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Abstract. We review the characterization of communicating finiteestaaachines whose be-
haviors have universally or existentially bounded chasng@hese results rely on the theory of
Mazurkiewicz traces. We investigate the question whethannel bound conditions are decid-
able for a given communicating finite-state machine.
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1. Introduction

Communicating finite-state machines (CFM for short), oregjantly, FIFO channel systems or mes-
sage passing automata, are a fundamental model for contgggtems, in which agents cooperate
via asynchronous message passing using unbounded bu@erapared with other models of true
concurrency, like Petri nets for instance, these machineg@nputationally much harder, actually
Turing equivalent [10]. Channel systems are the basic maidake standard ITU notation SDL (norm
Z.100), and they are widely used in the design of commuminapirotocols. Basic questions aris-
ing in formal verification, such as the reachability probJeare undecidable for CFMs (in contrast,
reachability is a famous problem in Petri nets, shown to loéddble in [25, 19]).

Motivated by formal verification questions, an importangeliof research was devoted to identify-
ing variants of CFMs, or approximated behaviors thereaft &8me amenable to algorithmic methods.
One such example are lossy FIFO systems, which assume #ratalk are unreliable. On this model,
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the reachability problem was shown to be decidable [3, 1d¢itof non-primitive recursive complex-
ity [29]. This high complexity is not the primary reason toeaer lossy FIFO systems unsatisfactory:
First, the assumption that any message can be lost, is atiifegial in practice (a more realistic as-
sumption is that message loss is ruled by probabilities, $30 Second, more advanced questions
like recurrent reachability (including model-checkingliséness properties) are again undecidable in
this model [2].

Another approach to obtain decidability of various modedalting questions on CFMs is based
on the representation of the set of reachable configuratinokiding the channel contents) by finite
automata, see e.g. [9, 7, 6, 11]. Often this approach rexjtanelax the operations on channels, which
yields an over-approximation of the result.

This paper provides a survey of recent research on subslag€eF-Ms that have been shown to
be robust w.r.t. two objectives, namely decidability of mmbdhecking problems and good expressive
power. The approach taken here goes beyond regular repases of reachable configurations. We
use partial order methods for describing the behaviors anidéntifying robust subclasses of reliable
channel systems. Formally, the behaviors are describédidsgage sequence chaf#8SC for short),
another ITU standard (Z.120 [1]). The advantage of reagpabout behaviors of CFMs using MSCs
is both succinctness and comprehension, since a singleadiagubsumes a set of sequential runs of
the CFM. The yardstick for expressive power used in this pap@monadic second order logic (MSO
for short) over partial orders of MSCs.

An early line of work considered universally bounded MSQslyo In terms of a CFM, this
amounts to saying that every run can be executed with chauofdixed size, no matter how events
are scheduled. Equivalently, there exists some (unifolwajp on the number of transitory messages,
at any time. Since the size of the communication channelgas funiformly, this constraint turns a
CFM into a finite state device. Checking that a CFM is univigrdsounded is undecidable, and some
heuristics were proposed for solving this problem [21]. Bmpositive side, over universally bounded
MSCs, the rich theory of regular languages extends very: veltomata (CFMs), logic (monadic
second order) and MSC-expressions (regular MSC-grapas)larquivalent [18] (see also [20], which
extends the characterization to infinite MSCs). Moreoverieh checking in the realm of universally
bounded MSC models is decidable, with elementary compl¢4jt28].

The drawback of models with universally bounded commuimoathannels is the limited ex-
pressive power. Intuitively, universal channel boundsiiegmessage acknowledgments, which can
be difficult to impose in general. For instance, basic pro®of producer-consumer type (such as
e.g. the USB protocol) are not universally bounded, sineettimmunication is one-way. Therefore, a
relaxation of this restriction on channels was proposedn15] . The idea is to require axistential
boundon channels. This means roughly that every CFM run must bawgescheduling of events
that respects a given channel bound (other schedules migbée the bound). In other words, runs
canbe executed with bounded channels, provided that we sahdldelevents fairly. For instance,
in a producer-consumer setting, the scheduling alterriageseen producer and consumer actions.
This requirement is perfectly legitimate in practice, simeal life protocols must be executable with
limited communication channels. When a channel overflowpbap, then the sender stops temporar-
ily until some message is consumed from the queue. For chapsgems with existential bounds,
the fundamental Kleene-Biichi equivalence of automatic$oand regular expressions was shown to
hold in [15]. Regarding model-checking, the complexity e#ns the same as in the case of universal
bounds, [16, 15].

This survey paper is focused on the issue of expressive pow&FMs with universal and exis-
tential channel bounds, respectively. We emphasize orighierelationship that exists between CFMs
with channel bounds arldazurkiewicz traces a concurrent model introduced by A. Mazurkiewicz
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in the late seventies, for describing the semantics of saffie iets. The rich theory of Mazurkiewicz
traces (see [12] for a survey) provides a powerful tool wheasoning about the behaviors of CFMs.
We survey the results obtained on the expressive power in2[1,815]. In addition, we show that in
the Buchi-like characterization obtained for CFMs withstential bounds, the non determinism of
CFMs is unavoidable. Moreover, we consider the problem sifrtg whether a CFM is existentially,
or universally bounded, respectively. We show roughly thatonly case where this problem has a
solution is when we assume that the channel bound is knowrten@FM is deadlock-free. Both
these assumptions are motivated by applications, sinceretensystems use bounded memory and
communication protocols are in general deadlock-free.

Overview. In Section 2 we define communicating finite-state machinessetbehavior is in-
vestigated in this paper. The following Section 3 introdué@malisms used in this investigation
— Mazurkiewicz traces, message sequence charts and maemtiod order logic (MSO). In this
section we also introduce a normal form for MSCs, that cpweds to an optimal linear execution
w.r.t. channel bounds. Section 4 deals with universallynoed CFMs. In this setting, it presents
the known equivalence between CFMs, MSO, and regular sétagss. As new results, we consider
the problem of deciding whether a deadlock-free CFM is usaiy bounded or not. The following
Section 5 elaborates these techniques and results funthie setting of existentially bounded CFMs.
In particular, we show that deterministic CFMs are not sigfitin this case.

Related work Existential channel bounds appear in [22] and implicitlyiii] (called there real-
izable HCMSCs). The expressive power and model checkingsskor universally bounded channels
are considered in [4, 28, 18, 20, 27]. Without the restrictd universally bounded channels, [23, 24]
shows how to use representative executions in model clgpegainst MSO properties and [16] does
this against MSC-graph properties. Asin [18, 24, 15] we wge the logic that talks about tipartial
order of an MSC. The paper [8] shows that the existential fragméthe@weaker MSO logic based
on the immediate successor is expressively equivalent GHthout any restrictions.

2. Definitions

The communication framework used in our paper is based ounes¢igl processes that exchange
asynchronously messages over point-to-point, errorfi€ channels. Lef® be a finite set of
process identities that we fix throughout this paper. Funtioge, letCh = {(p,q) € P? | p # ¢}
denote the set athannels Processes act by either sending a message, that is deygtkdnbeaning
that proces® sends to procesg or by receiving a message, that is denotedbtyy, meaning that
process receives from procesg For any procesp € P, we define a local alphabet (set of event
types orp) ¥, = {plq,p?q | ¢ € P\ {p}} and set®> = | p ;. For the rest of the paper, whenever
a pair of processes, ¢ € P communicates, we will implicitly assume that£ g, i.e.,(p, q) € Ch.

The most natural formalism to describe (asynchronous) cemication protocols areommuni-
cating finite-state machind€FM for short) [10]. CFMs are a basic model for distributégiosithms
based on asynchronous message passing between concuocasses:

Definition 2.1. A communicating finite-state machi(@FM) is a tupleA = (C, (A, )pep, F') where
e (is a finite set oimessage contents control messages

o A, = (Sp, —p,1p) is afinite labeled transition system over the alphabek C for anyp € P
(ile.,—p C5p x (B, x C) x S,) with initial statec, € .S,,.
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o FCIJ] S, is a set of global final states.

peEP
The CFMA is deterministic[18] if

lg,m lg,m . .
e s pq—>1p s1 ands pq—>2p so impliess; = so andmy = mo

e s pMp s1 ands pmp so impliess; = so.

The notion of determinism used here originates from [18]r iRstance, it can be justified in
the setting of distributed supervision, where some disteith plant is extended with a distributed
automaton that can attach additional message contentsskages that are exchanged by components
of the plant. Thus, the controlling automaton has contrekr g next state as well as over the message
content it attaches to some message. But it does not haveokastto whether the next action is
sending to or receiving from some particular channel. Ifgtet decides to execute a receive event
p?q, then the controlling automaton can only receive the firstgage of the channel, i.e., should be
prepared to receive distinct messages.

In order to describe the behavior of a CFM, one can transfarmaturally into a sequential,
potentially infinite transition system whose states cdrsfis P-tuple of local states as well as the
contents of the channels. More precisely, one defines franOBM A = (C, (A,),ep, F) the
(2 x C)-labeled, infinite transition systeff}4 as follows. A state of 4 consists of & -tuple of local
states and of channel contents.4f i.e., it is an element(s,)pep, (Wp.g) (pg)ecn) OF [L,ep Sp X
[1(.q)ccn C*- For two states, an actiane ¥, and a control messages C, we have

a,c

((Sp)pep, (wpﬂ)(p,q)ECh) - ((3;)176737 (w;;,q)(p,q)eCh)

o s, —, s, is a transition of the local maching, ands, = s/, for ¢ # p.

e Send events: if = plq, thenw;, , = w, 4c (i.€., message is inserted into the channel from
to q) andwyy o = wy, ., for (p',¢') # (p, ) (i.e., all other channels are unchanged)

* Receive events: it = p?q, thenw,, = cw, , (i.e., messageis deleted from the channel from
qtop) andwy ,y = w,, , for (¢',p’) # (¢, p) (i.e., all other channels are unchanged).

A run of T4 is as usual a sequenek, (aj,c1),ds, (az,c2),. .., (an, ), dnt1 With d; states
of Ty, a; € ¥ and¢; € C such thatd; 2% d;y1 for all suitablei. It is accepting ifd; =
((tp)per; (€)pg)ecn) @Nddyy1 = (f, (€)(p.qccn) for somef € F. Finally, we definel(T4) € %*
by projecting the control messages and states out of angepths: it is the set of words,as - - - a,,
such that there exists an accepting din(a1,c1),ds, (az,¢2), ..., (an,cn), dni1-

A CFM is calleddeadlock-freeif I = [],.p S, and from every reachable state’0f we can

reach a state where all channels are empty.

3. Partial orders of Mazurkiewicz traces and CFMs

We consider in this section two different kinds of partiatlers, Mazurkiewicz traces and runs of
CFMs. Then we establish a relationship between these partlars, which is the basis of several
results of expressiveness and decidability for subfamiieCFMs.
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3.1. Partial orders

Mazurkiewicz traces [26] have been introduced in compudiense for describing the behavior of safe
Petri nets. Their essence is to describe the semantics ofcagent system by a (static) relation of
independence between actions. Formallyaae alphabets a pair(£2, I') consisting of an alphabét
and a symmetric and irreflexive relatiérnC Q2. The relation/ will be referred to as thmmdependence
relation; its complementD = Q2 \ I is thedependence relation

A Mazurkiewicz tracés an{2-labeled partial ordefE, <, \) (up to isomorphism), with the label-
ing A\ : £ — () satisfying the following conditions, for any evertsf € E:

e if e is an immediate predecessor fofdenoted as < f), then(\(e), A\(f)) € D, and
e if e and f are incomparable, thefh(e), A(f)) € 1.

Partial orders also arise naturally when we describe ru@d-ods. Instead of viewing the CFM as
an infinite transition system, we can visualize the runs bgmsef diagrams callethessage sequence
charts(MSC for short).

We define message sequence chart¥dabeled poset$FE, <, \), and we writeP(e) for the
process on which eventis located. That is, we leP(e) = p if A(e) € X,. In addition, we define
two relations< p and<,,, on events:

o ¢ <p fiff P(e) = P(f)ande < f.

o ¢ < [iff Me) = plg, A(f) = g7p, and|{e’ | A(¢) = pla,¢’ < e} = [{f | A(¢) =
q’p, f' < f}|, for somep, g € P.

The idea is tha p describes the order of the events executed by the sequpriiegsses. If
P(e) = P(f) =pande < f, we also writee <,, f. Moreover, if there is no eventwith P(g) = p
ande < g < f, then we writee <,, f. The relation<,, describes the matching send and receive
events, under the assumption that message channels are FIFO

Definition 3.1. A message sequence chataX-labeled posel = (E, <, \) (up to isomorphism)
satisfying

o <= (<pU<pn),
e P~Y(p) C Eislinearly ordered for any € P, and

o NL(plg)| = [A\"(q?p)| for any(p,q) € Ch.

An example MSC is shown in Figure 2. If we replace the last itdnthe definition above by
IAL(plg)| > |[A"Y(q?p)| for any(p, q) € Ch, then we speak aboptefix MSC

Any linear extension of a labeled partial ordér, <, \) is called dinearizationof it. We represent
it as a wordu = wu; - - - u,, over the alphabet, if A\ : E — X. Thus, the seLin(M) of linearizations
of the MSCM is a subset ok*, and the set of linearizatiorisin(t) of a tracet is a subset of2*.
For a set (or language) of partial ordevs$, we write Lin(M) = (J ;¢ 0 Lin(M). For anyw € ¥*,

a € 3, we denote as usual y|, the number of occurrences @fn w.

For MSCs, the relation between the partial order and it@tizations is tighter: starting with any
word w from X* that satisfiegv|,1, > |v|,2, for any prefixv and every channelp, ¢) € Ch, there
exists a unique prefix MS@/ such thatw is a linearization ofM. We denote this prefix MSC as
msc(w). If w € ¥* does not satisfy the above condition on channels, therfw) is undefined.
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Runs of CFMs can be also viewed as (prefix) MSCs. Mdte a CFM, and consider the set of
labelings of rund.(T4) C X*. It can be shown easily that for every MSC with Lin(M )N L(T4) #
() we haveLin(M) C L(T4). We denote by’(.A) the language of the CFM, that is, the set of MSCs
associated with accepting runs df £(A) = {msc(w) | w € L(T4}. By the above remarks, we
haveLin(L(A)) = L(T4).

Definition 3.2. Let B > 0 be an integer. A word (linearizationy € >* is called B-boundedif
[vpg — [vlg7p < B, for all prefixesv of w and all (p,q) € Ch. An MSCM = (E,<,)) is
called universally B-boundedif every linearization ofM is so. A set of MSCs is universallys-
bounded if each of its elements is so. A CEMis universally B-bounded if every configuration
((sp)peP; (Wp.q) (p,g)ech) Of SOMe accepting run df4 satisfiegw, ,| < B for all (p, q) € Ch.

A CFM (set of MSCs, respectively) is called universally bded if it is universallyB-bounded
for someB > 0.

From the remark above it is easy to see that a CEN$ universally B-bounded if and only if
L(.A) is universallyB-bounded.

Let Linp (M) denote the set aB-bounded linearizations of an MS®, andLing (M) is to be
understood similarly for a set of MSC8!. In any casé.ing(M) C Lin(M), with equality if and
only if M is universallyB-bounded.

3.2. Traces and MSCs

We describe in this section a tight link between Mazurkiewti@ces and universally3-bounded
MSCs, due to [20]. Let2, I) be the trace alphabet with = ¥ x {0,...,B — 1}. The depen-
dence relationD C Q x Q is given by(x,:)D(y, j) if either P(x) = P(y) or {(z,i),(y,j)} =
{(p'q,n), (¢?p,n)} for somep, ¢, n. Clearly,I = Q2 \ D is symmetric and irreflexive, hend€, I)
is a trace alphabet.

For anQ2-labeled poset = (E, <, \), letproj(t) denote the:-labeled posetE, <, 7 o A\) where
m : £ — X is the projection to the first component.

The encodingr(M) ofan MSCM = (F, <, \) is obtained by numbering the events of the same
type moduloB: tr(M) = (E,<,)\) such that\'(e) = (A(e),n) withn = [{¢/ < e | A(¢/) =
A(e)}| mod B.

In general, the partial order (M) is no Mazurkiewicz trace. Consider, for instance, the MSC
M = (E, <, \) with linearization(1!2)(1!2)(271)(271) and B = 1. Thentr(M) = (E, <, \") with
XN (e) = (A\(e),0) for anye € E. Hence, intr(M), the first occurrence df?1 and the second afl2
carry dependent labels, but these events are incomparable; (/) is indeed not a trace.

Lemma 3.1. [20] Let M = (E, <, \) be a universallyB-bounded MSC, then the partial ordef /)
is a trace over the alphabg®, D) and we havéll = proj(tr(M)).

Note that the converse implication in the above lemma doé$old, in general. Consider the
MSC M = (E,<,)\) with (unique) linearizationv = (1!2)(1!2)(1!3)(371) (3!2)(273)(271)(271)
andB = 1. ThenM is not universallyl-bounded, butr()/) is atrace, since itis linearly ordered. The
reader can verify that an MSC is universalBsbounded if and only if in the partial order of( 1),
between any two consecutive nodes labeled/hy, n) there is a node labeled Ry ?p, n).

Lemma 3.1 provides the basis for a quadratic-time algoritiat checks that an MSC is univer-
sally B-bounded (see also [22] for an alternative approach). ifigerthat the partial ordetr (M)
satisfies the two conditions in the definition of Mazurkiezvitaces and that in between any two
(plq, n)-labeled nodes, there is(a’p, n)-labeled one.
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3.3. Optimal linearizations

We present in this section an algorithm to compute a linatida OPT(M) € X* of the MSC
M = (E, <, \) that is B-bounded, for the least possibie

The algorithm computes a linearizatio®T (M) incrementally: IfM is empty, therOPT(M) =
e. Otherwise, suppose that we have already computed theifingan of a prefix ofM, with set of
eventsF' C E. We choose now the next evenie £ \ F among those events such tifau {e} is
downward closed (that is, for evefy < g with g € F U {e}, we havef € F U {e} as well). LetG
denote the set of such candidateszI€ontains some receive eventthen we ada to F'. Otherwise,
we add toF’ a send event on a chanrigl ¢) that has the least numbif € F' | A(f) = plq}|—|{f €
F | X(f) = ¢?p}| of pending messages ifi from p to ¢q. Ties are broken using some fixed linear
orderC on the set of channelsSh, we always take the event that involves the largest possitdanel.

Proposition 3.1. Let OPT (M) be the linearization computed by the above algorithm on M$C
LetalsoB € N be minimal such thadPT (M) is B-bounded. Then no linearization 8f is (B —1)-
bounded.

Proof:

Letw € Lin(M) be some linearization. Let € ¥* anda € ¥ such thatca is the minimal prefix
of OPT(M) that is not(B — 1)-bounded. Then there exists, ¢) € Ch with a = plg andn, , <
B -1 =mn,,forany(r,s) € Chwheren, s = |z|1s — |z|s7. Let zb be the minimal prefix ofv
such thatmsc(zb) is no prefix ofmsc(z) (with z € ¥* andb € X). Then alsarb is a linearization of
some prefix ofd. Hence, by the choice af in the algorithm, there exigtr, s) € Ch with b = rls
andn, s > n,, = B — 1 (in particular,n, s = n,, = B — 1). Sincemsc(z) is a prefix ofmsc(z),
we have|z|s?, < |z|s7. In addition, msc(zb) = msc(z rls) andmsc(z) are prefixes of\/; hence
|z| 715 = |x|n15. Together, this implies|,1s — |z|s7r > |2]p1s — |2]s2r = 1y s = np g = B — 1. Hence
zb (and therefore its extensian) is not(B — 1)-bounded. O

Since channels are in general unbounded, th¢ @&XT'(M/) | M MSC} cannot be regular. The
following proposition shows that this is the only obstagle,, if we restrict to channels of bounded
size, then the optimality of a linearization can be testedputomaton.

Proposition 3.2. Let B > 0 be an integer. There exists a polynomial-size automatench that, for
any MSCM and anyu € Ling(M ), we haveu € L(A) if and only if u # OPT(M).

Proof:
Note that the word: € Lin(M) doesnot equalOPT (M) iff there existv, w € ¥* anda € ¥ with
u = vaw andp, ¢,r, s € P such that- # p and (1) or (2) hold

(1) a = p!q and one of the following holds:

e b = r7sis the first action fronk, in w, and|v|.is > |v|s7,;
e b = rls is the first action from2, in w and either|v|,i, — |v|g7p > [v]ps — |v]s2r, OF
|U|p!q - |'U|q?p = |U|7”!S - |U|s?r and(p7 Q) C (T7 S)'

(2) a=p7?q, (p,q) C (r,s), b =r?sis the first action fronk, in w, and|v|,is > |v]s?--

The reason is that, in any of these cases, the algorithm wwaud preferred over a afterv. For
instance, form = plq andb = r!s, the algorithm has the choice betweeandb and prefersd, since
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the channelr, s) is either less filled thaip, ¢), or equally filled and’r, s) has higher priority than
(p,q). Forb = r7s, the condition|v|,.s > |v|s7- ensures that eventsandb are simultaneously
candidates aftevr. To check the above conditions, the automatbguesses the processesy,r, s
and keeps track of the valués|,i, — |v|47, and|v|,1s — |v]s7-. Since we are only interested 8-
bounded linearizations, this can be done Wit - (B + 1)? many states. O

3.4. Monadic second order logic

Logic is a classical formalism used to describe propertiegadous structures, like words, trees,
traces, graphs etc. This also applies to structures like $18¢ consider here monadic second order
logic, with the following syntax:

Definition 3.3. For a setR of binary relationsMSQ(R )-formulas over the alphabét are defined by
the syntax
pu=a(@)| R(z,y) [z € X |-¢|pVe|[IXe|Irp

whereR € R, a € T, z,y are first order variables, and is a second order variable.

An MSO(<)-formula over an alphabdt can be interpreted oh-labeled partial orderd/ =
(E,<,\) with A\ : E — T as usual, by letting\/ = a(z) if A(z) = aandM = = < yif
x < y. Further relations irR used here are the message ordgy, the process ordei<,),cp, and
the immediate process successar,),cp. Such an MSQR)-formula over the alphabet can then
be interpreted on an MS®/ = (E, <, \) as expected.

For an MSQR)-formula ¢ over ¥ without free variables, le£(y) denote the set of MSCs that
satisfyp. We also consider existential monadic second order loditS8). An EMSO formula is of
the form3X; ... X, with ¢ a first order formula, i.e., without second-order quantiftora

We discuss now some differences arising from the use ofrdiftepredicates frork. First, the
full logics MSO(<, <,,,) and MSQ(<,),ep, <m) are equally expressive, but the existential frag-
ment of the former could be more expressive than the exiatdragment of the latter (which is the
logic considered in [8]). From [8] (Cor. 5.7) we know that MGQO and EMSQ(<,)pep, <m)
are incomparable. Furthermore, we will show later that\ersally and existentially)3-bounded
sets of MSCs behave better, since they provide the equisalbatween MS(O<), EMSQ(<) and

EMSO((<p)per; <m)-

4. The behavior of universally bounded CFMs

This section is devoted to universally bounded CFMs and M&@st we recall the Biichi-like char-
acterization of universal boundedness in terms of CFMs, M&al logics. Then we present some
(un)decidability results related to universal channelrutsu

4.1. Bichi characterization of universally bounded behaviors
Let (2, 1) be a trace alphabet. A sétof traces over(2, I) is regular if its set of linearizations
Lin(L) C Q* is regular.

Lemma 4.1. Let M be a set of MSCs. ILin(,M) is regular, then there exists a regular language of
tracesL over (2, I) such thatM = proj(L).
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Proof:

SinceLin(M) is regular, there is somB > 0 such that any linearization ihin(M) is B-bounded.
In particular, anyM € M is universally B-bounded. Sef(, ) and the mappingsr, proj as in
Section 3. Since any/ € M is universally B-bounded, thé-labeled posetr(M) is a trace over
(Q,1I) (Lemma 3.1). LetK = {tr(M) | M is universallyB-bounded andL = {tr(M) | M € M}.
Then, certainly,M = proj(L) and it remains to show thdt is regular. For this, note that a word
from Lin(K) is a linearization of some trace(1/) in L iff its projection viaproj is a linearization of
proj(tr(M)) = M (the right to left implication follows from the fact that tipartial orders of\/ and
tr(M) are isomorphic, cf. Lemma 3.1). By assumptibiny (M) is regular, and [20, Lemmas 3.6, 3.7]
shows thalin(K) is regular. Hencd. is regular, too. O

The next theorem provides the characterization of unillgreaunded CFMs (with given channel
bound) in terms of monadic second-order logic and of redidaarizations. For lack of space, we
have omitted a third characterization, in terms of regulBtSC-graphs [17], that corresponds to a
kind of regular expressions of communication events. Theltg given below were obtained in [18],
and [20] extended them to sets of infinite MSCs (and CFMs withlléd acceptance). The most
difficult part of the theorem is the construction of a detenistic CFM from a regular sdtin(M),
since it amounts to give an algorithm of distributed synitheEhe original approach of [18] consists
in adapting Zielonka's construction of deterministic adymonous automata [32] for regular trace
languages to the setting of universalBtbounded MSCs. Later, [20] made the connection between
MSCs and traces explicit (see Section 3) and gave a simptiedtruction of deterministic CFMs,
that uses Zielonka’s construction as a black-box.

Theorem 4.1.[18, 20] Let B be a positive integer and1 a set of universallyB-bounded MSCs.
Then the following assertions are equivalent:

1. Lin(M) is regular.
M is the language of some CFM.
M is the language of sorrgeterministicCFM.

M is the language of some M$8) formula.

o > W DN

M is the language of some formula of EME8&,),ep, <m), EMSQO(<), or EMSQ <, <,y,),
respectively.

Let us state a few ideas involved in the proof of the abovertimao It is easy to see that any
universally bounded CFM has a regular set of linearizations. The converse, as nmeatiabove, can
be shown using Lemma 4.1 and Zielonka’s construction. Thia idaa is to simulate the execution
of a deterministic asynchronous automatédron tr(A/) by a deterministic CFM3 on M. Since
the partial orders o/ andtr(M) are isomorphic, the necessary information about locatstat.A
that are visible for an event am(1/) is also available o/, by storing it in the local states @.
As for the logic part, the equivalence between MSQand the regular set of linearizations follows
without much difficulty from Lemma 4.1 together with [31, 18)at shows a similar result for traces.
Finally, the last item in the theorem is obtained with thealsimulation of automata by EMSO. We
note that for universally3-bounded MSCs, the message relatiop can be expressed in terms of the
partial order<, hence we obtain EMS@, <,,) = EMSQ(<). The idea is that the trace encoding of
Section 3.2 corresponds to additional existentially gfiadtset variables, one for each set of events
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with trace label o, n). This allows to say that the receive matchinghy, n)-sende is the first nodef
aftere, with label (¢7p, n). In addition, we need to ensure by a formula of EMSQthat the model
is a universallyB-bounded MSC. But this is easy, see remarks after Lemma 3.1.

4.2. Testing universal bounds

In this section we show that in general, the property of usi&kboundedness is hard to check. Itis not
very surprising that one cannot check whetheadmtrary CFM is universally bounded, since CFMs
are Turing-equivalent devices. We strengthen this obiervédy showing that undecidability holds
even assuming that the CFM is deterministic and deadla-fif we provide the bouné as input,
the problem of testing whether a deterministic CFM is ursadly B-bounded is still undecidable.
However, fordeadlock-freeCFMs we obtain decidability.

For the undecidability results, we use the following enogdof a deterministic Turing machine
TM by a deterministic and deadlock-free CFM. We will define tBFM A1y on two processes, 2.
A configuration of TM will be encoded as a sequence of messagbscontentsm, ..., mg_1,q,
mg,. .., My, Mmeaning that TM is in state, the tape contents %, - - - m,, and the head position is
k. With this encoding, it suffices to know three consecutivessages of this sequence in order to
compute deterministically theth symbolm, of the next configuration.

Figure 1. Encoding a Turing machine by a deadlock-free detéstic CFM.

The CFM works as follows. First, process 1 sends the inibafigurationC'; to process 2. Then
it resends any configuratiafi; received from process 2 back to process 2, interleavingvegvith
sends. Process 2 receives a configuratiprirom process 1 and sends the successor configuration
Cj.1 to process 1, also interleaving receives with sends.

In order to obtain a deterministic CFM, process 2 awaits ths fiiree symbols from process 1
before it actually starts sending the next configuratiore send for each receive. Then, it finishes
by sending three messages (or two, or four, depending oretigtH ofC;1 1) that end the successor
configurationCj 1.

More formally, we denote by = a; ---ay, || b1 - - by, the k-delayed fair shuffle ofi; - - - a,,
andb; - - - b, defined asv = aqas - - agbiagi1by - - - apby_g11- - by. The language of events on
process 1is S [,-,(RGC; |1 SG), where SGmeans sending configuratidr) to proces® and RG
means receiving’; from proces2. Similarly, the language of process [, (RC; ||3 SC+1).

Proposition 4.1. Let B > 0. It is undecidable whether a deterministic CFM is univdysdb-
bounded.

Proof:
Using the above encoding, we reduce the halting problem getyemput for deterministic Turing
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machines to the test of the univerdadboundedness of a CFM. So let TM be some deterministic
Turing machine and letlty = (C, (Ap)pep, F') be the deterministic CFM constructed above, with
F corresponding to halting configurations of TM (and wherecpss 1 stops resending the current
configuration).

Letq,r ¢ P be two new processes. We define now the CEM (C, (A,),cpufqry, F') with:

. Ir,c . r.c

L] .Aq = ({So, C >SB+1}> —q 80) with s; q_)q Si+1 forall: < B, andsB+1 q_)q SB41-
. rlg,c . r?q,c

e A. = ({to, C >tB+1}a —>T,t0) with t; —=, tit1 forall: < B}, andtB+1 —r tB+1-

o I =F x{(sp+1,tp+1)}

wherec is some fixed control message frarh

Actually, the CFMB simply adds taAty a behavior on{¢, r} that consists inB + 1 messages
from ¢ to r, that crossB + 1 messages from to ¢q. This MSC Mp is not universallyB-bounded.
HenceL(B) is obtained by simply adjoining/p to any MSC fromL( Aty ). Hence eitheil (A) =
() = L(B), implying that is universally B-bounded. OrZ(A) # () and B is not universallyB-
bounded. O

Proposition 4.2. It is undecidable whether a deterministic and deadlock-1e#M is universally
bounded.

Proof:

Let TM be a deterministic Turing machine. The existence ofs# > 0 such that every configuration

of TM reached from the empty input is of size at ma@sis undecidable (for otherwise, we could
decide the halting problem of TM). We reduce this undeciglabsbblem to the question whether a
deterministic and deadlock-free CFM is universally bouhde

Let Arv be the deterministic CFM constructed above. It is easy talchigat if every configu-
ration of TM is of size bounded b§g, then the CFMA~y, is universally B-bounded. Conversely, if
a reachable configuration is of size greater tligrthen its associated sends (without the matching
receives) will require a channel size larger than Hence, Aty is universally bounded iff TM is
bounded.

We obtain that the CFMATy is deadlock-free by defining all states as final, togetheh wie
following modification: after sending a complete configioatC;, process 1 can stop forwarding
messages to process 2, it will only receive;RC Hence from any configuration a final state can be
reached, that isdty is deadlock-free. Notice that the CFM is still determiridtiecause procegs
has no choice, and the only choices of process 1 are betweeeiae and a send. O

Remark 4.1. Our definition of universally bounded CFM differs actualtprih the one used in [18],
who requires that all configurations afyrun of the CFM (not only accepting ones) d@sebounded.
Note that for the CFM defined in Proposition 4.2 all statesfiaa, so the result also holds w.r.t. the
definition of universal boundedness used by [18]. On therdtlaed, the question considered in
Proposition 4.1 becomes decidable in the setting of [18].

For a languagd. C ¥* we denote byPref(L) the set of prefixes of.. Similarly, for a CFMA,
Pref(A) C ¥* stands folPref(L(T4)). Let B > 0, then we sePref z(.A) as the subset dPref(.A)
consisting ofB-bounded words, only. Notice that if an MSW is universallyB-bounded, then any
prefix of M is universallyB-bounded.
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Proposition 4.3. Let. A be a CFM, andB > 0. ThenA is universallyB-bounded if and only if every
word in Pref g1 (.A) is B-bounded.

Proof:
If Ais universallyB-bounded, then so Bref(.4), which shows the first implication.

Conversely, assume that is not universallyB-bounded, and consider some= a;---a, €
L(T,) thatis notB-bounded. Clearly, ifi; - - - a; is K-bounded, then, - - - a;41 is (K +1)-bounded,
for any i, K. Thus there exists some< n such thata; - - - a; is not B-bounded, but belongs to
Prefpi1(A). O

Consider now the finite transition systeﬁf defined as the transition systefy restricted to
configurations((s,)pep; (Wp,q) (p,g)ccn) Where|w, .| < B for any (p, q) € Ch. Since this transition
system is finite, its language(T'%) is regular. IfA is deadlock-free, theRref g1 (A) = L(TF1),
where all states irTfJrl are final. Together with Proposition 4.3, this provides uthwain algorithm

to test whether the CFM is universallyB-bounded:

Proposition 4.4. The question whether a deadlock-free CFM is universBHgounded is a PSPACE-
complete problem, provided thatis given in unary.

Proof:
First, let us note thdff“ has an exponential number of states. Second, the set Btatlunded
linearizations of prefix MSCs is the language afslerministicautomaton with an exponential number
of states, hence its complement also has an exponentialenwohstates. We can decide the emptiness
of the intersection of two finite automata in logarithmic spaghence we get a PSPACE algorithm for
the question whether every linearizationHref 51 (A) is B-bounded.

For the lower bound, it suffices to notice that a Turing magfiiM never uses more thds space
iff the CFM Aty constructed before the proof of Proposition 4.1 is uniMgrs8-bounded. Since
the problem of deciding whether a Turing machineBisspace bounded (witlB given in unary) is
PSPACE-hard, the PSPACE-hardness of our problem follows. O

5. The behavior of existentially bounded CFMs

An extension of the trace technique of Section 3 allows taiobthe equivalence between MSO
and CFM within the larger setting of existentially bounde®®k. As stated in the introduction,
existentially bounded message channels circumvent the ofecknowledgments that are needed in
the universally bounded case. Moreover, existential bsuard a lot more realistic when modeling
one-way communication (such as e.g. in the producer-coassetting), and the existence of such
bounds amounts to the existence of some sort of fair schrgfdbletween sends and receives, that
avoids overflow of channels. On the other hand, the lack ofsagss acknowledgments makes the
proofs, in particular the CFM construction, much trickier.

The difficulty here consists in constructing a CFM that ratpgs the set of all existentialli3-
bounded MSCs (a nondeterministic CFM accepting the setlafr@ersally B-bounded MSCs is
easily constructed, and this set can even be accepted dastically [20, Lemma 3.14]). We do not
know whether the set of existentially-bounded MSCs can be recognized bgederministicCFM.
However we exhibit in this section an example that showsdbtgrministic, existentially3-bounded
CFMs are strictly less powerful than existentialBtbounded CFMs. We end the section by a result
showing that it can be decided whether a deadlock-free CFaékisentially bounded, for a given
boundB.
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5.1. Bichi characterization of existentially bounded behaviors

Informally, a CFM is existentiallyB-bounded, if the sending and receiving events can always be
scheduled in such a way that the size of the channels neveedsB. Let A be a CFM, and recall
thatTf is the restriction of the transition system associated wiitio runs where each configuration
has channels bounded 8 By definition, L(T%¥) C L(T4).

Definition 5.1. Let B be a positive integer. An MS@/ is existentiallyB-boundedf Ling (M) # 0.
A set of MSCsM is existentially B-bounded if everyM € M is existentially B-bounded. A CFM
Ais called existentially3-bounded ifmsc(L(T%)) = msc(L(T4)).

A CFM (set of MSCs, respectively) is called existentiallyunded if it is existentiallyB-bounded
for someB > 0.

For a set of MSCs\, we call X C Lin(M) a set ofrepresentativdinearizations forMif for
eachM € M, we haveX N Lin(M) # 0. In particular, if a CFMA is existentially B-bounded,
then L(T%) is a set of representative linearizations.4f Notice that if there exists a regular set of
representatives of1, then M is existentially bounded.

We start first with a characterization of existentialybounded MSCs. With an MS@/ = (F, <
, A) we asociate the binary relation on everts C E'x E [22] given by<p = <, UJ <p Urev,
whererev is given by

pEP

(r,s') € rev iff s <mm, A(s) = \(s'), and
Hrx e E|s<,z<,s,A(s)=Az)}| = B.

That is, the relationev maps a receive with s <,,, r to the sends’ that is theB-th event with
A(s") = A(s) ands < ¢ (if such an event exists). Hence, i is universally B-bounded, then
rev C <, i.e.,<z= <. Recall the encoding defined in Section 3, that numbers thetewf an MSC
M = (E, <, ) modulo B, via the labeling\’ : E — . Extending the definition from the case of
universally B-bounded MSCs we denote by()/) the structurg £, <73, \').

Lemma 5.1. [22] Let B be a positive integer, antf = (E, <, \) an MSC. ThenV/ is existentially
B-bounded iff the relation< 5 is acyclic. In this case, the structung /) is a trace ove(<2, I).

Figure 2 depicts the result of applying the encoding use@ati&n 3 to an existentially 2-bounded
MSC M. Note that in addition to the edges of the partial order weehan edge from the first
occurrence of(¢7p,0) to the second occurrence @flq,0), this edge is aev-edge. SinceVl is
existentially2-bounded, the relatior is acyclic by Lemma 5.1 and(M ) = (E, <, \) is precisely
the trace represented in Figure 2. The reader can also ehsitk that<; is not acyclic. Notice also
that M # proj(tr(M)), unlike the universal bounded case. Here, the ttaC® ) orders more events
than the MSCV/.

The lemma below is similar to the case of the univef3dbound.

Lemma5.2. Let A be an existentiallyB-bounded CFM. Then there exists a regular language of
tracesL over (£, I) such thatC(.A) = msc(proj(Lin(L)).

The next theorem provides the characterization of existignbounded CFMs (with given chan-
nel bound) in terms of monadic second-order logic and of legdinearizations. For lack of space,
we have omitted again the third characterization, in terfgabally-cooperative CMSC-graphs [16].



160 Genest, Kuske, Muscholl/ On communicating automata witiméed channels

Figure 2. Tracer(M) associated with an existentialtybounded MSC.

The results given below were obtained in [15]. Again, the ngd§icult part of the proof is the con-
struction of a CFM from a regular skinz(M). The proof uses the trace language from Lemma 5.2,
but an additional difficulty arises by the fact that the @drtirder of the MSCM is weaker than the
partial order of its trace structute(M ).

Theorem 5.1. [15] Let B be a positive integer and1 a set of existentially3-bounded MSCs. Then
the following assertions are equivalent:

1. Ling (M) is regular.
2. M is the language of some CFM.
3. M is the language of some M$8) formula.

4. M is the language of some formula of EM8& ) ,cp, <), EMSQ(<), or EMSQ <, <),
respectively.

The proof of the theorem above follows the main lines of thigansally bounded case. As previ-
ously, the main difficulty is the construction of the CFM frahe representative seinz(M). Once
again, the idea is to apply first Zielonka’'s constructionsyfrchronous automata to the trace language
obtained by Lemma 5.2. In addition, we need to solve two masblpms: first, the simulation of the
asynchronous automaton by the CFM is non-deterministicesihe information conveyed by thev-
edges in the runs of the asynchronous automaton has to bgegueg the receiver (recall that these
edges do not exist in the MSC). Second, a CFM recognizingxadtentially B-bounded MSCs must
be constructed. Both parts involve non-deterministic gegsn the CFM, and the example in the next
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section shows that non-determinism is unavoidable. The/algnce between the different EMSO-
logics can be shown as in the universally bounded case (sea&f &ection 4.1 or [15, Prop. 6.2]). The
only difference is the formula that expresses that the misdah existentiallyB-bounded MSC. An
MSO-formula for the set of all existentiallig-bounded MSCs is easily build (it expresses that
has to be acyclic). The EMSO formula is more involved, it ubesCFM that accepts all existentially
B-bounded MSCs.

5.2. Deterministic CFMs are strictly weaker

LetP ={0,1,2,3,4}. AllMSCs we will consider in the following send only messadem process
0 to processes and2, from procesd to 3, and from proces8 to 4. Forp € {0,...,4} let m,(M)
denote the projection aff onto the events of procegs

Let £y consist of all MSCs such that

o mo(M) € [(011)(012)]",
o m(M) € [(170)((113) + (113)(113))]*, andma (M) € [(270)((214) + (2!4)(214))]*,
° 7T3(M) S (371)* andm(M) S (4?2)*.

Thus, proces$ will send alternately td and2. Procesd will perform one or two send actionid3
between any two receive actiom30 and similarly for proces®. Finally, processe8 and4 will just
receive messages fromand2, respectively.

Now define the mapping : ¥* — >* by renaming@ into 1 and4 into 3. Let £ C £, consist of
all those MSCs frony where the sequence of actions of procedsand?2 are the same modulo,
i.e.,m (M) = ¢(ma(M)).

Proposition 5.1. The MSC languag€ can be accepted by some CFM, but not by any deterministic
CFM.

Proof:
A CFM for L is easily defined, by letting proce8decide whether procedsand3 send one or two
messages each. Proc@ssends non-deterministically either the message dr the message?2” to
processed and2 each. On receiving messagg,’processl sends precisely messages to process
(and similarly for processesand4).

Now suppose thatl is a deterministic CFM that accepfs Then there are distinct MSQ4g; and
M, from £ such that

o mo(My) = mp(M2) and

e A terminates in the same accepting global state when exgcutinand M.
Because of the first of these requirements, there exists &b MSuch that

1. mo(M) = mo(My) = (M), m (M) = 71 (M), m3(M) = w3(M;), and

2. mo(M) = mo(My), ma(M) = 74(M3).

Let p; andpy be the unique (and successful) runsodbn My and Ms, respectively. Recall that
A is deterministic and proce$isdoes not perform any receive eventsifih or in M,. Hencep; and
p2 behave the same on procésdHence we can construct a rgrof .4 on M as follows:
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1. on processes, 1, and3, it behaves likep; and
2. on processes, 2, and4, it behaves likeps.

Because of the second of the above requirements, theissuccessful, i.e} is accepted byl and
therefore an element df.

Since M; and M, are distinct withmg(M;) = mo(Ms), we have eitherr; (M) # m(Ms)
or mo(My) # mo(Ms). We consider the case, (M) # m (M) in more detall, the other case
is dealt with similarly. Since the only actions performed grpcessl are 170 and1!3, we obtain
T (M) = m(My) # m1 (M), butme (M) = ma (M), hencery (M) # ¢(me(M)), which contradicts
M e L. O

Theorem 5.2. Non-deterministic existentially bounded CFMs are styiatiore expressive than deter-
ministic existentially bounded CFMs.

5.3. Testing existential bounds

In this section we consider the test whether a given CFM istertially bounded. We show that the
decidability and complexity of deciding universal and éxgial channel bounds is the same, albeit
the fact that proofs are more involved in the existentiakcas

The proof of Proposition 4.1 yields quickly a similar redoit the existentially bounded case:

Proposition 5.2. Let B > 0. It is undecidable whether a deterministic CFM is existalti B-
bounded.

Proposition 5.3. It is undecidable whether a deterministic and deadloc&-fi&M is existentially
bounded.

Proof:
It suffices to reconsider the proof of Proposition 4.2, anddtice thatAry is actually existentially
bounded iff the Turing machine TM has a bound on the size okdashable configurations. O

We consider now the question whether a deadlock-free CFMisgeatially B-bounded, for
given B. We already know from Proposition 3.1 that an M3C is existentially B-bounded iff
the optimal linearizatiorOPT (M) is B-bounded. We would like to mimic the proof of Proposi-
tion 4.4, that showed how to test (in polynomial space) wiethdeadlock-free CFM is universally
B-bounded. Notice however thBtef(.4) is not the right set to deal with, since the property of being
existentially B-bounded is not inherited by prefixes. One can observe tlégagrthenon on an MSC
with two processeg, 2, where process 1 starts by sendiBg+ 1 consecutive messages 20 The
prefix MSC consisting of thé + 1 sends has of course i®-bounded linearization.

Let M be an MSC and consider a prefix = (E, <, \) of M. We defineN, as the restriction
of N to the set of matched evenis\ {e € E | Vf € E: e &£, f A f £m e} of N. Note that
N, contains all receives aW, since N is a prefix MSC. The se€Pref(M) consists of all MSCs
N., associated with prefixe¥ of M. Alternatively, we can constru€Pref (M) incrementally: For
MSCsM = (E,<,\) and N we write M — N if there exists some maximal eventc E such
that IV is the restriction of\/ to £\ {s,r} wheres € E is the unique event with <,,, r (i.e., N is
obtained fromM by deleting some message with maximal receive). Note thtiereV,. nor N need
to be prefixes of\/.
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Lemma 5.3. CPref(M) is the least set of MSCs that contaifi$ and, withN; — N, andN; €
CPref(M) also containsVs.

Proof:

It is easy to see thatPref(M) is closed under—, which gives one inclusion. For the converse, let
N = (E, <, \) be a prefix ofM. ThenN, can be obtained from/ by iterating— until all maximal
receive events belong iB. O

For a set of MSCs\t we write CPref(M) for | J,;c o CPref(M), and for a CFMA we write
CPref(A) instead ofCPref(L£(.A)). Finally, for B > 0 we denote byCPrefp(A) the subset of
existentially B-bounded MSCs i€ Pref(A).

Proposition 5.4. For any MSCM we have:
e If M is existentiallyB-bounded, then everyy € CPref(M) is existentiallyB-bounded.

e If M is not existentiallyB-bounded, then there exists soiec CPref (M) that is existentially
(B + 1)-bounded, but not existentialli-bounded.

Proof:
Let w be aB-bounded linearization af/. Deleting inw all symbols that do not occur iV yields a
linearization of NV which is B-bounded.

For the second statement, suppose Mat (E, <, \) is not existentiallyB-bounded. We reason
by induction on the size ol/. Consider two events, r of M that form a message, i.&,<,, r,
and such that is maximal inM. Then letM’ = M \ {s,r} be the restriction ofi/ to the events in
E\ {s,r}. If M"is existentially B-bounded, ther/ is existentially(B + 1)-bounded; in this case
we setN = M. Else, by induction we obtain som¥é’ € CPref(M’) that is existentially( B + 1)-
bounded, but not existentialli3-bounded. With Lemma 5.3 we obta@Pref(M') C CPref(M),
henceN’ is the desired result. 0

Corollary 5.1. Let.4 be a CFM, andB > 0. ThenA is existentiallyB-bounded if and only if every
MSC inCPrefp41(A) is existentiallyB-bounded.

Proof:

If Ais existentiallyB-bounded, then so iSPref(.A) by Proposition 5.4. Therefore we ha@ref(.A)
= CPrefp(A) = CPrefpy1(A). Conversely, ifA is not existentiallyB-bounded we obtain using
Proposition 5.4 somé&/ € CPrefp,1(.A) that is not existentially3-bounded. 0

Our next (intermediate) aim is to show that, provided the CRAMs deadlock-free, the set of
(B + 1)-bounded linearizations dfPref(.A) is regular and can be accepted by an automaton with
exponentially many states.

To this aim, we first construct an infinite transition systeithw-transitions7”(.A) for the set of
all linearizations ofCPref(.4). The idea is to add a flag for each channel. If this flag is raiaeg
sends to this channel are ignored (i.e., they give rigettansitions). Otherwise]”(.4) works as the
usual transition systeffi4 associated wittd.

The states of"(A) are of the formS' = ((sp)per, (Wp,q) (p,g)echs (fp.q) p.g)ccn), Wheres,, is a
local state of4,, w,, € C* is a channel content, and the last compongntis a flag for channel
(p, q), taking valueg) or 1. The stateS is initial if s, = ¢, is locally initial, w,, , is empty, andf, , is
arbitrary; S is accepting if all channels are empty. There are three tgpransitions: send, receive,
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ande-transitions. To define these transitions, $et= ((s,)per, (Wp.g) (p.g)cchs (fp.0) (p,g)ecn) and
S = ((sp)pers (W), ) (p.gyechy (fp.q) (p.g)ccn) be states of '(A). We have a transition from' to .S’
provided thatf, s < f; ; for all channelgr, s) € Ch and one of the following holds:

1. S - §'is areceive transitioowheneven = ¢?p and((s,)pep, (Wp.q) p.g)ecn) — ((sh)pep,
(wy, ) (p,q)ccn) is @ transition ofl’ 4, for some control messagec C.

2. S % S'is asend transitiorwhenever = plg, f,., = 0, and((s,)pep, (Wp.q) pa)ecn) —
((sp)peP, (W), 4)(p.g)ccn) IS @ transition off 4, for some control messagec C.

3. § — S is ane-transition whenever there exists a chanriplg) € Ch with f,, = 1 and

" plg,c
a transition((s,)per, (Wp.q) (p.g)cch) — ((5p)per, (W} o) (p.g)ecn) Of T4, for some control

message € C and channel content; .. Moreover,w, s = wy. ; for all channelgr, s) € Ch.

Thus, receives df’ are simulated by”(.A) without any change. Send actions however, can be
transformed inte-transitions, provided that the flag is set. At any momer ftag can be raised for
any channel.

Lemma 5.4. If the CFM A is deadlock-free, thehin(CPref(A)) = L(7"(A)), i.e., the transition
systeml”(A) accepts precisely the linearizations of element§Bfef(A).

Proof:

Let N € CPref(A) andw € Lin(N). Then there existav € Lin(£(A)) = L(T4) such thatw
results fromu by deleting all sends that are not matched.irConsider a path ifi' 4 that corresponds
to uv. The prefix of this path corresponding #agives rise to av-labeled path iri”(.A) (transitions
that correspond to unmatched sends get replacedtiansitions). This path ifi”(A) ends in a state
with empty channels, i.e., it is accepting. Heride(CPref(A)) C L(T'(A)).

For the other implication, consider some accepting patf”ipd) for w, starting in the state
((Lp)pep7 (E)(p,q)ECh7 (fp,q)(p,q)eCh) and leading tq(‘s;})pepa (E)(p,q)eCh7 (f;/;,q)(p,q)ECh)' Note that
this path contains sometransitions on channels whose flag is set at some point.eEhgansitions
correspond to “hidden sends”. Let € (X x C)* be obtained fromv by adding all these hid-
den sends at the appropriate positions, and adding theotoméissages used by the accepting path
in T'(A) . Then, in the transition systeffis, there is a path froni(c,),ep, (€)(p,g)ech) 0 S =
((sp)peP, (Wp.q) (p.g)ccn) fOr some channel contends, ,, labeled byu. Since the CFMA is deadlock-
free, there exists also a pathdiy from S to some accepting state, labeleddy (X x C)* . Thus,
uv labels an accepting path %, hence the MSC associated with is in £(.A). Sincew is obtained
from the X-projection ofu by deleting all unmatched sends, this prowess Lin(CPref(A)) and
thereforeN = msc(w) € CPref(A). Hence we proved.(7’(A)) C Lin(CPref(A)) and therefore
the equality of these two sets. O

Proposition 5.5. The question whether a deadlock-free CFM is existenti@Hgounded is a PSPACE-
complete problem, provided thatis given in unary.

Proof:
By Cor. 5.1 and Prop. 3.1, we have to check that any WoRil'(M/) from Ling,,(CPref(A)) is
B-bounded.
Restricting the transition systeffi’(4) to those states whose channels contain at nibst
1 messages, we obtain a finite automaffs, ;(.4) with exponentially many states that accepts
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Linpy1(CPref(A)). Using Proposition 3.2, we can construct an automaiomith exponentially
many states that accepts the intersectiohiafz ;1 (CPref(.A)) with the set of optimal linearizations
{OPT (M) | M MSC} (it suffices to complement the automaton of Proposition.3\@jte that there
exists adeterministicautomatorC with exponentially many states that accepts the sét-iounded
words. Hence we can test whethigi3) C L(C) in polynomial space.

For the lower bound, we apply a similar argument as in thefiwbBroposition 4.4. O

6. Conclusion

It follows from Theorem 5.1 that CFMs can be complementeditirad to the set of existentiallys-
bounded MSCs, for any bound. We do not know how to prove this explicitly without exploigj the
equivalence to MSO, which is trivially closed under negatidnother consequence of Theorem 5.1
is that several interesting model checking instances arelalgle. We can check 1) whether all exis-
tentially B-bounded behaviors of a CFM satisfy an MSO formula, for anyrioldB3, and 2) whether
a regular set of3-bounded linearizations is included in (intersects, respely) the language of a
CFM.

Figure 3 summarizes the results obtained for the problenesiingg channel bounds (with and
without an explicitly provided boundB, respectively). Note that the undecidability results helén
for deterministic CFMs.

H V¥ B-bound 3 B-bound V-bound 3-bound
Arbitrary CFM undecidable  undecidable  undecidable  undecidable
Deadlock-free CFM PSPACE PSPACE undecidable undecidable

Figure 3. Testing boundedness
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