, j′ 6= j, we have l(j′, hj′(y)) ≥ k − 1. (When y was

written into Tj [i], l(j, i) was k − 1 and this was minimal among all choices of key y. Labels

are never decreased.) Let x1, . . . , xd−1 be the keys in these d− 1 other choices of y. Label the

children of the root of T with the d−1 tuples (j′, hj′(y)), 1 ≤ j′ ≤ d, j′ 6= j, and the respective

key indices. Arguing in the same way as above, we see that for each key xi, i ∈ {1, . . . , d−1},
its d − 1 other table choices must have had a label of at least k − 2. Label the children of the

node corresponding to key xi on the second level of T with the d − 1 other choices, for each

i ∈ {1, . . . , d− 1}. (Note that already the third level may include nodes with the same label.)

Proceeding with this construction on the levels 3, . . . , k gives the witness tree T for wear k.

By construction, this witness tree can be embedded into G(S,~h).

So, all we have to do to prove Theorem 14.2.2 is to obtain a (good enough) bound on the

probability that a witness tree for wear k can be embedded into G(S,~h). If a witness tree is

not proper, it seems di�cult to calculate the probability that this tree can be embedded into

G(S,~h), because di�erent parts of the witness tree correspond to the same key in S, which

yields dependencies among hash values. However, we know from the last section that when

G(S,~h) is sparse enough, i. e., m ≥ (1 + ε)(d− 1)n, it contains only hypertrees and unicyclic
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components with probability 1 − O(1/n). Using a basic pruning argument, Eppstein et al.
show that this simpli�es the situation in the following way.

Lemma 14.2.7 [Epp+14, Observation 2 & Observation 3]
Let H be a hypergraph that consists of only hypertrees and unicyclic components. Suppose

H contains an embedded witness tree for wear k. Then there exists a proper witness tree for

wear k − 1 that can be embedded into H .

Proof. Let T be a witness tree for wear k that can be embedded into a unicyclic component of

H . (If it is embedded into a hypertree, there is nothing to prove.) Observe that T can have at

most one label that occurs at more than one non-leaf node, because the paths from the root to

a non-leaf node correspond to paths in G(S,~h). So, two di�erent labels that occur both more

than once in non-leaf nodes certify that the component would be complex. Now, traverse T
using a breadth-�rst search and let v be the �rst non-leaf node that has a label which occurred

before. Observe that all other occurrences of that labeling are in nodes at the subtree rooted at

v. (Otherwise, the component would be complex.) Let p be the unique path from this node to

the root of T . Then removing the child of the root that lies on p (and the whole subtree rooted

at that child) makes T have distinct non-leaf labels. The tree rooted at each of its remaining

children is a witness tree for wear k − 1 and there exists at least one such child.

Let ES,k be the event that there exists a witness tree for wear k that can be embedded into

G(S,~h). To prove Theorem 14.2.2, we have to show that for the parameter choices in the

Theorem

Pr (ES,k) = O(1/n).

We separate the cases whether G(S,~h) contains a complex component or not. Let PWTk be

the set of all hypergraphs in Gdm,n which correspond to proper witness trees for wear k. Using

Theorem 14.1.1, we may bound:

Pr (ES,k) ≤ Pr
(
N

PWTk−1

S > 0
)

+ Pr
(
NMCOG
S > 0

)
≤ Pr

(
B

PWTk−1

S

)
+ E

∗
(
N

PWTk−1

S

)
+ Pr

(
NMCOG
S > 0

)
. (14.7)

The last summand on the right-hand side of this inequality is handled by Theorem 14.1.1, so

we may concentrate on the graph property PWTk−1.

Bounding E∗
(
N

PWTk−1

S

)
. We start by proving that the expected number of proper witness

trees in G(S,~h) is O(1/n) for the parameter choices in Theorem 14.2.2. We use a di�erent

proof method than Eppstein et al. [Epp+14], because we cannot use the statement of [Epp+14,

Lemma 1]. We remark here that the following analysis could be extended to obtain bounds
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of O(1/ns), for s ≥ 1. However, this does not help to obtain better bounds, because the last

summand of (14.7) is known to be only O(1/n).

Lemma 14.2.8
Let S ⊆ U with |S| = n and d ≥ 3 be given. For an ε > 0, set m ≥ (1 + ε)(d− 1)n. Then

there exists a value k = log log n+ Θ(1) such that

E
∗
(
N

PWTk−1

S

)
= O

(
1

n

)
.

Proof. We �rst obtain a bound on the number of proper witness trees for wear k− 1. Let T be

an unlabeled (d− 1)-ary tree with k levels. The number vk−1 of vertices of such a tree is

vk−1 =
k−1∑
i=0

(d− 1)i =
(d− 1)k − 1

d− 2
.

For the number ek−1 of non-leaf nodes of such a tree, we have

ek−1 =
k−2∑
i=0

(d− 1)i =
(d− 1)k−1 − 1

d− 2
.

There are n · d ·m ways to label the root of T . There are not more than nd−1 ·md−1
ways to

label the second level of the tree. Labeling the remaining levels in the same way, we see that

in total there are fewer than

nek−1 · d ·mvk−1

proper witness trees for wear k−1. Fix such a fully labeled witness tree T . Now draw d·ek−1 =
vk−1 + ek−1 − 1 values randomly from [m] according to the labeling of the nodes in T . The

probability that these values realize T is exactly 1/mvk−1+ek−1−1
. We obtain the following

bound:

E
∗
(
NPWTk
S

)
≤ nek−1 · d · ((1 + ε) (d− 1)n)vk−1

((1 + ε) (d− 1)n)vk−1+ek−1−1 =
n · d

((1 + ε)(d− 1))ek−1−1

≤ n · d
((1 + ε)(d− 1))(d−1)k−2 ,

which is in O(1/n) for k = log log n+ Θ(1).

Bounding Pr
(
B

PTWk−1

S

)
. We �rst relax the notion of a witness tree in the following way.
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De�nition 14.2.9
Let RWTk−1

(relaxed witness trees) be the set of all hypergraphs which can be obtained in

the following way:

1. Let T ∈ PWTk
′

be an arbitrary proper witness tree for wear k′, k′ ≤ k − 1. Let `
denote the number of nodes on level k′ − 1, i. e., the level prior to the leaf level of T .

2. Arbitrarily choose `′ ∈ N with `′ ≤ `− 1.

3. Choose κ = b`′/(d − 1)c arbitrary distinct non-leaf nodes on level k′ − 2. For each

such node, remove all its children together with their d − 1 children from T . Then

remove from a group of d− 1 siblings on level k′ − 1 the `′ − (d− 1) · κ siblings with

the largest j-values together with their leaves.

Note that RWTk−1
is a peelable graph property, for we can iteratively remove non-leaf nodes

that correspond to edges in the hypergraph until the whole leaf level is removed. Removing

these nodes as described in the third property makes sure that there exists at most one non-leaf

node at level k′−2 that has fewer than d−1 children. Also, it is clear what the �rst components

in the labeling of the children of this node are. Removing nodes in a more arbitrary fashion

would give more labeling choices and thus more trees with property RWTk−1
.

Lemma 14.2.10
Let S ⊆ U with |S| = n and d ≥ 3 be given. For an ε > 0, set m ≥ (1 + ε)(d − 1)n. Let

`, c ≥ 1. Choose
~h ∈ Zc,d`,m at random. Then

Pr
(
BRWTk−1

S

)
= O

( n
`c

)
.

Proof. We apply Lemma 11.3.4, which says that

Pr
(
BRWTk−1

S

)
≤ 1

`c
·
n∑
t=2

t2cµRWTk−1

t .

Using the same line of argument as in the bound for E
∗
(
NPWTk
S

)
, the expected number of

witness trees with property RWTk−1
with exactly t edges, i. e., exactly t non-leaf nodes, is at

most n · d · / ((1 + ε)(d− 1))t−1
. We calculate:

Pr
(
BRWTk−1

S

)
=

1

`c

n∑
t=1

t2c
n · d

((1 + ε)(d− 1))t−1 = O
( n
`c

)
.
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Pu�ing Everything Together. Using the results from Lemma 14.2.8, Lemma 14.2.10, and

Theorem 14.1.1, we conclude that

Pr (ES,k) ≤ Pr
(
BPWTk
S

)
+ E

∗
(
NPWTk
S

)
+ Pr

(
NMCOG
S > 0

)
≤ O(1/n) +O(n/`c).

Theorem 14.2.2 follows for ` = nδ and c ≥ 2/δ.

Remarks and Discussion. In [Kho13], Khosla shows that her algorithm �nds an assignment

whenever
~h is suitable for the key set S. That means that her algorithm works up to the thresh-

olds for generalized cuckoo hashing. Our result is much weaker and provides only guarantees

for a load factor of 1/(d(d− 1)). Moreover, she proves that n insertions take time O(n) with

high probability. This is the �rst result of this kind for insertion procedures for generalized

cuckoo hashing. (For the random walk method, this result was conjectured in [FPS13]; for the

BFS method, n insertions take timeO(n) in expectation.) We did not check if n insertions take

timeO(n) w.h.p. when hash functions fromZ are used instead of fully random hash functions.

With respect to the algorithm of Eppstein et al., our result shows that n insertions take time

O(n log logn) with high probability when using hash functions from Z . With an analogous

argument to the one given by Khosla in [Kho13], the algorithm of Eppstein et al. of course

�nds an assignment of the keys whenever this is possible. However, the bound of O(log log n)
on the maximum label is only known for m ≥ (1 + ε)(d − 1)n and d ≥ 3, even in the fully

random case. Extending the analysis on the maximum label size to more dense hypergraphs

is an open question. Furthermore, �nding a better bound than O(n log logn) (w.h.p.) on the

insertion time for n elements is open, too.

14.3. Load Balancing

In this section we apply hash class Z in the area of load balancing schemes. In the discussion

at the end of this section, we will present a link of our results w.r.t. load balancing to the space

utilization of generalized cuckoo hashing in which each memory cell can hold κ ≥ 1 items.

Background. In randomized load balancing we want to allocate a set of jobs J to a set of

machines M such that a condition, e. g., there exists no machine with “high” load, is satis�ed

with high probability. To be consistent with the notation used in our framework and previous

applications, S will denote the set of jobs, and the machines will be numbered 1, . . . ,m. In this

section we assume |S| = n = m, i. e., we allocate n jobs to n machines.

We use the following approach to load balancing: For an integer d ≥ 2, we split the n
machines into groups of size n/d each. For simplicity, we assume that d divides n. Now a job

chooses d candidate machines by choosing exactly one machine from each group. This can
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be modeled by using d hash functions h1, . . . , hd with hi : S → [n/d], 1 ≤ i ≤ d, such that

machine hi(j) is the candidate machine in group i of job j.

In load balancing schemes, the arrival of jobs has been split into two models: parallel and

sequential arrival. We will focus on parallel job arrivals and come back to the sequential case

at the end of this section.

In the parallel arrival model, all jobs arrive in parallel, i. e., at the same time. They com-

municate with the machines in synchronous rounds. In these rounds, decisions on the allo-

cations of jobs to machines are made. The τ -collision protocol is one algorithm to �nd such

an assignment. This protocol was studied in the context of distributed memory machines by

Dietzfelbinger and Meyer auf der Heide [DM93]. In the context of load balancing, the allo-

cation algorithm was analyzed by Stemann in [Ste96]. The τ -collision protocol works in the

following way: First, each job chooses one candidate machine from each of the d ≥ 2 groups.

Then the following steps are repeated until all jobs are assigned to machines:

1. Synchronously and in parallel, each unassigned job sends an allocation request to each

of its candidate machines.

2. Synchronously and in parallel, each machine sends an acknowledgement to all request-

ing jobs if and only if it got at most τ allocation requests in this round. Otherwise, it

does not react.

3. Each job that gets an acknowledgement is assigned to one of the machines that has sent

an acknowledgement. Ties are broken arbitrarily.

Note that the number of rounds is not bounded. However, we will show that w.h.p. the τ -

collision protocol will terminate after a small number of rounds.

There exist several analysis techniques for load balancing, e. g., layered induction, �uid limit

models and witness trees [Raj+01]. We will focus on the witness tree technique to analyze

load balancing schemes. We use the variant studied by Schickinger and Steger in [SS00] in

connection with hash class Z . The main contribution of [SS00] is to provide a uni�ed analysis

for several load balancing algorithms. That allows us to show that hash class Z is suitable in

all of these situations as well, with only little additional work.

The center of the analysis in [SS00] is the so-called allocation graph. In our setting, where

each job chooses exactly one candidate machine in each of the d groups, the allocation graph is

a bipartite graphG = ([n], [n], E), where the jobs are on the left side of the bipartition, and the

machines are on the right side, split into groups of size n/d. Each job vertex is adjacent to its

d candidate machines. As already discussed in Section 14.1, the allocation graph is equivalent

to the hypergraphG(S,~h). Recall that we refer to the bipartite representation of a hypergraph

G = (V,E) with bi(V,E). We call the vertices on the left side job vertices and the vertices on

the right side machine vertices.
If a machine has high load we can �nd a subgraph in the allocation graph that shows the

chain of events in the allocation process that led to this situation, hence “witnessing” the high
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load of this machine. (Similarly to the wear of a table cell in the algorithm of Eppstein et al.
in the previous section.) Such witness trees might di�er greatly in structure, depending on the

load balancing scheme.

In short, the approach of Schickinger and Steger works as follows.
5

1. They show that high load leads to the existence of a “witness graph” and describe the

properties of such a graph for a given load balancing scheme.

2. For their analysis to succeed they demand that the witness graph from above is a tree in

the technical sense. They show that with high probability a witness graph can be turned

into a cycle-free witness tree by removing a small number of edges at the root.

3. For such a “real” tree (the “witness tree”), they show that it is unlikely to exist in the

allocation graph.

We will give a detailed description of this approach after stating the main result of this section.

Result. The following theorem represents one selected result from [SS00], replacing the full

randomness assumption with hash functions from Z to choose candidate machines for jobs.

We simplify the theorem by omitting the exact parameter choices calculated in [SS00]. All

the other examples considered in [SS00] can be analyzed in an analogous way, resulting in

corresponding theorems. We discuss this claim further in the discussion part of this section.

Theorem 14.3.1
For each constant α > 0, d ≥ 2, there exist constants β, c > 0 (depending on α and d),

such that for each t with 2 ≤ t ≤ 1/β ln lnn, ` = n1/2
and

~h = (h1, . . . , hd) ∈ Zc,d`,n , the

τ -collision protocol described above with threshold τ = O
(

1
d−1((lnn)/(ln lnn))1/(t−2)

)
�nishes after t rounds with probability at least 1−O(n−α).

We remark that Woelfel showed in [Woe06a] that a variant of hash class Z works well in the

case of randomized load balancing as modeled and analyzed by Voecking in [Vöc03], even in

a dynamic version where balls may be removed and re-inserted again. Although showing a

slightly weaker result, we will use a much wider and more generic approach to the analysis of

randomized load balancing schemes and expand the application of hash functions from Z to

other load balancing schemes. Moreover, we hope that our analysis of the failure term of Z on

certain hypergraphs occurring in the analysis will be of independent interest.

We will now analyze the τ -collision protocol using hash functions from class Z . Most im-

portantly, we have to describe the probability of the event that the τ -collision protocol does not

5

This approach has much in common with our analysis of insertion algorithms for generalized cuckoo hashing.

However, the analysis will be much more complicated here, since the hypergraphG
(
S,~h

)
has exactly as many

vertices as edges.
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v
Tt

machine

job

Tt−1 Tt−1

τ

d− 1 d− 1

Level t

Level t− 1

Figure 14.1.: Structure of a witness tree Tt with root v after t rounds if the τ -collision protocol

with d candidate machines has not yet terminated.

terminate after t rounds in the form of a graph property. To achieve this, we start by describing

the structure of witness trees.

In the setting of the τ -collision protocol in parallel arrival, a witness tree has the following

structure. Using the notation of [SS00], a machine is active in round t if there exists at least

one job that sends a request to this machine in round t. If no such job exists, the machine is

inactive in round t. Assume that after round t the collision protocol has not yet terminated.

Then there exists a machine y that is active in round t and that received more than τ allocation

requests. Arbitrarily choose τ of these requests. These requests were sent by τ unallocated

jobs in round t. The vertex that corresponds to machine y is the root of the witness tree,

the τ job vertices are its children. In round t, each of the τ unallocated jobs sent allocation

requests to d − 1 other machines. The corresponding machine vertices are the children of

each of the τ job vertices in the witness tree. By de�nition, these machines are also active in

round t, and so they were active in round t− 1 as well. So, there are τ · (d− 1) machines that

are active in round t − 1. We must be aware that among these machines the same machine

might appear more than once, because unallocated jobs may have chosen the same candidate

machine. So, there may exist vertices in the witness tree that correspond to the same machine.

For all these τ · (d−1) machines the same argument holds in round t−1. Proceeding with the

construction for rounds t− 2, t− 3, . . . , 1, we build the witness tree Tt with root y. It exhibits a

regular recursive structure, depicted abstractly in Figure 14.1. Note that all leaves correspond

to machine vertices, since no allocation requests are sent in round 0.

As we have seen, such regular witness trees do not need to be subgraphs of the allocation

graph since two vertices of a witness tree might be embedded to the same vertex. Hence, the
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witness tree is “folded together” to a subgraph in the allocation graph. In the embedding of a

witness tree as a subgraph of the allocation graph, edges do not occur independently and the

analysis becomes di�cult, even in the fully random case.

Schickinger and Steger found the following way to analyze this situation. They introduced

the notion of a multicycle that describes an “almost tree-like” graph.

De�nition 14.3.2
Let k, t ≥ 1. Let G = (V,E) be an undirected graph. Let s ∈ V and let d(v) denote the

distance between s and v in G, for each v ∈ V . A (k, t)-multicycle of depth at most t at
node s inG is a connected subgraph G′ of G together with a spanning tree T ′ of G′ with the

following properties:

1. G′ includes vertex s.

2. G′ has cyclomatic number k (cf. Section 12).

3. For each vertex v in T ′, the distance between s and v in T ′ is d(v).

4. All vertices v in T ′ have d(v) ≤ t.

5. Each leaf in T ′ is incident to an edge in G′ that is not in T ′.

Multicycles will be used to reason in the following way: When G does not contain a certain

(k, t)-multicycle at node s as a subgraph, removing only a few edges in G incident to node s
make the neighborhood that includes all vertices of distance at most t of s in the remaining

graph acyclic. As we shall see, the proof that this is possible will be quite easy when using a

spanning tree that consists only of shortest paths from s to the other vertices. (Such a tree can

be obtained by starting a breadth-�rst search in G from s.)
One easily checks that a (k, t)-multicycle M with m vertices and n edges satis�es n =

m+ k− 1, because the cyclomatic number of a connected graph is exactly n−m+ 1 [Die05].

Furthermore, it has at most 2kt vertices, because there can be at most 2k leaves that each have

distance at most t from s, and all vertices of the spanning tree lie on the unique paths from s to

the leaves. We will later see that for the parameters given in Theorem 14.3.1, a (k, t)-multicycle

is with high probability not a subgraph of the allocation graph.

Lemma 14.3.3 [SS00, Lemma 2]
Let k, t ≥ 1. Assume that a graph G = (V,E) contains no (k′, t)-multicycle, for k′ > k.

Furthermore, consider the maximal induced subgraphH = (V ′, E′) ofG for a vertex v ∈ V
that contains all vertices w ∈ V that have distance at most t from v in G. Then we can

remove at most 2k edges incident to v in H to get a graph H∗ such that the connected

component of v in H∗ is a tree.

Proof. We follow the proof in [SS00]. Start a breadth-�rst search from v in H and let C be the

set of cross edges, i. e., non-tree edges with respect to the bfs tree. Let H ′ be the subgraph of
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H that contains the edges from C and the (unique) paths from v to each endpoint of the edges

from C . H ′ is a (|C|, t)-multicycle at node v. From the assumption we know that |C| ≤ k.

Let H∗ be the subgraph of H that results from removing all edges in H ′ from H . At most 2k
edges incident to v are removed in this way. By construction, the connected component that

contains v in H∗ is acyclic.

In the light of this lemma, we set τ ≥ 2k + 1 and know that if the allocation graph contains a

witness tree after t rounds, then it contains a (k, t)-multicycle or a regular witness tree Tt−1.

This observation motivates us to consider the following graph property:

De�nition 14.3.4
Let k, t ∈ N. Then MCWTk,t ⊆ Gdn/d,n is the set of all hypergraphsH such that bi(H) forms

either a (k, t)-multicycle or a witness tree Tt−1.

If we use hash class Z and set τ ≥ 2k + 1, for a set S of jobs we have:

Pr(the τ -collision protocol does not terminate after t rounds) ≤ Pr
(
NMCWTk,t

S > 0
)
.

(14.8)

By Lemma 11.2.2 we may bound the probability on the right-hand side of (14.8) by

Pr
(
NMCWTk,t

S > 0
)
≤ Pr

(
BMCWTk,t

S

)
+ E

∗
(
NMCWTk,t

S

)
. (14.9)

Bounding E∗(NMCWTk,t

S ) We �rst consider the fully random case. The following lemma

is equivalent to Theorem 1 in [SS00]. However, our parameter choices are slightly di�erent

because in [SS00] each of the d candidate machines is chosen from the set [n], while in our

setting we split the n machines into d groups of size n/d.

Lemma 14.3.5
Let α ≥ 1 and d ≥ 2. Set β = 2d(α + 2 ln d + 3/2) and k = α + 2. Consider t with

2 ≤ t ≤ (1/β) ln lnn. Let

τ = max

{
1

d− 1

(
βt lnn

ln lnn

) 1
t−2

, dd+1ed + 1, 2k + 1

}
.

Then

E
∗
(
NMCWTk,t

S

)
= O(n−α).

Proof. For the sake of the analysis, we consider MCWTk,t to be the union of two graph prop-

erties MCk,t, hypergraphs that form (k, t)-multicycles, and WTt−1
, hypergraphs that form
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witness trees for the parameter t−1. We show the lemma by proving E
∗
(
NMCk,t

S

)
= O(n−α)

and E
∗
(
NWTt−1

S

)
= O(n−α). In both cases, we consider the bipartite representation of hy-

pergraphs. Our proofs follow [SS00, Section 4].

We start by bounding E
∗
(
NMCk,t

S

)
. As we have seen, a (k, t)-multicycle is a connected

graph that has at most 2kt vertices and cyclomatic number k. We start by counting (k, t)-

multicycles with exactly s vertices and s + k − 1 edges, for s ≤ 2kt. In this case, we have to

choose j and u (the number of jobs and machines, resp.) such that s = j+u. By Lemma 12.1.2

there are at most (s + k − 1)O(k)
unlabeled (k, t)-multicycles. Fix such an unlabeled (k, t)-

multicycleG. There are two ways to split the vertices ofG into the two sides of the bipartition.

(G can be assumed to be bipartite since we consider (k, t)-multicycles that are subgraphs of

the allocation graph.) Once this bipartition is �xed, we have nj ways to choose the job vertices

and label vertices of G with these jobs. There are ds+k−1
ways to label the edges of G with

labels from 1, . . . , d, which represent the request modeled by an edge between a job vertex

and a machine vertex. Once this labeling is �xed, there are (n/d)u ways to choose machine

vertices and label the remaining vertices of G. Fix such a fully labeled graph G′.

For each request r of a job j, choose at random and independently a machine from [n/d].
The probability that this machine is the same machine that j had chosen in G′ is (d/n). Thus,

the probability that G′ is realized by the random choices is (d/n)s+k−1
. By setting k = α+ 2

and using the parameter choice t = O(ln lnn) we calculate

E
∗
(
NMCk,t

S

)
≤

2kt∑
s=1

∑
u+j=s

2 · nj · (n/d)u · ds+k−1 · (s+ k − 1)O(k) · (d/n)s+k−1

≤ n1−k
2kt∑
s=1

2s · d2(s+k−1) · (s+ k − 1)O(1)

≤ n1−k · 2kt · 4kt · d2(2kt+k−1) · (2kt+ k − 1)O(1)

≤ n1−k · (ln lnn)O(1) · (lnn)O(1) = O(n2−k) = O(n−α).

Now we consider E
∗
(
NWTt−1

S

)
. By the simple recursive structure of witness trees, a witness

tree of depth t − 1 has j = τ t−1(d−1)(t−2)−τ
τ(d−1)−1 job vertices and u = τ t−1(d−1)t−1−1

τ(d−1)−1 machine

vertices. Let T be an unlabeled witness tree of depth t − 1. T has r = d · j edges. There are

not more than nj ways to choose j jobs from S and label the job vertices of T . There are not

more than dr ways to label the edges with a label from {1, . . . , d}. Once this labeling is �xed,

there are not more than (n/d)u ways to choose the machines and label the machine vertices

in the witness tree. With these rough estimates, we over-counted the number of witness trees

by at least a factor of (1/τ !)j/τ · (1/(d − 1)!)j . (See Figure 14.1. For each job vertex, there

are (d − 1)! labelings which result in the same witness tree. Furthermore, for each non-leaf

machine vertex, there are τ ! many labelings which yield the same witness tree.) Fix such a
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fully labeled witness tree T ′.

For each request of a job j choose at random a machine from [n/d]. The probability that the

edge matches the edge in T ′ is d/n. Thus, the probability that T ′ is realized by the random

choices is (d/n)r . We calculate

E
∗
(
NWTt−1

S

)
≤ nj · dr · (n/d)u ·

(
1

τ !

)j/τ
·
(

1

(d− 1)!

)j
· (d/n)r

≤ n · d2r ·
(

1

τ !

)j/τ
·
(

1

(d− 1)!

)j
≤ n

[
e

τ
·
(

e

d− 1

)d−1

· d2d

]j

≤ n
(
ed · dd+1

τ

)j
.

Observe that

j =
τ t−1(d− 1)t−2 − 1

τ(d− 1)− 1
≥ τ t−2(d− 1)t−2 − 1

d
≥ (τ(d− 1))t−2

2d
.

For the parameter settings provided in the lemma we get

E
∗
(
NWTt−1

S

)
≤ n

(
ed · dd+1

τ

) (τ(d−1))t−2

2d

= n

(
ed · dd+1

τ

) βt lnn
2d ln lnn

≤ n

(
ed · dd+2 ·

(
β ln lnn

t lnn

) 1
t−2

) βt lnn
2d ln lnn

≤ n ·
((

ed · dd+2
)t(β ln lnn

t lnn

)) β lnn
2d ln lnn

≤ n ·
((

ed · dd+2
) 1
β

ln lnn
· 1

lnn

) β lnn
2d ln lnn

≤ n3/2+2 ln d−β/2d.

Setting β = 2d(α+ 2 ln d+ 3/2) su�ces to show that E
∗(NMCWTk,t

S ) = O(n−α).

Bounding Pr(BMCWTk,t

S ). To apply Lemma 11.3.4, we need a peelable graph property that

contains MCWTk,t. We will �rst calculate the size of witness trees to see that they are small

for the parameter settings given in Theorem 14.3.1.

164



14. Applications on Hypergraphs

The Size of Witness Trees. Let Tt be a witness tree after t rounds. Again, the number of

job vertices jt in Tt of the τ -collision protocol is given by

jt =
τ t(d− 1)t−1 − τ
τ(d− 1)− 1

.

We bound the size of the witness tree when exact parameters are �xed as in Lemma 14.3.5.

Lemma 14.3.6
Let α > 0, d ≥ 2, β = 2d(α + 2 ln d + 3/2), k = α + 2, and 2 ≤ t ≤ 1

β ln lnn. Let

τ = max

{
1
d−1

(
βt lnn
ln lnn

) 1
t−2

, dd+1ed + 1, 2k + 1

}
. Then jt < log n.

Proof. Observe the following upper bound for the number of jobs in a witness tree after t
rounds

jt =
τ t(d− 1)t−1 − τ
τ(d− 1)− 1

≤ τ(τ(d− 1))t−1

2τ − 1
≤ (τ(d− 1))t−1.

Now observe that for a constant choice of the value τ it holds

(τ(d− 1))t−1 ≤ (τ(d− 1))
1
β

ln lnn ≤ (lnn)
ln τ+ln d

β ≤ lnn,

since
ln τ
β ≤ 1 for the two constant parameter choices in Lemma 14.3.5. Furthermore, for the

non-constant choice of τ it holds

((d− 1)τ)t−1 ≤ βt lnn

ln lnn
≤ lnn.

It follows jt ≤ lnn < log n.

A (k, t)-multicycle has at most 2kt+ k − 1 edges. For t = O(log log n) and a constant k ≥ 1,

such multicycles are hence smaller than witness trees.

A Peelable Graph Property. To apply Lemma 11.3.4, we have to �nd a peelable graph prop-

erty that contains all subgraphs that have property MCWTk,t (multicycles or witness trees for

t − 1 rounds). Since we know from above that witness trees and multicycles are contained in

small connected subgraphs of the hypergraph G(S,~h), we will use the following graph prop-

erty.

De�nition 14.3.7
Let K > 0 and d ≥ 2 be constants. Let Csmall(K, d) contain all connected d-partite hyper-

graphs (V,E) ∈ Gdn/d,n with |E| ≤ K log n disregarding isolated vertices.
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The following lemma shows how we can bound the failure term of Z .

Lemma 14.3.8
LetK > 0, c ≥ 1, ` ≥ 1, and d ≥ 2 be constants. Let S be the set of jobs with |S| = n. Then

Pr
(
BMCWTk,t

S

)
≤ Pr

(
B

Csmall(K,d)
S

)
= O

(
nK(d+1) log d+2

`c

)
.

For proving this bound on the failure probability, we need the following auxiliary graph prop-

erty.

De�nition 14.3.9
Let K > 0, d ≥ 2, and ` ≥ 1 be constants. Let n ≥ 1 be given. Then HT(K, d, `) (“hyper-

tree”) is the set of all d-partite hypergraphs G = (V,E) in Gdn/d,n with |E| ≤ K log n for

which bi(G) (disregarding isolated vertices) is a tree, has at most ` leaf edges and has leaves

only on the left (job) side.

We will now establish the following connection between Csmall(K, d) and HT(K, d, `).

Lemma 14.3.10
Let K > 0, d ≥ 2 and c ≥ 1 be constants. Then Csmall(K, d) is weak HT(K, d, 2c)-2c-
reducible, cf. De�nition 11.3.7.

Proof. Assume G = (V,E) ∈ Csmall(K, d). Arbitrarily choose E∗ ⊆ E with |E∗| ≤ 2c. We

have to show that there exists an edge set E′ such that (V,E′) ∈ HT(K, d, 2c), (V,E′) is a

subgraph of (V,E) and for each edge e∗ ∈ E∗ there exists an edge e′ ∈ E′ such that e′ ⊆ e∗

and e′ and e∗ have the same label.

Identify an arbitrary spanning tree T in bi(G). Now repeatedly remove leaf vertices with

their incident edges, as long as these leaf vertices do not correspond to edges from E∗. Denote

the resulting tree by T ′. In the hypergraph representation, T ′ satis�es all properties from

above.

From Lemma 11.3.4 we can use the bound

Pr
(
BMCWTk,t

S

)
≤ Pr

(
B

Csmall(K,d)
S

)
≤ `−c

n∑
t=2

t2cµ
HT(K,d,2c)
t .
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Lemma 14.3.11
Let K > 0, d ≥ 2, and c ≥ 1 be constants. If t ≤ K · log n, then

µ
HT(K,d,2c)
t ≤ tO(1) · n · d(d+1)t.

For t > K log n it holds that µ
HT(K,d,2c)
t = 0.

Proof. It is trivial that µ
HT(K,d,2c)
t = 0 for t > K log n, since a hypergraph with more than

K log n edges contains too many edges to have property HT(K, d, 2c).

Now suppose t ≤ K log n. We �rst count labeled hypergraphs having propertyHT(K, d, 2c)
consisting of t job vertices and z edges, for some �xed z ∈ {t, . . . , dt}, in the bipartite repre-
sentation.

There are at most zO(2c) = zO(1)
unlabeled trees with z edges and at most 2c leaf edges

(Lemma 12.1.2). Fix one such tree T . There are not more than nt ways to label the job vertices

of T , and there are not more than dz ways to assign each edge a label from {1, . . . , d}. Once

these labels are �xed, there are not more than (n/d)z+1−t
ways to assign the right vertices to

machines. Fix such a fully labeled tree T ′.
Now draw z hash values at random from [n/d] and build a graph according to these hash

values and the labels of T ′. The probability that these random choices realize T ′ is exactly

1/(n/d)z . Thus we may estimate:

µ
HT(K,d,2c)
t ≤

dt∑
z=t

(n/d)z+1−t · zO(1) · nt · dz

(n/d)z
=

dt∑
z=t

zO(1) · n · dz−1+t

< dt · (dt)O(1) · n · d(d+1)t = tO(1) · n · d(d+1)t.

We can proceed with the proof our main lemma.

Proof (of Lemma 14.3.8). By Lemma 11.3.4, we now know that

Pr
(
BMCWTk,t

S

)
≤ `−c

n∑
t=2

t2cµ
HT(K,d,2c)
t .

Applying the result of Lemma 14.3.11, we calculate

Pr
(
BMCWTk,t

S

)
≤ `−c

K logn∑
t=2

t2ctO(1) · n · d(d+1)t = n · `−c · (K log n)O(1) · d(d+1)K logn

= O(n2 · `−c) · dK(d+1) logn = O(nK(d+1) log d+2 · `−c).
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Pu�ing Everything Together. Using the previous lemmas allows us to complete the proof

of our main theorem.

Proof of Theorem 14.3.1. We plug the results of Lemma 14.3.5 and Lemma 14.3.8 into (14.9) and

get

Pr
(
NMCWTk,t

S > 0
)
≤ O

(
nK(d+1) log d+2

`c

)
+O

(
1

nα

)
.

For the case of parallel arrival with d ≥ 2 hash functions, we calculated that witness trees

do not have more than log n edges (Lemma 14.3.6). So, we set K = 1. Setting ` = n1/2
and

c = 2(2 + α+ (d+ 1) log d) �nishes the proof of the theorem.

Remarks and Discussion. We remark that the graph property Csmall(K, d) provides a very

general result on the failure probability of Z on hypergraphs G(S,~h). It can be applied for

all results from [SS00]. We will exemplify this statement by discussing what needs to be done

to show that Z works in the setting of Voecking’s “Go-Left” sequential allocation algorithm

[Vöc03]. By specifying explicitly how to break ties (always allocate the job to the “left-most”

machine), Voecking’s algorithm decreases the maximum bin load (w.h.p.) in sequential load

balancing with d ≥ 2 hash functions from ln lnn/ ln d+O(1) (arbitrary tie-breaking) [Aza+99]

to ln lnn/(d · ln Φd) + O(1), which is an exponential improvement in d. Here Φd is de�ned

as follows. Let Fd(j) = 0 for j ≤ 0 and Fd(1) = 1. For j ≥ 2, Fd(j) =
∑d

i=1 Fd(j − i).

(This is a generalization of the Fibonacci numbers.) Then Φd = limj→∞ Fd(j)
1/j

. It holds

that Φd is a constant with 1.61 ≤ Φd ≤ 2, see [Vöc03]. (We refer to [SS00, Section 5.2] and

[Vöc03] for details about the description of the algorithm.) In the uni�ed witness tree approach

of Schickinger and Steger, the main di�erence between the analysis of parallel arrivals and the

sequential algorithm of Voecking is in the de�nition of the witness tree. Here, the analysis in

[SS00] also assumes that the machines are split into d groups of size n/d. This means that we

can just re-use their analysis in the fully random case. For bounding the failure term of hash

class Z , we have to show that the witness trees in the case of Voecking’s “Go-Left” algorithm

(see [SS00, Fig. 6]) have at most O(log n) jobs, i. e., that they are contained in small connected

components. Otherwise, we cannot apply Lemma 14.3.8.

According to [SS00, Page 84], the number of job vertices j` in a witness tree for a bin with

load ` is bounded by

j` ≤ 4h` + 1, (14.10)

where h` is the number of leaves in the witness tree. Following Voecking [Vöc03], Schickinger

and Steger show that setting ` as large as ln lnn/(d ln Φd) + O(1) is su�cient to bound the

168



14. Applications on Hypergraphs

expected number of witness trees by O(n−α). Such witness trees have only O(log n) many

job nodes.

Lemma 14.3.12
Let α > 0 and ` = logΦd

(4 log nα)/d. Then j` ≤ 33α log n.

Proof. It holds h` = Fd(d ·`+1), see [SS00, Page 84], and Fd(d ·`+1) ≤ Φd·`+1
d , since Fd(j)

1/j

is monotonically increasing. We obtain the bound

j` ≤ 4 · h` + 1 ≤ 4 · Φd·`+1
d + 1 ≤ 4 · Φ

logΦd
(4 lognα)+1

d + 1

= 16 · Φd · α log n+ 1 ≤ 33α log n,

using Φd ≤ 2 and assuming α log n ≥ 1.

Thus, we know that a witness tree in the setting of Voecking’s algorithm is contained in a

connected hypergraph with at most 33α log n edges. Thus, we may apply Lemma 14.3.8 in

the same way as we did for parallel arrival. The result is that for given α > 0 we can choose

(h1, . . . , hd) ∈ Zc,d`,n with ` = nδ, 0 < δ < 1, and c ≥ (33α(d + 1) log d + 2 + α)/δ and

know that the maximum load is ln lnn/(d · ln Φd) + O(1) with probability 1− O(1/nα). So,

our general analysis using small connected hypergraphs makes it very easy to show that hash

class Z su�ces to run a speci�c algorithm with load guarantees. However, the parameters for

setting up a hash function are rather high when the constant in the big-Oh notation is large.

When we are interested in making the parameters for setting up a hash function as small as

possible, one should take care when bounding the constants in the logarithmic bound on the

number of edges in the connected hypergraphs. (According to [SS00], (14.10) can be improved

by a more careful argumentation.) More promising is a direct approach to witness trees, as we

did in the analysis of the algorithm of Eppstein et al. in the previous subsection, i. e., directly

peeling the witness tree. Using such an approach, Woelfel showed in [Woe06a, Theorem 2.1 and

its discussion] that smaller parameters for the hash functionsZ are su�cient to run Voecking’s

algorithm.

We further remark that the analysis of the τ -collision protocol makes it possible to analyze

the space utilization of generalized cuckoo hashing using d ≥ 2 hash functions and buckets

which hold up to κ ≥ 2 keys in each table cell, as proposed by Dietzfelbinger and Weidling in

[DW07]. Obviously, a suitable assignment of keys to table cells is equivalent to a κ-orientation

of G(S,~h). It is well-known that any graph that has an empty (κ + 1)-core, i. e., that has no

subgraph in which all vertices have degree at least κ+ 1, has a κ-orientation, see, e. g., [DM09]

and the references therein. (The converse, however, does not need to be the case.) The (κ+1)-

core of a graph can be obtained by repeatedly removing vertices with degree at most κ and

their incident hyperedges. The precise study of this process is due to Molloy [Mol05]. The

τ -collision protocol is the parallel variant of this process, where in each round all vertices with

degree at most τ are removed with their incident edges. (In the fully random case, properties

169



14. Applications on Hypergraphs

κ+1\d 3 4 5 6 7 8

2 0.818 0.772 0.702 0.637 0.582 0.535

3 0.776 0.667 0.579 0.511 0.457 0.414

4 0.725 0.604 0.515 0.450 0.399 0.359

5 0.687 0.562 0.476 0.412 0.364 0.327

6 0.658 0.533 0.448 0.387 0.341 0.305

Table 14.1.: Space utilization thresholds for generalized cuckoo hashing with d ≥ 3 hash func-

tions and κ+ 1 keys per cell, for κ ≥ 1, based on the non-existence of the (κ+ 1)-

core. Each table cell gives the maximal space utilization achievable for the speci�c

pair (d, κ + 1). These values have been obtained using Maple
®

to evaluate the

formula from Theorem 1 of [Mol05].

of this process were recently studied by Jiang, Mitzenmacher, and Thaler in [JMT14].) In terms

of orientability, Theorem 14.3.1 with the exact parameter choices from Lemma 14.3.5 shows

that for τ = max{eβ, dd+1ed + 1, 2k + 1} there exists (w.h.p.) an assignment of the n keys

to n memory cells when each cell can hold τ keys. (This is equivalent to a hash table load of

1/τ .) It is open to �nd good space bounds for generalized cuckoo hashing using this approach.

However, we think that it su�ers from the same general problem as the analysis for generalized

cuckoo hashing with d ≥ 3 hash functions and one key per table cell: Since the analysis builds

upon a process which requires an empty (κ + 1)-core in the hypergraph to succeed, space

utilization seems to decrease for d and κ getting larger. Table 14.1 contains space utilization

bounds for static generalized cuckoo hashing with d ≥ 3 hash functions and κ elements per

table cell when the assignment is obtained via a process that requires the (κ + 1)-core to be

empty. These calculations clearly support the conjecture that space utilization decreases for

larger values of d and κ.
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In this section we will present a generalized version of our hash class that uses arbitrary κ-wise

independent hash classes as building blocks.

15.1. The Generalized Hash Class

De�nition 15.1.1
Let c ≥ 1, d ≥ 2, and κ ≥ 2. For integers m, ` ≥ 1, and given

f1, . . . , fd : U → [m], g1, . . . , gc : U → [`], and d two-dimensional tables z(i)[1..c, 0..` −
1] with elements from [m] for i ∈ {1, . . . , d}, we let

~h = (h1, . . . , hd) =
(h1, . . . , hd)〈f1, . . . , fd, g1, . . . , gc, z

(1), . . . , z(d)〉, where

hi(x) =
(
fi(x) +

∑
1≤j≤c

z(i)[j, gj(x)]
)

mod m, for x ∈ U, i ∈ {1, . . . , d}.

Let Hκm [Hκ` ] be an arbitrary κ-wise independent hash family with functions from

U to [m] [from U to [`]]. Then Zc,d,κ`,m (Hκ` ,Hκm) is the family of all sequences

(h1, . . . , hd)〈f1, . . . , fd, g1, . . . , gc, z
(1), . . . , z(d)〉 for fi ∈ Hκm with 1 ≤ i ≤ d and gj ∈ Hκ`

with 1 ≤ j ≤ c.

In the following, we studyZc,d,2k`,m

(
H2k
` ,H2k

m

)
for some �xed k ∈ N, k ≥ 1. For the parameters

d = 2 and c = 1, this is the hash class used by Dietzfelbinger and Woelfel in [DW03]. We �rst

analyze the properties of this hash class by stating a de�nition similar to De�nition 11.1.2 and

a lemma similar to Lemma 11.1.3. We hope that comparing the proofs of Lemma 11.1.3 and

Lemma 15.1.3 shows the (relative) simplicity of the original analysis.
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De�nition 15.1.2
For T ⊆ U , de�ne the random variable dT , the “de�ciency” of

~h = (h1, . . . , hd) with respect

to T , by dT (~h) = |T | − max{k, |g1(T )|, . . . , |gc(T )|}. (Note: dT depends only on the gj-
components of (h1, . . . , hd).) Further, de�ne

(i) badT as the event that dT > k;

(ii) goodT as badT , i. e., the event that dT ≤ k;

(iii) critT as the event that dT = k.

Hash function sequences (h1, . . . , hd) in these events are called “T -bad”, “T -good”, and “T -
critical”, resp.

Lemma 15.1.3
Assume d ≥ 2, c ≥ 1, and k ≥ 1. For T ⊆ U , the following holds:

(a) Pr(badT ∪ critT ) ≤
(
|T |2 /`

)ck
.

(b) Conditioned on goodT (or on critT ), the hash values (h1(x), . . . , hd(x)), x ∈ T , are

distributed uniformly and independently in [r]d.

Proof. (a) Assume |T | ≥ 2k (otherwise the events badT and critT cannot occur). Since g1, . . . , gc
are independent, it su�ces to show that for a function g chosen randomly from H2k

` we have

Pr(|T | − |g(T )| ≥ k) ≤ |T |2k /`k.

We �rst argue that if |T | − |g(T )| ≥ k then there is a subset T ′ of T with |T ′| = 2k and

|g(T ′)| ≤ k. Initialize T ′ as T . Repeat the following as long as |T ′| > 2k: (i) if there exists

a key x ∈ T ′ such that g(x) 6= g(y) for all y ∈ T ′ \ {x}, remove x from T ′; (ii) otherwise,

remove any key. Clearly, this process terminates with |T ′| = 2k. It also maintains the invariant

|T ′| − |g(T ′)| ≥ k: In case (i) |T ′| − |g(T ′)| remains unchanged. In case (ii) before the key is

removed from T ′ we have |g(T ′)| ≤ |T ′|/2 and thus |T ′| − |g(T ′)| ≥ |T ′|/2 > k.

Now �x a subset T ′ of T of size 2k that satis�es |g(T ′)| ≤ k. The preimages g−1(u), u ∈
g(T ′), partition T ′ into k′ classes, k′ ≤ k, such that g is constant on each class. Since g is

chosen from a 2k-wise independent class, the probability that g is constant on all classes of a

given partition of T ′ into classes C1, . . . , Ck′ , with k′ ≤ k, is exactly `−(2k−k′) ≤ `−k.

Finally, we bound Pr(|g(T )| ≤ |T | − k). There are

(|T |
2k

)
subsets T ′ of T of size 2k. Every

partition of such a set T ′ into k′ ≤ k classes can be represented by a permutation of T ′ with k′

cycles, where each cycle contains the elements from one class. Hence, there are at most (2k)!
such partitions. This yields:

Pr(|T | − |g(T )| ≥ k) ≤
(
|T |
2k

)
· (2k)! · 1

`k
≤ |T |

2k

`k
. (15.1)
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(b) If |T | ≤ 2k, then h1 and h2 are fully random on T simply because f1 and f2 are 2k-wise

independent. So suppose |T | > 2k. Fix an arbitrary g-part of (h1, h2) so that goodT occurs, i.e.,

max{k, |g1(T )|, . . . , |gc(T )|} ≥ |T | − k. Let j0 ∈ {1, . . . , c} be such that |gj0(T )| ≥ |T | − k.

Arbitrarily �x all values in the tables z
(i)
j with j 6= j0 and i ∈ {1, 2}. Let T ∗ be the set of keys

in T colliding with other keys in T under gj0 . Then |T ∗| ≤ 2k. Choose the values z
(i)
j0

[gj0(x)]
for all x ∈ T ∗ and i ∈ {1, 2} at random. Furthermore, choose f1 and f2 at random from the

2k-wise independent family H2k
r . This determines h1(x) and h2(x), x ∈ T ∗, as fully random

values. Furthermore, the function gj0 maps the keys x ∈ T−T ∗ to distinct entries of the vectors

z
(i)
j0

that were not �xed before. Thus, the hash function values h1(x), h2(x), x ∈ T − T ∗, are

distributed fully randomly as well and are independent of those with x ∈ T ∗.

15.2. Application of the Hash Class

The central lemma to bound the impact of using our hash class in contrast to fully random

hash functions was Lemma 11.3.4. One can reprove this lemma in an analogous way for the

generalized version of the hash class, using the probability bound from Lemma 15.1.3(a) to get

the following result.

Lemma 15.2.1
Let c ≥ 1, k ≥ 1, S ⊆ U with |S| = n, and let A be a graph property. Let B ⊇ A be a

peelable graph property. Let C be a graph property such that B is C-2ck-reducible. Then

Pr
(
BA
S

)
≤ Pr

(
BB
S

)
≤ `−ck

n∑
t=2k

t2ck · µCt .

This settles the theoretical background needed to discuss this generalized hash class.

15.3. Discussion

One can now redo all the calculations from Section 13 and Section 14. We discuss the di�er-

ences. Looking at Lemma 15.2.1, we notice the (t2ck)-factor in the sum instead of t2c. Since k
is �xed, this factor does not change anything in the calculations that always used tO(1)

(see,

e.g., the proof of Lemma 12.2.5). The factor 1/`ck (instead of 1/`c) leads to lower values for

c if k ≥ 2. E.g., in cuckoo hashing with a stash, we have to set c ≥ (s + 2)/(δk) instead of

c ≥ (s + 2)/δ. This improves the space usage, since we need less tables �lled with random

values. However, the higher degree of independence needed for the f - and g-components leads

to a higher evaluation time of a single function. Hence there is an interesting tradeo� between

space usage and evaluation time that we investigated in the following experiments.
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In this section we will report on experiments running cuckoo hashing with a stash with our

class of hash functions. We will compare it to other well-studied hash families, which will

be introduced in Section 16.1. In that section, we will also describe the experimental setup.

Subsequently, we will compare these hash functions with respect to the success probability

(Section 16.2) and the running time (Section 16.3) for setting up the cuckoo hash table. We

will also consider the cache behavior of the hash functions to speculate about running time

di�erences on very large key sets.

16.1. Setup and Considered Hash Families

We start by introducing the setup of our experiments. We restrict all our experiments to hash-

ing 32-bit keys.

Experimental Setup. We consider inputs of size n with n ∈ {210, . . . , 223}. Inputs have

two types: For general n, we assume that S = {1, . . . , n} and insert the elements of S in

random order. For n = 220
we consider the following structured set:

{x0 + 28 · x1 + 216 · x2 + 224 · x3 | i ∈ {0, 1, 2, 3} : 0 ≤ xi ≤ 31}.

This set is known to be a worst-case input for the simple tabulation scheme that will be intro-

duced below.

For each input of length n, we construct a cuckoo hash table of size m ∈ {1.005n, 1.05n}
for each of the two tables, i. e., we consider a load factor of 49.75% and 47.62%, respectively.

We let the stash contain at most two keys, which yields a failure probability of O(1/n3). So,

if a key were to be put in a stash that already contains two elements, we invoke a rehash. For

each input length, we repeat the experiment 10,000 times, each time with a new seed for the

random number generator. Next, we will discuss the considered hash families.

Simple Tabulation. In simple tabulation hashing as analyzed by Pǎtraşcu and Thorup [PT12],

each key is a tuple (x1, . . . , xc) which is mapped to the hash value

(
T1(x1)⊕· · ·⊕Tc(xc)

)
mod

m (where⊕ denote bitwise XOR), by c uniform random hash functions (implemented by lookup

tables �lled with random values) T1, . . . , Tc, each with a domain of cardinality d|U |1/ce. In our

experiments with hashing 32-bit integers, we used two di�erent versions of this scheme. The

�rst version views a key x to consist of four 8-bit keys x1, x2, x3, x4. Then, the tabulation
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scheme uses 4 tables T1, . . . , T4 of size 28
�lled with random 32-bit values. The hash function

is then

h (x = (x1, x2, x3, x4)) = T1[x1]⊕ T2[x2]⊕ T3[x3]⊕ T4[x4] mod m.

The second variant views a 32-bit key to consist of two 16-bit keys and uses two random tables

of size 216
.

Pǎtraşcu and Thorup showed in [PT12] that cuckoo hashing fails with probabilityO(1/n1/3)
using simple tabulation. According to Thorup (personal communication), a stash does not help

to lower the failure probability of cuckoo hashing with simple tabulation hashing.

Polynomials with CW-Trick. Here we consider the standard implementation of an (ap-

proximately) k-independent family of hash functions: polynomials of degree k − 1 over some

prime �eld projected to the hash table range. For setting up such a polynomial, we choose a

prime p much larger than |U |. (In the experiments, we used p = 248 − 1.) Next, we choose k
coe�cients a0, . . . , ak−1 ∈ [p]. The hash function h : U → [m] is then de�ned by

ha0,...,ak−1
(x) =

((
k−1∑
i=0

aix
i

)
mod p

)
mod m.

Evaluating this polynomial is done using Horner’s method. In general, the modulo operation

is expensive. When p = 2s − 1 is a Mersenne prime, the “mod p” operation becomes simpler,

because the result of x mod p can be calculated as follows (this is the so-called “CW-trick” of

Carter and Wegman suggested in [CW79]):

1: i← x& p . & is bit-wise and
2: i← i+ (x� s) . x� s is a right-shift of x by s bits

3: if i ≥ p then
4: return i− p
5: else
6: return i

Murmur3. To compare hash functions used in practice with hash functions discussed in

theory, we have picked one candidate used in practice: Murmur3. It is the third generation

of a class of non-cryptographic hash functions invented by Austin Appleby with the goal of

providing a fast and well-distributing hash function. A detailed overview over the algorithm

can be found at [App]. To get two di�erent hash functions, we use two di�erent seeds when

setting up a Murmur3-based hash function. Due to time constraints, we did not test other

popular hash functions such as xxhash [Col], SipHash [AB12], or CityHash [PA].
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16. Experimental Evaluation

Hash Family Z . In view of the main results regarding our hash class, a hash function from

Zc,2`,m guarantees the same failure probability in cuckoo hashing with a stash as a fully random

hash function when we choose ` = nδ and c ≥ (s + 2)/δ (cf. Theorem 13.1.4). We have two

main parameters:

1. The size ` = nδ of the random tables.

2. The number c of random tables per hash function and components gj .

We aim at a failure probability of O(1/n3) and consequently use a stash size of 2. For ` = nδ ,
the parameter c must then satisfy c ≥ 4/δ. As buildings blocks for our hash functions, we use

the 2-universal “multiplication-shift” scheme from Dietzfelbinger et al. [Die+97] for hashing

the 32-bit keys to `out-bit numbers, which reads for random odd a ∈ [232]:

ha(x) = (ax mod 232) div 232−`out

In 32-bit arithmetic, this can be implemented as

ha(x) = (ax)� (32− `out).

The 2-independent hash family that is used to initialize the f functions of a hash function from

Z , uses a variant of the “multiplication-shift” scheme from [Die96] for hashing 32-bit integers

to `out-bit integers. There, we choose a, b ∈ [264] and use the hash function

ha,b(x) =
(
(ax+ b) mod 264

)
div 264−`out .

On a 64-bit architecture, we can implement this hashing scheme by

ha(x) = (ax+ b)� (64− `out).

We evaluate the following three constructions:

1. Low Space Usage, Many Functions. We let ` = n1/4
and must set c = 16. For n = 220

our hash function pair then consists of sixteen 2-universal functions g1, . . . , g16, two 2-

independent functions f1, f2 and thirtytwo tables of size 32 �lled with random values.

(Altogether, the tables can be stored in an integer array of size 1024.)

2. Moderate Space Usage, Fewer Functions. We let ` = n1/2
and get c = 8. For n = 220

our hash function pair then consists of eight 2-universal functions g1, . . . , g8, two 2-

independent functions f1, f2 and sixteen tables of size 210
�lled with random values.

(Altogether, the tables can be stored in an integer array of size 16384.)

3. Low Space Usage, High-Degree Polynomials. In light of the generalization of our

hash class discussed in Section 15, we also study the (extreme) case that for stash size s
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16. Experimental Evaluation

Identi�er Construction
simp-tab-8 Simple Tabulation with four 8-bit keys from [PT12]

simp-tab-16 Simple Tabulation with two 16-bit keys from [PT12]

Murmur3 Murmur3 hash functions of [App]

k-ind (3) 3-wise independent hashing with polynomials

of degree 2 with CW-Trick

Z1 Z construction “low space usage, many functions”

Z2 Z construction “moderate space usage, fewer functions”

Z3 Z construction “low space usage, high-degree polynomials”

Table 16.1.: Hash Families considered in our experiments. The “identi�er” is used to refer to

the constructions in the charts and in the text.

we use one g-function, two z tables of size n1/2
and two f -functions. For n = 220

, we

use three 16-wise independent functions and two tables of size 210
. (The tables can be

stored in an integer array of size 2048.)

We observe that apart from the description lengths of these constructions, the di�erence in

evaluation time is not clear. An array of size 1024 with 4 byte integers easily �ts into L1 cache

of the Intel i7 used in our experiments. This is not the case for an array of size 214
. However,

the second constructions needs only (roughly) half of the arithmetic operations. The third

construction uses the fewest tables, but involves the evaluation of high-degree polynomials.

All constructions considered in the following are summarized with their identi�ers in Ta-

ble 16.1.

Our implementation uses C++. For compiling C++ code, we use gcc in version 4.8. Random

values are obtained using boost::random.
1

The experiments were carried out on the ma-

chine speci�ed in Section 1. The code can be found athttp://eiche.theoinf.tu-ilmenau.
de/maumueller-diss/.

16.2. Success Probability

We �rst report on our results for structured inputs. For n = 220
and m = 1.05n, rehashes

occurred rarely. For all hash functions and all trials, a stash of size 1 would have su�ced. In

9 out of 10,000 runs, simp-tab-16 used a stash of size 1. This was the maximum number of

rehashes over all constructions. The results form = 1.005n looked very di�erently. Details can

be found in Tab. 16.2. Without a stash the construction failed in about 8% of the cases. Using a

stash of size 2 already decreased the likelyhood of a rehash to at most 0.74%. (With a stash of

size 3 it would have been decreased to 0.21% of the cases.) We note that from our experiments

1http://boost.org
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16. Experimental Evaluation

method s = 0 s = 1 s = 2 rehash

simp-tab-8 9,223 590 131 54
simp-tab-16 9,194 595 139 72

Murmur3 9,232 576 139 53
k-ind (3) 9,137 632 159 72

Z1 9,127 656 159 58
Z2 9,201 595 150 54
Z3 9,177 615 134 74

Table 16.2.: Maximum stash size s for structured inputs of n = 220
elements withm = 1.005n.

we cannot report of a di�erence in the success probability between simple tabulation hashing

and hash class Z .

When considering key sets {1, . . . , n} for n ∈ {210, . . . , 223} for m = 1.005n, again there

was no big di�erence between the di�erent hash function constructions. As expected, the

failure probability rapidly decreased for n getting larger. For n = 215
, about 14% of the trials

put a key into the stash and about 1.5% of the runs caused a rehash with a stash of size 2, for

all constructions. For n = 219
, these frequencies decreased to 10% and 0.8%, respectively. For

n = 223
, the frequencies were 6.5% and 0.7%, respectively.

16.3. Running Times

Table 16.3 shows the measurements of our running time experiments to construct a hash table

with keys from {1, . . . , n} for dense tables withm = 1.005n. We observe that the simple tabu-

lation scheme is the fastest implementation; it is faster than the deterministic Murmur3-based

hash functions. Among the constructions based on hash class Z , the second construction—

moderate space usage and fewer hash functions—is faster than the other constructions. It is

about a factor 1.8 slower than the fastest hash class, while providing theoretical guarantees

on the failure probability comparable to a fully random hash function.
2

We also point out that

there is a big di�erence in running time between s-tab-8 and s-tab-16. This is because our

inputs consisted of integers smaller than 222
. In this situation, the ten most signi�cant bits are

unused. So, s-tab-8 will always use T1[0] for the eight most signi�cant bits. For comparison,

we also include the results from the experiment on inputs from the hypercube [32]4 in the last

row of Table 16.3. In that case, construction simp-tab-16 was a little bit faster than construc-

tion simp-tab-8. With respect to class Z , it seems that from our experiments the parameter

settings ` =
√
n (or the next power of 2 being at least as large as

√
n) and c = 2(s+2) provide

the best performance. Using more hash functions but smaller tables is a little bit slower on our

2

When we aim for a failure probability of O(1/
√
n) with hash class Z , we can use 6 tables of size

√
n, instead

of 16 tables for construction Z2. This hash class was a factor of 1.26 slower than simp-tab-8, and was thus

even faster than the 3-independent hash class.
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n s-tab-8 s-tab-16 Murmur3 k-ind (3) Z1 Z2 Z3

1024 0.02 ms 0.03 ms 0.03 ms 0.04 ms 0.06 ms 0.04 ms 0.21 ms

4096 0.10 ms 0.10 ms 0.11 ms 0.14 ms 0.23 ms 0.17 ms 0.80 ms

16384 0.41 ms 0.48 ms 0.48 ms 0.55 ms 0.93 ms 0.66 ms 3.13 ms

65536 1.88 ms 2.41 ms 2.15 ms 2.57 ms 4.12 ms 3.09 ms 12.93 ms

262144 8.59 ms 10.62 ms 9.82 ms 12.05 ms 18.93 ms 14.75 ms 55.62 ms

1048576 39.84 ms 46.50 ms 45.10 ms 54.00 ms 80.85 ms 69.15 ms 214.36 ms

4194304 286.32 ms 293.20 ms 312.13 ms 375.00 ms 554.14 ms 510.35 ms 1081.58 ms

1048576 55.24 ms 54.67 ms 60.43 ms 75.46 ms 117.37 ms 101.02 ms 268.58 ms

Table 16.3.: Di�erent running times for the construction of a cuckoo hash table form = 1.005n.

Each entry is the average over 10,000 trials. The last row contains the measure-

ments for the structured input.

n s-tab-8 s-tab-16 Murmur3 k-ind (3) Z1 Z2 Z3

1024 0.02 ms 0.02 ms 0.03 ms 0.03 ms 0.06 ms 0.04 ms 0.19 ms

4096 0.09 ms 0.1 ms 0.11 ms 0.13 ms 0.22 ms 0.15 ms 0.74 ms

16384 0.38 ms 0.45 ms 0.44 ms 0.51 ms 0.87 ms 0.62 ms 2.93 ms

65536 1.75 ms 2.24 ms 2.0 ms 2.43 ms 3.91 ms 2.93 ms 12.12 ms

262144 8.08 ms 9.89 ms 9.19 ms 11.42 ms 18.16 ms 14.2 ms 52.57 ms

1048576 38.07 ms 43.95 ms 41.95 ms 51.64 ms 77.66 ms 65.07 ms 202.65 ms

4194304 265.03 ms 268.66 ms 280.21 ms 350.47 ms 531.16 ms 497.7 ms 1020.77 ms

1048576 52.26 ms 51.25 ms 57.04 ms 72.19 ms 113.8 ms 98.33 ms 254.60 ms

Table 16.4.: Di�erent running times for the construction of a cuckoo hash table form = 1.05n.

Each entry is the average over 10,000 trials. The last row contains the measure-

ments for the structured input type.

test setup. Furthermore, using only one table but a high degree of independence is not com-

petetive. Table 16.4 shows the results form = 1.05n. The construction time is a little bit lower

compared with the denser case. The relations with respect to running time stay the same.

We also measured the cache behavior of the hash functions. Figure 16.1 and Figure 16.2 show

the measurements we got with respect to L1 cache misses and L2 cache misses, respectively. For

reference to cache misses that happen because of access to the cuckoo hash table, we include

the results for k-ind (3). We see that among the tabulation-based constructions, simp-
tab-8 and Z1 show the best behavior with respect to cache misses. The data structure for

the hash function is in L1 cache practically all the time. For simp-tab-16, we have about

two additional cache misses per insertion. (Note that the four tables for simp-tab-16 need

1 MB of data, and thus do not �t into L1 or L2 cache on our setup.) The variant Z2 of hash

class Z , using sixteen tables of size

√
n, performs badly when the key set is large. So, while

Z2 is the fastest construction among the considered variants of hash class Z for n ≤ 223
, its

performance should decrease for larger key sets. Then, constructionZ1 with tables of size n1/4

should be faster.
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Figure 16.1.: Level 1 cache misses for building a cuckoo hash table from inputs {1, . . . , n}with

a particular hash function. Each data point is the average over 10,000 trials. Cache

Misses are scaled by n.
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Figure 16.2.: Level 2 cache misses for building a cuckoo hash table from inputs {1, . . . , n}with

a particular hash function. Each data point is the average over 10,000 trials. Cache

Misses are scaled by n.
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17. Conclusion and Open �estions

In this part of the thesis, we described a general framework to analyze hashing-based algo-

rithms and data structures whose analysis depends on properties of the random graphG(S,~h)
when

~h comes from a certain class of simple hash functions. This class combined lookups in

small random tables with the evaluation of simple 2-universal or 2-independent hash functions.

We showed that these hash functions can be used in such diverse applications as cuckoo

hashing (with a stash), generalized cuckoo hashing, the simulation of uniform hash functions,

the construction of a perfect hash function, and load balancing. The framework allowed us

to analyze these applications without exposing details of the hash family, only using a �rst

moment approach for random graphs. Particular choices for the parameters to set up hash

functions from Z provide hash functions that can be evaluated e�ciently.

We already proposed directions for future work in the respective sections of this part of the

thesis, and collect here the points we �nd most interesting.

1. Our method is tightly connected to the �rst moment method. Unfortunately, some prop-

erties of random graphs cannot be proven using this method. For example, the clas-

sical proof that the connected components of the random graph G(S, h1, h2) for m =
(1+ε)|S|, for ε > 0, with fully random hash functions have sizeO(log n) uses a Galton-

Watson process (see, e. g., [Bol85]). From previous work [DM90; DM92] we know that

hash class Z has some classical properties regarding the balls-into-bins game. In the hy-

pergraph setting this translates to a degree distribution of the vertices close to the fully

random case. We are currently investigating whether this approach yields good enough

bounds for the process mentioned above or not.

2. The analysis of generalized cuckoo hashing could succeed (asymptotically) using hash

functions from Z . For this, one has to extend the analysis of the behavior of Z on small

connected hypergraphs to connected hypergraphs with super-logarithmically many edges.

3. Witness trees are another approach to tackle the analysis of generalized cuckoo hashing.

We presented initial results in Section 14.3. It is open whether this approach yields good

bounds on the space utilization of generalized cuckoo hashing.

4. In light of the new construction of Thorup [Tho13], it should be demonstrated in exper-

iments whether or not log n-wise and nδ-wise independent hash classes with constant

evaluation time are e�cient.
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17. Conclusion and Open Questions

5. It should be tested whether hash class Z allows running linear probing robustly or not.

Furthermore, it would be interesting to see if it is ε-minwise independent (for good

enough values ε).

182



Bibliography

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. “SipHash: A Fast Short-Input

PRF”. In: Proc. of the 13th International Conference on Cryptology in India (IN-
DOCRYPT’12). Springer, 2012, pp. 489–508. doi: 10.1007/978-3-642-34931-
7_28 (cited on pp. 95, 175).

[AD13] Martin Aumüller and Martin Dietzfelbinger. “Optimal Partitioning for Dual Pivot

Quicksort - (Extended Abstract)”. In: Proc. of the 40th International Colloquium on
Automata, Languages and Programming (ICALP’13). Springer, 2013, pp. 33–44. doi:

10.1007/978-3-642-39206-1_4 (cited on pp. 1, 4, 16).

[ADW12] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. “Explicit and E�-

cient Hash Families Su�ce for Cuckoo Hashing with a Stash”. In: Proc. of the 20th
annual European symposium on Algorithms (ESA’12). Springer, 2012, pp. 108–120.

doi: 10.1007/978-3-642-33090-2_11 (cited on pp. 4, 131, 133).

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. “Explicit and E�-

cient Hash Families Su�ce for Cuckoo Hashing with a Stash”. In: Algorithmica
70.3 (2014), pp. 428–456. doi: 10.1007/s00453-013-9840-x (cited on pp. 4,

100, 108, 114, 120, 125, 126, 128, 129).

[Aga96] Ramesh C. Agarwal. “A Super Scalar Sort Algorithm for RISC Processors”. In: Proc.
of the 1996 ACM SIGMOD International Conference on Management of Data. ACM,

1996, pp. 240–246. doi: 10.1145/233269.233336 (cited on p. 64).

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approxi-

mating the Frequency Moments”. In: J. Comput. Syst. Sci. 58.1 (1999), pp. 137–147.

doi: 10.1006/jcss.1997.1545 (cited on pp. 3, 96).

[ANS09] Yuriy Arbitman, Moni Naor, and Gil Segev. “De-amortized Cuckoo Hashing: Prov-

able Worst-Case Performance and Experimental Results”. In: Proc. of the 36th Inter-
national Colloquium onAutomata, Languages and Programming (ICALP’09). Springer,

2009, pp. 107–118. doi: 10.1007/978-3-642-02927-1_11 (cited on p. 139).

[App] Austin Appleby. MurmurHash3. https://code.google.com/p/smhasher/
wiki/MurmurHash3 (cited on pp. 95, 100, 175, 177).

[Aum10] Martin Aumüller. “An alternative Analysis of Cuckoo Hashing with a Stash and

Realistic Hash Functions”. Diplomarbeit. Technische Universität Ilmenau, 2010,

p. 98 (cited on pp. 114, 116, 120, 125–128).

183

http://dx.doi.org/10.1007/978-3-642-34931-7_28
http://dx.doi.org/10.1007/978-3-642-34931-7_28
http://dx.doi.org/10.1007/978-3-642-39206-1_4
http://dx.doi.org/10.1007/978-3-642-33090-2_11
http://dx.doi.org/10.1007/s00453-013-9840-x
http://dx.doi.org/10.1145/233269.233336
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1007/978-3-642-02927-1_11
https://code.google.com/p/smhasher/wiki/MurmurHash3
https://code.google.com/p/smhasher/wiki/MurmurHash3


Bibliography

[AV88] Alok Aggarwal and Je�rey Scott Vitter. “The Input/Output Complexity of Sorting

and Related Problems”. In: Commun. ACM 31.9 (1988), pp. 1116–1127. doi: 10.
1145/48529.48535 (cited on p. 62).

[Aza+99] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. “Balanced Allocations”.

In: SIAM J. Comput. 29.1 (1999), pp. 180–200. doi:10.1137/S0097539795288490
(cited on p. 168).

[BBD09] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Dis-

place, and Compress”. In: Proc. of the 17th Annual European Symposium on Al-
gorithms (ESA’09). Springer, 2009, pp. 682–693. doi: 10.1007/978-3-642-
04128-0_61 (cited on p. 134).

[Ben86] Jon Louis Bentley. Programming pearls. Addison-Wesley, 1986 (cited on p. 197).

[Big+08] Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg. “An experimental

study of sorting and branch prediction”. In: ACM Journal of Experimental Algo-
rithmics 12 (2008). doi: 10.1145/1227161.1370599 (cited on pp. 64, 89).

[BKZ05] Fabiano C. Botelho, Yoshiharu Kohayakawa, and Nivio Ziviani. “A Practical Min-

imal Perfect Hashing Method”. In: Proc. of the 4th International Workshop on Ex-
perimental and E�cient Algorithms (WEA’05). Springer, 2005, pp. 488–500. doi:

10.1007/11427186_42 (cited on p. 134).

[BM05] Gerth Stølting Brodal and Gabriel Moruz. “Tradeo�s Between Branch Mispredic-

tions and Comparisons for Sorting Algorithms”. In: Proc. of the 9th International
Workshop on Algorithms and Data Structures (WADS’05). Springer, 2005, pp. 385–

395. doi: 10.1007/11534273_34 (cited on p. 64).

[BM93] Jon Louis Bentley and M. Douglas McIlroy. “Engineering a Sort Function”. In:

Softw., Pract. Exper. 23.11 (1993), pp. 1249–1265. doi:10.1002/spe.4380231105
(cited on pp. 8, 10).

[Bol85] Béla Bollobás. Random Graphs. Academic Press, London, 1985 (cited on pp. 99,

181).

[BPZ07] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Simple and Space-E�cient

Minimal Perfect Hash Functions”. In: Proc. of the 10th International Workshop on
Algorithms and Data Structures (WADS’07). Springer, 2007, pp. 139–150. doi: 10.
1007/978-3-540-73951-7_13 (cited on p. 134).

[BPZ13] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Practical perfect hashing in

nearly optimal space”. In: Inf. Syst. 38.1 (2013), pp. 108–131. doi: 10.1016/j.
is.2012.06.002 (cited on pp. 4, 97, 98, 125, 133–135, 137, 141).

[Cal97] Neil J. Calkin. “Dependent Sets of Constant Weight Binary Vectors”. In: Combina-
torics, Probability and Computing 6.3 (1997), pp. 263–271 (cited on p. 131).

184

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1137/S0097539795288490
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://dx.doi.org/10.1145/1227161.1370599
http://dx.doi.org/10.1007/11427186_42
http://dx.doi.org/10.1007/11534273_34
http://dx.doi.org/10.1002/spe.4380231105
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1016/j.is.2012.06.002
http://dx.doi.org/10.1016/j.is.2012.06.002


Bibliography

[Cel+13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. “Balls and Bins: Smaller

Hash Families and Faster Evaluation”. In: SIAM J. Comput. 42.3 (2013), pp. 1030–

1050. doi: 10.1137/120871626 (cited on pp. 4, 97, 103).

[Cha+04] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. “The Bloomier �l-

ter: an e�cient data structure for static support lookup tables”. In: Proc. of the
15th Annual ACM-SIAM Symposium onDiscrete Algorithms (SODA’04). SIAM, 2004,

pp. 30–39. doi: 10.1145/2f982792.982797 (cited on pp. 134, 148).

[CHM92] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. “An Optimal Algo-

rithm for Generating Minimal Perfect Hash Functions”. In: Inf. Process. Lett. 43.5

(1992), pp. 257–264. doi: 10.1016/0020-0190(92)90220-P (cited on p. 134).

[CHM97] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. “Perfect Hashing”. In:

Theor. Comput. Sci. 182.1-2 (1997), pp. 1–143. doi: 10.1016/S0304-3975(96)
00146-6 (cited on pp. 133, 141).

[Col] Yann Collet. xxhash. http://code.google.com/p/xxhash/ (cited on p. 175).

[Col+98a] Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher, Andréa W.

Richa, Ramesh K. Sitaraman, and Eli Upfal. “On Balls and Bins with Deletions”.

In: Proc. of the 2nd International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM’98). Springer, 1998, pp. 145–158. doi:

10.1007/3-540-49543-6_12 (cited on p. 153).

[Col+98b] Richard Cole, Bruce M. Maggs, Friedhelm Meyer auf der Heide, Michael Mitzen-

macher, Andréa W. Richa, Klaus Schröder, Ramesh K. Sitaraman, and Berthold

Vöcking. “Randomized Protocols for Low Congestion Circuit Routing in Multi-

stage Interconnection Networks”. In: Proc. of the 3th Annual ACM Symposium on
the Theory of Computing (STOC’98). ACM, 1998, pp. 378–388. doi: 10.1145/
276698.276790 (cited on p. 153).

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.

Introduction to Algorithms (3. ed.) MIT Press, 2009, pp. I–XIX, 1–1292 (cited on

pp. 1, 7).

[CW03] Scott A. Crosby and Dan S. Wallach. “Denial of Service via Algorithmic Com-

plexity Attacks”. In: Proc. of the 12th Conference on USENIX Security Symposium -
Volume 12. SSYM’03. Washington, DC: USENIX Association, 2003, pp. 3–3 (cited

on p. 95).

[CW77] J. Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions

(Extended Abstract)”. In: Proc. of the 9th Annual ACM Symposium on Theory of
Computing (STOC’77). ACM, 1977, pp. 106–112. doi: 10.1145/800105.803400
(cited on p. 102).

185

http://dx.doi.org/10.1137/120871626
http://dx.doi.org/10.1145/2f982792.982797
http://dx.doi.org/10.1016/0020-0190(92)90220-P
http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://code.google.com/p/xxhash/
http://dx.doi.org/10.1007/3-540-49543-6_12
http://dx.doi.org/10.1145/276698.276790
http://dx.doi.org/10.1145/276698.276790
http://dx.doi.org/10.1145/800105.803400


Bibliography

[CW79] Larry Carter and Mark N. Wegman. “Universal Classes of Hash Functions”. In:

J. Comput. Syst. Sci. 18.2 (1979), pp. 143–154. doi: 10.1016/0022-0000(79)
90044-8 (cited on pp. 3, 95, 96, 102, 175).

[Dah+14] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Tho-

rup. “The Power of Two Choices with Simple Tabulation”. In: CoRR abs/1407.6846

(2014) (cited on pp. 3, 97).

[DH01] Martin Dietzfelbinger and Torben Hagerup. “Simple Minimal Perfect Hashing in

Less Space”. In: Proc. of the 9thAnnual European Symposium onAlgorithms (ESA’01).
Springer, 2001, pp. 109–120. doi: 10.1007/3-540-44676-1_9 (cited on p. 134).

[Die+10] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Monta-

nari, Rasmus Pagh, and Michael Rink. “Tight Thresholds for Cuckoo Hashing via

XORSAT”. In: Proc. of the 37th International Colloquium on Automata, Languages
and Programming (ICALP’10). Springer, 2010, pp. 213–225. doi: 10.1007/978-
3-642-14165-2_19 (cited on pp. 142, 147).

[Die+97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.

“A Reliable Randomized Algorithm for the Closest-Pair Problem”. In: J. Algorithms
25.1 (1997), pp. 19–51. doi: 10.1006/jagm.1997.0873 (cited on pp. 102, 176).

[Die05] Reinhard Diestel. Graph Theory. Springer, 2005 (cited on pp. 106, 120, 123, 140, 148,

161).

[Die07] Martin Dietzfelbinger. “Design Strategies for Minimal Perfect Hash Functions”.

In: 4th International Symposium on Stochastic Algorithms: Foundations and Appli-
cations (SAGA’07). Springer, 2007, pp. 2–17. doi: 10.1007/978-3-540-74871-
7_2 (cited on pp. 97, 133, 134, 141).

[Die12] Martin Dietzfelbinger. “On Randomness in Hash Functions (Invited Talk)”. In: 29th
International Symposium on Theoretical Aspects of Computer Science (STACS’12).
Springer, 2012, pp. 25–28. doi: 10.4230/LIPIcs.STACS.2012.25 (cited on

p. 97).

[Die96] Martin Dietzfelbinger. “Universal Hashing and k-Wise Independent Random Vari-

ables via Integer Arithmetic without Primes.” In: Proc. of the 13th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS’96). Springer, 1996, pp. 569–

580. doi: 10.1007/3-540-60922-9_46 (cited on p. 176).

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976 (cited on

p. 65).

[DM03] Luc Devroye and Pat Morin. “Cuckoo hashing: Further analysis”. In: Inf. Process.
Lett. 86.4 (2003), pp. 215–219. doi: 10.1016/S0020-0190(02)00500-8 (cited

on pp. 115, 116, 129).

186

http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1007/3-540-44676-1_9
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1006/jagm.1997.0873
http://dx.doi.org/10.1007/978-3-540-74871-7_2
http://dx.doi.org/10.1007/978-3-540-74871-7_2
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.25
http://dx.doi.org/10.1007/3-540-60922-9_46
http://dx.doi.org/10.1016/S0020-0190(02)00500-8


Bibliography

[DM09] Luc Devroye and Ebrahim Malalla. “On the k-orientability of random graphs”. In:

Discrete Mathematics 309.6 (2009), pp. 1476–1490. doi: 10.1016/j.disc.2008.
02.023 (cited on p. 169).

[DM90] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “A New Universal Class

of Hash Functions and Dynamic Hashing in Real Time”. In: Proc. of the 17th Inter-
national Colloquium onAutomata, Languages and Programming (ICALP’90). Springer,

1990, pp. 6–19. doi: 10.1007/BFb0032018 (cited on pp. 3, 97, 98, 103, 104, 181).

[DM92] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “Dynamic Hashing in

Real Time”. In: Informatik, Festschrift zum 60. Geburtstag von Günter Hotz. Teubner,

1992, pp. 95–119 (cited on pp. 103, 181).

[DM93] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. “Simple, E�cient Shared

Memory Simulations”. In: Proc. of the 5th ACM Symposium on Parallelism in Al-
gorithms and Architectures, (SPAA’93). ACM, 1993, pp. 110–119. doi: 10.1145/
165231.165246 (cited on p. 158).

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009, pp. I–XIV,

1–196 (cited on p. 19).

[DR09] Martin Dietzfelbinger and Michael Rink. “Applications of a Splitting Trick”. In:

Proc. of the 36th International Colloquium on Automata, Languages and Program-
ming (ICALP’09). Springer, 2009, pp. 354–365. doi: 10.1007/978- 3- 642-
02927-1_30 (cited on pp. 97, 131, 134).

[DS09a] Martin Dietzfelbinger and Ulf Schellbach. “On risks of using cuckoo hashing with

simple universal hash classes”. In: Proc. of the 20th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’09). SIAM, 2009, pp. 795–804. doi: 10.1145/
1496770.1496857 (cited on p. 96).

[DS09b] Martin Dietzfelbinger and Ulf Schellbach. “Weaknesses of Cuckoo Hashing with

a Simple Universal Hash Class: The Case of Large Universes”. In: Proc. of the 35th
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM’09).
2009, pp. 217–228. doi: 10.1007/978-3-540-95891-8_22 (cited on p. 96).

[DT14] Søren Dahlgaard and Mikkel Thorup. “Approximately Minwise Independence with

Twisted Tabulation”. In: Proc. of the 14th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT’14). Springer, 2014, pp. 134–145. doi: 10.1007/978-
3-319-08404-6_12 (cited on pp. 3, 97).

[DW03] Martin Dietzfelbinger and Philipp Woelfel. “Almost random graphs with simple

hash functions”. In: Proc. of the 35th annual ACM Symposium on Theory of comput-
ing (STOC’03). ACM, 2003, pp. 629–638. doi: 10.1145/780542.780634 (cited

on pp. 3, 4, 97–99, 103, 114, 120, 129, 130, 171).

187

http://dx.doi.org/10.1016/j.disc.2008.02.023
http://dx.doi.org/10.1016/j.disc.2008.02.023
http://dx.doi.org/10.1007/BFb0032018
http://dx.doi.org/10.1145/165231.165246
http://dx.doi.org/10.1145/165231.165246
http://dx.doi.org/10.1007/978-3-642-02927-1_30
http://dx.doi.org/10.1007/978-3-642-02927-1_30
http://dx.doi.org/10.1145/1496770.1496857
http://dx.doi.org/10.1145/1496770.1496857
http://dx.doi.org/10.1007/978-3-540-95891-8_22
http://dx.doi.org/10.1007/978-3-319-08404-6_12
http://dx.doi.org/10.1007/978-3-319-08404-6_12
http://dx.doi.org/10.1145/780542.780634


Bibliography

[DW07] Martin Dietzfelbinger and Christoph Weidling. “Balanced allocation and dictionar-

ies with tightly packed constant size bins”. In: Theor. Comput. Sci. 380.1-2 (2007),

pp. 47–68. doi: 10.1016/j.tcs.2007.02.054 (cited on p. 169).

[Emd70] M. H. van Emden. “Increasing the e�ciency of quicksort”. In: Commun. ACM 13.9

(Sept. 1970), pp. 563–567. doi: 10.1145/362736.362753 (cited on pp. 10, 58).

[Epp+14] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona.

“Wear Minimization for Cuckoo Hashing: How Not to Throw a Lot of Eggs into

One Basket”. In: Proc. of the 13th International Symposium of Experimental Algo-
rithms, (SEA’14). Springer, 2014, pp. 162–173. doi: 10.1007/978- 3- 319-
07959-2_14 (cited on pp. 4, 98, 140, 149, 153, 154).

[ER60] P Erdös and A Rényi. “On the evolution of random graphs”. In: Publ. Math. Inst.
Hung. Acad. Sci 5 (1960), pp. 17–61 (cited on p. 142).

[FK84] Michael L Fredman and János Komlós. “On the size of separating systems and

families of perfect hash functions”. In: SIAM Journal on Algebraic Discrete Methods
5.1 (1984), pp. 61–68 (cited on p. 133).

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. “Storing a Sparse Table

with 0(1) Worst Case Access Time”. In: J. ACM 31.3 (1984), pp. 538–544. doi: 10.
1145/828.1884 (cited on pp. 103, 133).

[FM12] Alan M. Frieze and Pàll Melsted. “Maximum matchings in random bipartite graphs

and the space utilization of Cuckoo Hash tables”. In: Random Struct. Algorithms
41.3 (2012), pp. 334–364. doi: 10.1002/rsa.20427 (cited on p. 142).

[FMM11] Alan M. Frieze, Pàll Melsted, and Michael Mitzenmacher. “An Analysis of Random-

Walk Cuckoo Hashing”. In: SIAM J. Comput. 40.2 (2011), pp. 291–308. doi: 10.
1137/090770928 (cited on p. 142).

[Fot+05] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. “Space E�-

cient Hash Tables with Worst Case Constant Access Time”. In: Theory Comput.
Syst. 38.2 (2005), pp. 229–248. doi: 10.1007/s00224-004-1195-x (cited on

pp. 4, 97, 98, 140–142, 148, 149).

[FP10] Nikolaos Fountoulakis and Konstantinos Panagiotou. “Orientability of Random

Hypergraphs and the Power of Multiple Choices”. In: Proc. of the 37th International
Colloquium on Automata, Languages and Programming (ICALP’10). Springer, 2010,

pp. 348–359. doi: 10.1007/978-3-642-14165-2_30 (cited on p. 142).

[FPS13] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. “On the

Insertion Time of Cuckoo Hashing”. In: SIAM J. Comput. 42.6 (2013), pp. 2156–

2181. doi: 10.1137/100797503 (cited on pp. 141, 142, 157).

[Fri+12] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

“Cache-Oblivious Algorithms”. In:ACMTransactions on Algorithms 8.1 (2012), p. 4.

doi: 10.1145/2071379.2071383 (cited on p. 63).

188

http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dx.doi.org/10.1145/362736.362753
http://dx.doi.org/10.1007/978-3-319-07959-2_14
http://dx.doi.org/10.1007/978-3-319-07959-2_14
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1002/rsa.20427
http://dx.doi.org/10.1137/090770928
http://dx.doi.org/10.1137/090770928
http://dx.doi.org/10.1007/s00224-004-1195-x
http://dx.doi.org/10.1007/978-3-642-14165-2_30
http://dx.doi.org/10.1137/100797503
http://dx.doi.org/10.1145/2071379.2071383


Bibliography

[GM11] Michael T. Goodrich and Michael Mitzenmacher. “Privacy-Preserving Access of

Outsourced Data via Oblivious RAM Simulation”. In: Proc. of the 38th International
Colloquium on Automata, Languages and Programming (ICALP’11). Springer, 2011,

pp. 576–587. doi: 10.1007/978-3-642-22012-8_46 (cited on p. 129).

[Gou72] Henry W. Gould. Combinatorial Identities. 1972 (cited on p. 31).

[Hen91] Pascal Hennequin. “Analyse en moyenne d’algorithmes: tri rapide et arbres de

recherche”. available at http://www-lor.int-evry.fr/~pascal/. PhD

thesis. Ecole Politechnique, Palaiseau, 1991 (cited on pp. 7, 8, 11, 16, 37, 38, 43, 58,

60).

[Hoa62] C. A. R. Hoare. “Quicksort”. In: Comput. J. 5.1 (1962), pp. 10–15 (cited on pp. 1, 7,

10, 38, 63).

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative
Approach (5. ed.) Morgan Kaufmann, 2012 (cited on pp. 11, 62, 207).

[HSS96] Friedhelm Meyer auf der Heide, Christian Scheideler, and Volker Stemann. “Ex-

ploiting Storage Redundancy to Speed up Randomized Shared Memory Simula-

tions”. In: Theor. Comput. Sci. 162.2 (1996), pp. 245–281. doi: 10.1016/0304-
3975(96)00032-1 (cited on p. 153).

[HT01] Torben Hagerup and Torsten Tholey. “E�cient Minimal Perfect Hashing in Nearly

Minimal Space”. In: Proc. of the 18th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’01). 2001, pp. 317–326. doi: 10.1007/3-540-44693-
1_28 (cited on p. 133).

[Ili14] Vasileios Iliopoulos. “A note on multipivot Quicksort”. In: CoRR abs/1407.7459

(2014) (cited on pp. 43, 60).

[Ind01] Piotr Indyk. “A Small Approximately Min-Wise Independent Family of Hash Func-

tions”. In: J. Algorithms 38.1 (2001), pp. 84–90. doi: 10.1006/jagm.2000.1131
(cited on p. 96).

[JEB86] C. T. M. Jacobs and Peter van Emde Boas. “Two Results on Tables”. In: Inf. Process.
Lett. 22.1 (1986), pp. 43–48. doi: 10.1016/0020-0190(86)90041-4 (cited on

p. 133).

[JM13] Tomasz Jurkiewicz and Kurt Mehlhorn. “The cost of address translation”. In: Proc.
of the 15thMeeting onAlgorithmEngineering and Experiments, (ALENEX’13). SIAM,

2013, pp. 148–162. doi: 10.1137/1.9781611972931.13 (cited on p. 64).

[JMT14] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. “Parallel peeling algo-

rithms”. In: Proc. of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, (SPAA ’14). ACM, 2014, pp. 319–330. doi: 10.1145/2612669.
2612674 (cited on p. 170).

189

http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://www-lor.int-evry.fr/~pascal/
http://dx.doi.org/10.1016/0304-3975(96)00032-1
http://dx.doi.org/10.1016/0304-3975(96)00032-1
http://dx.doi.org/10.1007/3-540-44693-1_28
http://dx.doi.org/10.1007/3-540-44693-1_28
http://dx.doi.org/10.1006/jagm.2000.1131
http://dx.doi.org/10.1016/0020-0190(86)90041-4
http://dx.doi.org/10.1137/1.9781611972931.13
http://dx.doi.org/10.1145/2612669.2612674
http://dx.doi.org/10.1145/2612669.2612674


Bibliography

[JNL02] Daniel Jiménez-González, Juan J. Navarro, and Josep-Lluis Larriba-Pey. “The Ef-

fect of Local Sort on Parallel Sorting Algorithms”. In: 10th Euromicro Workshop on
Parallel, Distributed and Network-Based Processing (PDP’02). IEEE Computer Soci-

ety, 2002, pp. 360–367. doi: 10.1109/EMPDP.2002.994310 (cited on p. 64).

[Kho13] Megha Khosla. “Balls into Bins Made Faster”. In: Proc. of the 21st European Sym-
posium on Algorithms (ESA’13). Springer, 2013, pp. 601–612. doi: 10.1007/978-
3-642-40450-4_51 (cited on pp. 4, 98, 140, 141, 149–151, 157).

[Kla14] Pascal Klaue. “Optimal Partitionierungsverfahren für Multi-Pivot-Quicksort”. in

German. MA thesis. TU Ilmenau, 2014 (cited on pp. 42, 52, 60).

[KLM96] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. “E�cient

PRAM Simulation on a Distributed Memory Machine”. In: Algorithmica 16.4/5

(1996), pp. 517–542. doi: 10.1007/BF01940878 (cited on pp. 3, 138, 139).

[KMW08] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. “More Robust Hashing:

Cuckoo Hashing with a Stash”. In: Proc. of the 16th annual European symposium
on Algorithms (ESA’08). Springer, 2008, pp. 611–622. doi: 10.1007/978-3-540-
87744-8_51 (cited on pp. 125, 128).

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. “More Robust Hashing:

Cuckoo Hashing with a Stash”. In: SIAM J. Comput. 39.4 (2009), pp. 1543–1561.

doi: 10.1137/080728743 (cited on pp. 4, 98, 125, 126).

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley, 1973 (cited on pp. 7, 53, 60).

[KS06] Kanela Kaligosi and Peter Sanders. “How Branch Mispredictions A�ect Quick-

sort”. In: Proc. of the 14th Annual European Symposium on Algorithms (ESA’06).
Springer, 2006, pp. 780–791. doi: 10.1007/11841036_69 (cited on pp. 64, 65).

[Kus+14] Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, and J Ian Munro. “Multi-

Pivot Quicksort: Theory and Experiments”. In: Proc. of the 16th Meeting on Al-
gorithms Engineering and Experiments (ALENEX’14). SIAM, 2014, pp. 47–60. doi:

10.1137/1.9781611973198.6 (cited on pp. 1, 2, 11, 43, 50–52, 61, 63, 68, 73,

76, 77, 85, 89, 90, 92, 204, 206, 217).

[KW12] Toryn Qwyllyn Klassen and Philipp Woelfel. “Independence of Tabulation-Based

Hash Classes”. In: Proc. Theoretical Informatics - 10th Latin American Symposium
(LATIN’12). Springer, 2012, pp. 506–517. doi: 10.1007/978-3-642-29344-
3_43 (cited on p. 103).

[KŁ02] Michał Karoński and Tomasz Łuczak. “The phase transition in a random hyper-

graph”. In: Journal of Computational andAppliedMathematics 142.1 (2002), pp. 125–

135. doi: 10.1016/S0377-0427(01)00464-2 (cited on pp. 140, 142–144).

190

http://dx.doi.org/10.1109/EMPDP.2002.994310
http://dx.doi.org/10.1007/978-3-642-40450-4_51
http://dx.doi.org/10.1007/978-3-642-40450-4_51
http://dx.doi.org/10.1007/BF01940878
http://dx.doi.org/10.1007/978-3-540-87744-8_51
http://dx.doi.org/10.1007/978-3-540-87744-8_51
http://dx.doi.org/10.1137/080728743
http://dx.doi.org/10.1007/11841036_69
http://dx.doi.org/10.1137/1.9781611973198.6
http://dx.doi.org/10.1007/978-3-642-29344-3_43
http://dx.doi.org/10.1007/978-3-642-29344-3_43
http://dx.doi.org/10.1016/S0377-0427(01)00464-2


Bibliography

[Lev09] David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and Intel
Xeon 5500 processors. https://software.intel.com/sites/products/
collateral / hpc/ vtune / performance _ analysis_ guide . pdf. 2009

(cited on pp. 62, 64, 207).

[LL99] Anthony LaMarca and Richard E. Ladner. “The In�uence of Caches on the Perfor-

mance of Sorting”. In: J. Algorithms 31.1 (1999), pp. 66–104. doi: 10.1006/jagm.
1998.0985 (cited on pp. 11, 63, 77).

[LO14] Alejandro Lopez-Ortiz. Multi-Pivot Quicksort: Theory and Experiments. Talk given

at Dagstuhl Seminar 14091: “Data Structures and Advanced Models of Computa-

tion on Big Data”. 2014 (cited on p. 2).

[Maj+96] Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbigniew J. Czech.

“A Family of Perfect Hashing Methods”. In: Comput. J. 39.6 (1996), pp. 547–554.

doi: 10.1093/comjnl/39.6.547 (cited on pp. 134, 148).

[MBM93] Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. “Engineering Radix Sort”.

In: Computing Systems 6.1 (1993), pp. 5–27 (cited on pp. 63, 65, 66).

[McM78] Colin L. McMaster. “An Analysis of Algorithms for the Dutch National Flag Prob-

lem”. In: Commun. ACM 21.10 (1978), pp. 842–846. doi: 10.1145/359619.
359629 (cited on p. 65).

[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Vol. 1.

EATCS Monographs on Theoretical Computer Science. Springer, 1984 (cited on

p. 133).

[Mey78] S. J. Meyer. “A failure of structured programming”. In: Zilog Corp., Software Dept.
Technical Rep. No. 5, Cupertino, CA (1978) (cited on p. 65).

[MM09] Marc Mezard and Andrea Montanari. Information, physics, and computation. Ox-

ford University Press, 2009 (cited on p. 148).

[MNW15] Conrado Martínez, Markus E. Nebel, and Sebastian Wild. “Analysis of Branch

Misses in Quicksort”. In: Proc. of the 12th Meeting on Analytic Algorithmics and
Combinatorics (ANALCO’ 15). To appear. 2015 (cited on pp. 1, 11, 64).

[Mol05] Michael Molloy. “Cores in random hypergraphs and Boolean formulas”. In: Ran-
dom Struct. Algorithms 27.1 (2005), pp. 124–135. doi: 10.1002/rsa.20061 (cited

on pp. 141, 143, 169, 170).

[MR01] Conrado Martínez and Salvador Roura. “Optimal Sampling Strategies in Quicksort

and Quickselect”. In: SIAM J. Comput. 31.3 (2001), pp. 683–705. doi: 10.1137/
S0097539700382108 (cited on pp. 10, 37, 39, 58).

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge

University Press, 1995 (cited on p. 5).

191

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://dx.doi.org/10.1006/jagm.1998.0985
http://dx.doi.org/10.1006/jagm.1998.0985
http://dx.doi.org/10.1093/comjnl/39.6.547
http://dx.doi.org/10.1145/359619.359629
http://dx.doi.org/10.1145/359619.359629
http://dx.doi.org/10.1002/rsa.20061
http://dx.doi.org/10.1137/S0097539700382108
http://dx.doi.org/10.1137/S0097539700382108


Bibliography

[MS03] Kurt Mehlhorn and Peter Sanders. “Scanning Multiple Sequences Via Cache Mem-

ory”. In: Algorithmica 35.1 (2003), pp. 75–93. doi: 10.1007/s00453- 002-
0993-2 (cited on pp. 62, 78).

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing : Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press, 2005 (cited on

p. 5).

[Mus97] David R. Musser. “Introspective Sorting and Selection Algorithms”. In: Softw., Pract.
Exper. 27.8 (1997), pp. 983–993 (cited on p. 88).

[MV08] Michael Mitzenmacher and Salil P. Vadhan. “Why simple hash functions work:

exploiting the entropy in a data stream”. In: Proc. of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’08). SIAM, 2008, pp. 746–755. doi: 10.
1145/1347082.1347164 (cited on p. 97).

[NW14] Markus E. Nebel and Sebastian Wild. “Pivot Sampling in Java 7’s Dual-Pivot Quick-

sort – Exploiting Asymmetries in Yaroslavskiy’s Partitioning Scheme”. In:Analysis
of Algorithms (AofA’14). 2014 (cited on pp. 1, 37, 39).

[Ott48] Richard Otter. “The number of trees”. In: Annals of Mathematics (1948), pp. 583–

599 (cited on p. 139).

[PA] Geo� Pike and Jyrki Alakuijala. CityHash. http://code.google.com/p/
cityhash/ (cited on p. 175).

[Pag14] Rasmus Pagh. Basics of Hashing: k-independence and applications. Talk given at

Summer School on Hashing’14 in Copenhagen. 2014 (cited on p. 95).

[Pag99] Rasmus Pagh. “Hash and Displace: E�cient Evaluation of Minimal Perfect Hash

Functions”. In: Proc. of the 6th International Workshop on Algorithms and Data
Structures (WADS’99). Springer, 1999, pp. 49–54. doi: 10.1007/3-540-48447-
7_5 (cited on p. 134).

[PP08] Anna Pagh and Rasmus Pagh. “Uniform Hashing in Constant Time and Optimal

Space”. In: SIAM J. Comput. 38.1 (2008), pp. 85–96. doi: 10.1137/060658400
(cited on pp. 4, 97, 98, 125, 131–133).

[PPR09] Anna Pagh, Rasmus Pagh, and Milan Ruzic. “Linear Probing with Constant In-

dependence”. In: SIAM J. Comput. 39.3 (2009), pp. 1107–1120. doi: 10.1137/
070702278 (cited on pp. 3, 96).

[PR04] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: J. Algorithms
51.2 (2004), pp. 122–144. doi: 10.1016/j.jalgor.2003.12.002 (cited on

pp. 96, 98, 114, 116, 129).

192

http://dx.doi.org/10.1007/s00453-002-0993-2
http://dx.doi.org/10.1007/s00453-002-0993-2
http://dx.doi.org/10.1145/1347082.1347164
http://dx.doi.org/10.1145/1347082.1347164
http://code.google.com/p/cityhash/
http://code.google.com/p/cityhash/
http://dx.doi.org/10.1007/3-540-48447-7_5
http://dx.doi.org/10.1007/3-540-48447-7_5
http://dx.doi.org/10.1137/060658400
http://dx.doi.org/10.1137/070702278
http://dx.doi.org/10.1137/070702278
http://dx.doi.org/10.1016/j.jalgor.2003.12.002


Bibliography

[PT10] Mihai Patrascu and Mikkel Thorup. “On the k-Independence Required by Linear

Probing and Minwise Independence”. In: Proc. of the 37th International Colloquium
onAutomata, Languages and Programming (ICALP’10). Springer, 2010, pp. 715–726.

doi: 10.1007/978-3-642-14165-2_60 (cited on p. 96).
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A. �icksort: Algorithms in Detail

A.1. �icksort

The following algorithm is an implementation of classical quicksort, slightly modi�ed from

[Sed78]. Note that there is a di�erent, somewhat simpler, partitioning procedure which does

not use two indices that move towards each other. Pseudocode can be found in, e. g., [Ben86,

p. 110]. (Also read footnote † on that page.) This “simpler” algorithm is obtained from our

Algorithm 3 (“Exchange1”) by setting k′ ← 1 on Line 2 and simplifying unnecessary code for

this special case.

Algorithm 4 The quicksort algorithm

procedure Quicksort(A[1..n])
Requires: Sentinel A[0] = −∞;

1: if n ≤ 1 then return ;

2: p← A[n];
3: i← 0;j← n;
4: while true do
5: do i← i + 1 while A[i] < p end while
6: do j← j− 1 while A[j] > p end while
7: if j > i then
8: Exchange A[i] and A[j];
9: else

10: break;

11: Exchange A[i] and A[n];
12: Quicksort(A[1..i− 1]);
13: Quicksort(A[i + 1..n]);

A.2. Dual-Pivot �icksort

A.2.1. General Setup

The general outline of a dual-pivot quicksort algorithm is presented as Algorithm 5.
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Algorithm 5 Dual-Pivot-Quicksort (outline)

procedure Dual-Pivot-Quicksort(A, left, right)
1 if right− left ≤ THRESHOLD then
2 InsertionSort(A, left, right);
3 return ;

4 if A[right] > A[left] then
5 swap A[left] and A[right];
6 p← A[left];
7 q← A[right];
8 partition(A, p, q, left, right, posp, posq);

9 Dual-Pivot-Quicksort(A, left, posp - 1);

10 Dual-Pivot-Quicksort(A, posp + 1, posq - 1);

11 Dual-Pivot-Quicksort(A, posq + 1, right);

To get an actual algorithm we have to implement a partition function that partitions the

input as depicted in Figure 2.1. A partition procedure in this thesis has two output variables

posp and posq that are used to return the positions of the two pivots in the partitioned array.

For moving elements around, we make use of the following two operations.

procedure rotate3(a, b, c)
1 tmp← a;

2 a← b;

3 b← c;
4 c← tmp;

procedure rotate4(a, b, c, d)

1 tmp← a;

2 a← b;

3 b← c;
4 c← d;

5 d← tmp;

A.2.2. Yaroslavskiy’s Partitioning Method

As mentioned in Section 4.1, Yaroslavskiy’s algorithm makes sure that for ` large elements in

the input it will compare ` or `− 1 elements to the larger pivot �rst. How does it accomplish

this? By default, it compares to the smaller pivot �rst, but for each large elements that it sees,

it will compare the next element to the larger pivot �rst.

Algorithm 6 shows the partition step of (a slightly modi�ed version of) Yaroslavskiy’s algo-

rithm. In contrast to the algorithm studied in [WN12], it saves an unnecessary index check at

Line 8, and uses a rotate3 operation to save assignments. (In our experiments this makes

Yaroslavskiy’s algorithm about 4% faster.)
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Algorithm 6 Yaroslavskiy’s Partitioning Method

procedure Y-Partition(A, p, q, left, right, posp, posq)

1 l← left + 1;g← right− 1;k← l;

2 while k ≤ g do
3 if A[k] < p then
4 swap A[k] and A[l];
5 l← l + 1;

6 else
7 if A[k] > q then
8 while A[g] > q do
9 g← g− 1;

10 if k < g then
11 if A[g] < p then
12 rotate3(A[g],A[k],A[l]);
13 l← l + 1;
14 else
15 swap A[k] and A[g];

16 g← g− 1;

17 k← k + 1;

18 swap A[left] and A[l− 1];
19 swap A[right] and A[g + 1];
20 posp ← l− 1; posq ← g + 1;

199



A. Quicksort: Algorithms in Detail

A.2.3. Algorithm Using “Always Compare to the Larger Pivot First”

Algorithm 7 presents an implementation of the strategy “Always compare to the larger pivot
�rst.” Like Yaroslavskiy’s algorithm, it uses three pointers into the array. One pointer is used

to scan the array from left to right until a large element has been found (moving small elements

to a correct position using the second pointer on the way). Subsequently, it scans the array

from right to left using the third pointer until a non-large element has been found. These

two elements are then placed into a correct position. This is repeated until the two pointers

have crossed. The design goal is to check as rarely as possible if these two pointers have met,

since this event occurs infrequently. (In contrast, Yaroslavskiy’s algorithm checks this for each

element scanned by index k in Algorithm 6.)

This strategy makes 2n lnn comparisons and 1.6n lnn assignments on average.

Algorithm 7 Always Compare To Larger Pivot First Partitioning

procedure Q-Partition(A, p, q, left, right, posp, posq)

1 i← left + 1;k← right− 1;j← i;
2 while j ≤ k do
3 while q < A[k] do
4 k← k− 1;

5 while A[j] < q do
6 if A[j] < p then
7 swap A[i] and A[j];
8 i← i + 1;

9 j← j + 1;

10 if j < k then
11 if A[k] > p then
12 rotate3(A[k], A[j], A[i]);
13 i← i + 1;

14 else
15 swap A[j] and A[k];

16 k← k− 1;

17 j← j + 1;

18 swap A[left] and A[i− 1];
19 swap A[right] and A[k + 1];
20 posp ← i− 1; posq ← k + 1;

A.2.4. Partitioning Methods Based on Sedgewick’s Algorithm

Algorithm 8 shows Sedgewick’s partitioning method as studied in [Sed75].
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Figure A.1.: An intermediate partitioning step in Sedgewick’s algorithm.

Sedgewick’s partitioning method uses two pointers i and j to scan through the input. It

does not swap entries in the strict sense, but rather has two “holes” at positions i1 resp. j1

that can be �lled with small resp. large elements. “Moving a hole” is not a swap operation

in the strict sense (three elements are involved), but requires the same amount of work as a

swap operation (in which we have to save the content of a variable into a temporary variable

[Sed75]). An intermediate step in the partitioning algorithm is depicted in Figure A.1.

The algorithm works as follows: Using i it scans the input from left to right until it has found

a large element, always comparing to the larger pivot �rst. Small elements found in this way

are moved to a correct �nal position using the hole at array position i1. Subsequently, using

j it scans the input from right to left until it has found a small element, always comparing to

the smaller pivot �rst. Large elements found in this way are moved to a correct �nal position

using the hole at array position j1. Now it exchanges the two elements at positions i resp. j
and continues until i and j have met.

Algorithm 9 shows an implementation of the modi�ed partitioning strategy from Section 4.1.

In the same way as Algorithm 8 it scans the input from left to right until it has found a large

element. However, it uses the smaller pivot for the �rst comparison in this part. Subsequently,

it scans the input from right to left until it has found a small element. Here, it uses the larger

pivot for the �rst comparison.

A.2.5. Algorithms for the Sampling Partitioning Method

The sampling method SP from Section 4.2 uses a mix of two classi�cation algorithms: “Always
compare to the smaller pivot �rst”, and “Always compare to the larger pivot �rst”. The actual

partitioning method uses Algorithm 7 for the �rst sz = n/1024 classi�cations and then decides

which pivot should be used for the �rst comparison in the remaining input. (This is done by

comparing the two variables i and k in Algorithm 7.) If there are more large elements than

small elements in the sample it continues using Algorithm 7, otherwise it uses Algorithm 10

below.

A.2.6. Algorithm for the Counting Strategy

Algorithm 11 is an implementation of the counting strategy from Section 6.4. It uses a vari-

able d which stores the di�erence of the number of small elements and the number of large

elements which have been classi�ed so far. On average this algorithm makes 1.8n lnn+O(n)
comparisons and 1.6n lnn assignments.
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Algorithm 8 Sedgewick’s Partitioning Method

procedure S-Partition(A, p, q, left, right, posp, posq)

1 i← i1 ← left;j← j1 := right;
2 while true do
3 i← i + 1;
4 while A[i] ≤ q do
5 if i ≥ j then
6 break outer while

7 if A[i] < p then
8 A[i1]← A[i];i1 ← i1 + 1;A[i]← A[i1];

9 i← i + 1;

10 j← j− 1;
11 while A[j] ≥ p do
12 if A[j] > q then
13 A[j1]← A[j];j1 ← j1 − 1;A[j]← A[j1];

14 if i ≥ j then
15 break outer while

16 j← j− 1;

17 A[i1]← A[j];A[j1]← A[i];
18 i1 ← i1 + 1;j1 ← j1 − 1;
19 A[i]← A[i1];A[j]← A[j1];

20 A[i1]← p;A[j1]← q;
21 posp ← i1; posq ← j1;
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Algorithm 9 Sedgewick’s Partitioning Method, modi�ed

procedure S2-Partition(A, p, q, left, right, posp, posq)

1 i← i1 ← left;j← j1 := right;
2 while true do
3 i← i + 1;
4 while true do
5 if i ≥ j then
6 break outer while

7 if A[i] < p then
8 A[i1]← A[i];i1 ← i1 + 1;A[i]← A[i1];
9 else if A[i] > q then

10 break inner while

11 i← i + 1;

12 j← j− 1;
13 while true do
14 if A[j] > q then
15 A[j1]← A[j];j1 ← j1 − 1;A[j]← A[j1];
16 else if A[j] < p then
17 break inner while

18 if i ≥ j then
19 break outer while

20 j← j− 1;

21 A[i1]← A[j];A[j1]← A[i];
22 i1 ← i1 + 1;j1 ← j1 − 1;
23 A[i]← A[i1];A[j]← A[j1];

24 A[i1]← p;A[j1]← q;
25 posp ← i1; posq ← j1;
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Algorithm 10 Simple Partitioning Method (smaller pivot �rst)

procedure SimplePartitionSmall(A, p, q, left, right, posp, posq)

1 l← left + 1;g← right− 1;k← l;

2 while k ≤ g do
3 if A[k] < p then
4 swap A[k] and A[l];
5 l← l + 1;

6 k← k + 1;

7 else
8 if A[k] < q then
9 k← k + 1;

10 else
11 swap A[k] and A[g]
12 g← g− 1;

13 swap A[left] and A[l− 1];
14 swap A[right] and A[g + 1];
15 posp ← l− 1; posq ← g + 1;

A.3. A Fast Three-Pivot Algorithm

We give here the complete pseudocode for the three-pivot algorithm described in [Kus+14]. In

contrast to the pseudocode given in [Kus+14, Algorithm A.1.1], we removed two unnecessary

bound checks (Line 5 and Line 10 in our code) and we move misplaced elements in Lines 15–29
using less assignments. (This is used in the implementation of [Kus+14], as well.

1
) On average,

this algorithm makes 1.846n lnn+O(n) comparisons and 1.57n lnn+O(n) assignments.

1

Personal communication with Alejandro López-Ortiz.
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A. Quicksort: Algorithms in Detail

Algorithm 11 Counting Strategy C
procedure Counting-Partition(A, p, q, left, right, posp, posq)

1 i← left + 1;k← right− 1;j← i;
2 d← 0; . d holds the di�erence of the number of small and large elements.

3 while j ≤ k do
4 if d > 0 then
5 if A[j] < p then
6 swap A[i] and A[j];
7 i← i + 1;j← j + 1;d← d + 1;
8 else
9 if A[j] < q then

10 j← j + 1;
11 else
12 swap A[j] and A[k];
13 k← k− 1;d← d− 1;

14 else
15 while A[k] > q do
16 k← k− 1;d← d− 1;

17 if j ≤ k then
18 if A[k] < p then
19 rotate3(A[k],A[j],A[i]);
20 i← i + 1; d← d + 1;

21 else
22 swap A[j] and A[k];

23 j← j + 1;

24 swap A[left] and A[i− 1];
25 swap A[right] and A[k + 1];
26 posp ← i− 1; posq ← k + 1;
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A. Quicksort: Algorithms in Detail

Algorithm 12 Symmetric Three-Pivot Algorithm ([Kus+14])

procedure 3-Pivot(A, left, right)
Require: right− left ≥ 2, A[left] ≤ A[left + 1] ≤ A[right]

1 p1 ← A[left];p2 ← A[left + 1];p3 ← A[right];
2 i← left + 2; j← i;
3 k← right− 1; l← k;
4 while j ≤ k do
5 while A[j] < p2 do
6 if A[j] < p1 then
7 swap A[i] and A[j];
8 i← i + 1;

9 j← j + 1;

10 while A[k] > p2 do
11 if A[k] > p3 then
12 swap A[k] and A[l];
13 l← l− 1;

14 k← k− 1;

15 if j ≤ k then
16 if A[j] > p3 then
17 if A[k] < p1 then
18 rotate4(A[j],A[i],A[k],A[l]);
19 i← i + 1;

20 else
21 rotate3(A[j],A[k],A[l]);

22 l← l− 1;
23 else
24 if A[k] < p1 then
25 rotate3(A[j],A[i],A[k]);
26 i← i + 1;

27 else
28 swap A[j] and A[k];

29 j← j + 1;k← k− 1;

30 rotate3(A[left + 1], A[i− 1], A[j− 1]);
31 swap A[left] and A[i− 2];
32 swap A[right] and A[l− 1];

33 3-Pivot(A, left, i− 3);

34 3-Pivot(A, i− 1, j− 2);

35 3-Pivot(A, j, l);

36 3-Pivot(A, l + 2, right);
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B. Details of k-pivot �icksort Experiments

This section contains detailed measurements obtained in the running time experiments for

multi-pivot quicksort.

B.1. Guesses On The Running Time Influence of Memory
Accesses

With the results from Section 7 in connection with the penalties for cache misses from [Lev09]

and TBL misses from [HP12], we can calculate the average number of cycles used for accessing
memory (AVGCAM). Let L1-P, L2-P, and L3-P denote the penalty (in clock cycles) for a miss in

the L1, L2, and L3 cache, respectively. Let TLB-P be the penalty for a miss in the TLB. Let HT

be the hit time of the L1 cache. For a multi-pivot quicksort algorithm which makes on average

E(MAn) memory accesses to sort an input of n elements, we may then calculate:

AVGCAM = HT · E (MAn) + avg. #L1-Misses · L1-P + avg. #L2-Misses · L2-P

+ avg. #L3-Misses · L3-P + avg. #TLB-Misses · TLB-P. (B.1)

For the Intel i7 used in the experiments, the characteristic numbers are:

• HT = 4 cycles [Lev09]

• L1-P = 7 cycles , L2-P = 14 cycles , L3-P = 120 cycles [Lev09]

• TBL-P = 10 cycles [HP12]. (We could not �nd exact numbers for the Intel i7.)

Using the detailed values from our experiments (see the tables on the following pages), Ta-

ble B.1 shows the results with respect to this cost measure. Note that all values expect for the

average number of memory accesses are based on experimental measurements.

B.2. Detailed Figures From Experiments

The following pages contain exact measurements from the multi-pivot quicksort running time

experiments. Table B.2 contains �gures for the cache misses of the considered algorithms.

Table B.3 shows the TLB misses. Table B.4 consists of measurements with respect to branch

mispredictions, executed instructions, and required CPU clock cycles.
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B. Details of k-pivot Quicksort Experiments

Algorithm AVGCAM

Permute127 4.58n lnn (15.9%)

Permute
′
127 7.18n lnn (57.3%)

Permute15 4.54n lnn (14.7%)

Permute
′
15 8.15n lnn (54.9%)

Permute256 4.31n lnn (14.3%)

Permute
′
256 6.7n lnn (48.2%)

Permute31 3.69n lnn (13.3%)

Permute
′
31 8.95n lnn (61.9%)

Permute512 4.2n lnn (12.2%)

Permute
′
512 7.07n lnn (43.1%)

Permute7 6.47n lnn (21.6%)

Permute
′
7 10.98n lnn

(64.5%)

Exchange1 10.63n lnn
(64.3%)

Y 8.26n lnn (53.8%)

L 8.28n lnn (54.2%)

Exchange3 7.16n lnn (47.1%)

Exchange5 6.96n lnn (42.1%)

Exchange7 7.28n lnn (41.4%)

Exchange9 7.75n lnn (42.8%)

Copy
′
127 9.91n lnn (91.9%)

Copy
′
255 9.26n lnn (77.3%)

Copy
′
511 8.74n lnn (65.1%)

Table B.1.: Average number of cycles used for accessing memory for the algorithms considered

in our experiments. The value in parentheses shows the ratio of the average number

of cycles needed for memory accesses and the average number of cycles needed for

sorting.
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B. Details of k-pivot Quicksort Experiments

Algorithm avg. number of L1 misses avg. number of L2 misses avg. number of L3 misses

Permute127 0.0496n lnn ( 0.0%) 0.0165n lnn (521.4%) 0.0128n lnn (764.2%)
Permute

′
127 0.0666n lnn ( 34.4%) 0.0175n lnn (561.5%) 0.0143n lnn (861.8%)

Permute15 0.0728n lnn ( 46.9%) 0.0033n lnn ( 22.8%) 0.0018n lnn ( 21.6%)
Permute

′
15 0.0867n lnn ( 74.8%) 0.0059n lnn (121.7%) 0.0022n lnn ( 45.5%)

Permute256 0.0578n lnn ( 16.5%) 0.0152n lnn (473.2%) 0.0113n lnn (662.1%)
Permute

′
256 0.0934n lnn ( 88.4%) 0.017n lnn (542.1%) 0.0126n lnn (751.1%)

Permute31 0.0594n lnn ( 19.9%) 0.0027n lnn ( 0.0%) 0.0015n lnn ( 0.0%)
Permute

′
31 0.0707n lnn ( 42.8%) 0.0216n lnn (714.7%) 0.0159n lnn (969.4%)

Permute512 0.0874n lnn ( 76.4%) 0.017n lnn (540.8%) 0.0097n lnn (553.0%)
Permute

′
512 0.1691n lnn (241.2%) 0.0206n lnn (676.1%) 0.0128n lnn (760.6%)

Permute7 0.0969n lnn ( 95.5%) 0.0039n lnn ( 45.7%) 0.0024n lnn ( 60.2%)
Permute

′
7 0.1153n lnn (132.5%) 0.0098n lnn (270.7%) 0.003n lnn (104.0%)

Exchange1 0.1472n lnn (197.0%) 0.02.8n lnn (869.9%) 0.0076n lnn (409.4%)
Y 0.1166n lnn (135.3%) 0.0124n lnn (366.8%) 0.0041n lnn (178.6%)
C 0.1166n lnn (135.2%) 0.0115n lnn (334.6%) 0.0036n lnn (144.6%)
SP 0.1166n lnn (135.2%) 0.0125n lnn (372.9%) 0.0042n lnn (181.8%)
L 0.1166n lnn (135.2%) 0.0133n lnn (400.4%) 0.0042n lnn (182.3%)

Exchange3 0.101n lnn (103.7%) 0.0093n lnn (250.4%) 0.0033n lnn (119.4%)
Exchange5 0.0995n lnn (100.6%) 0.0073n lnn (177.2%) 0.0021n lnn ( 44.5%)
Exchange7 0.1041n lnn (110.1%) 0.0075n lnn (184.6%) 0.002n lnn ( 32.5%)
Exchange9 0.1104n lnn (122.8%) 0.0083n lnn (213.2%) 0.0021n lnn ( 39.9%)
Copy

′
127 0.1183n lnn (138.6%) 0.0507n lnn (1811.4%) 0.0226n lnn (1424.5%)

Copy
′
255 0.1221n lnn (146.4%) 0.0443n lnn (1572.0%) 0.0236n lnn (1490.2%)

Copy
′
511 0.1347n lnn (171.7%) 0.0465n lnn (1653.7%) 0.0233n lnn (1469.7%)

ssortv1 0.0638n lnn ( 28.7%) 0.0179n lnn (574.2%) 0.0145n lnn (879.6%)
stdsort 0.1355n lnn (173.4%) 0.0197n lnn (644.3%) 0.0064n lnn (331.7%)

Table B.2.: Measurements of L1, L2, and L3 cache misses of the algorithms considered in the

experiments for n = 227
items. All values are scaled by n lnn and averaged over

500 trials. The value in parentheses shows the ratio of the speci�c cost and the

lowest value in the respective cost measure.
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B. Details of k-pivot Quicksort Experiments

Algorithm avg. TLB misses

Permute127 0.0716n lnn ( 76.0%)
Permute

′
127 0.1203n lnn (195.7%)

Permute15 0.0416n lnn ( 2.2%)
Permute

′
15 0.0498n lnn ( 22.4%)

Permute256 0.0819n lnn (101.4%)
Permute

′
256 0.1226n lnn (201.3%)

Permute31 0.0462n lnn ( 13.5%)
Permute

′
31 0.0712n lnn ( 75.0%)

Permute512 0.0873n lnn (114.5%)
Permute

′
512 0.1401n lnn (244.4%)

Permute7 0.082n lnn (101.6%)
Permute

′
7 0.0421n lnn ( 3.5%)

Exchange1 0.0407n lnn ( 0.0%)
Y 0.0413n lnn ( 1.4%)
L 0.041n lnn ( 0.9%)
Exchange3 0.041n lnn ( 0.9%)
Exchange5 0.0412n lnn ( 1.3%)
Exchange7 0.0409n lnn ( 0.6%)
Exchange9 0.0412n lnn ( 1.2%)
Copy

′
127 0.0412n lnn ( 1.2%)

Copy
′
255 0.0411n lnn ( 1.1%)

Copy
′
511 0.0411n lnn ( 0.9%)

Table B.3.: Average number of load misses in the translation-lookaside bu�er forn = 227
scaled

by n lnn. Numbers are averaged over 100 trials.
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B. Details of k-pivot Quicksort Experiments

Algorithm avg. branch mispred. count avg. instruction count avg. cycle count

Permute127 0.1298n lnn ( 5.7%) 22.817n lnn (143.1%) 28.7709n lnn (166.9%)
Permute

′
127 0.1569n lnn ( 27.9%) 11.2769n lnn ( 20.1%) 12.5178n lnn ( 16.1%)

Permute15 0.163n lnn ( 32.8%) 30.5548n lnn (225.5%) 30.7798n lnn (185.5%)
Permute

′
15 0.1665n lnn ( 35.7%) 19.1643n lnn (104.2%) 14.852n lnn ( 37.8%)

Permute256 0.1383n lnn ( 12.7%) 22.7312n lnn (142.2%) 30.1065n lnn (179.2%)
Permute

′
256 0.1285n lnn ( 4.7%) 12.2017n lnn ( 30.0%) 13.9035n lnn ( 29.0%)

Permute31 0.1345n lnn ( 9.6%) 27.0696n lnn (188.4%) 27.646n lnn (156.4%)
Permute

′
31 0.133n lnn ( 8.4%) 16.2657n lnn ( 73.3%) 14.4689n lnn ( 34.2%)

Permute512 0.1688n lnn ( 37.5%) 25.5953n lnn (172.7%) 34.4346n lnn (219.4%)
Permute

′
512 0.1457n lnn ( 18.7%) 12.4341n lnn ( 32.5%) 16.3872n lnn ( 52.0%)

Permute63 0.128n lnn ( 4.3%) 24.5402n lnn (161.4%) 30.138n lnn (179.5%)
Permute7 0.3516n lnn (186.5%) 27.4562n lnn (192.5%) 29.9299n lnn (177.6%)
Permute

′
7 0.3574n lnn (191.2%) 17.5678n lnn ( 87.2%) 17.0291n lnn ( 58.0%)

qsort1 0.5985n lnn (387.8%) 11.1845n lnn ( 19.2%) 17.4641n lnn ( 62.0%)
Exchange1 0.5695n lnn (364.1%) 10.6444n lnn ( 13.4%) 16.5432n lnn ( 53.4%)

qsort1sentinels 0.6156n lnn (401.7%) 11.1655n lnn ( 19.0%) 17.7468n lnn ( 64.6%)
qsort1sn 0.5698n lnn (364.4%) 10.1945n lnn ( 8.6%) 16.4503n lnn ( 52.6%)
Y 0.5722n lnn (366.4%) 10.4313n lnn ( 11.1%) 15.3437n lnn ( 42.3%)
C 0.5997n lnn (388.7%) 14.0916n lnn ( 50.1%) 17.4701n lnn ( 62.0%)

qsort2v3 0.5911n lnn (381.7%) 11.4412n lnn ( 21.9%) 16.737n lnn ( 55.2%)
SP 0.5881n lnn (379.3%) 10.0664n lnn ( 7.2%) 16.0601n lnn ( 49.0%)
L 0.5685n lnn (363.3%) 9.5129n lnn ( 1.3%) 15.2785n lnn ( 41.7%)

Exchange3 0.5832n lnn (375.3%) 9.3864n lnn ( 0.0%) 15.1875n lnn ( 40.9%)
Exchange5 0.6527n lnn (431.9%) 10.5238n lnn ( 12.1%) 16.5401n lnn ( 53.4%)
Exchange7 0.6631n lnn (440.4%) 10.5193n lnn ( 12.1%) 17.5827n lnn ( 63.1%)
Exchange9 0.6573n lnn (435.7%) 11.201n lnn ( 19.3%) 18.0916n lnn ( 67.8%)
Copy

′
127 0.1528n lnn ( 24.5%) 10.4937n lnn ( 11.8%) 10.7813n lnn ( 0.0%)

Copy
′
255 0.1227n lnn ( 0.0%) 11.4709n lnn ( 22.2%) 11.9893n lnn ( 11.2%)

Copy
′
511 0.1891n lnn ( 54.1%) 11.9471n lnn ( 27.3%) 13.4204n lnn ( 24.5%)

ssortv1 0.1635n lnn ( 33.2%) 10.8589n lnn ( 15.7%) 13.084n lnn ( 21.4%)
stdsort 0.5883n lnn (379.5%) 10.2882n lnn ( 9.6%) 16.6929n lnn ( 54.8%)

Table B.4.: Measurements for inputs containing n = 227
items of the average number of branch

mispredictions, the average number of executed instructions, and the average num-

ber of CPU cycles required by the algorithms considered in the experiments. All

values are scaled by n lnn and averaged over 500 trials. The value in parenthe-

ses shows the ratio to the minimum cost with respect to the cost measure over all

algorithms.
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