
Squeezing Succinct Data Structures into Entropy Bounds

Kunihiko Sadakane∗ Roberto Grossi†

Abstract

Consider a sequence S of n symbols drawn from an al-
phabet A = {1, 2, . . . , σ}, stored as a binary string of
n log σ bits. A succinct data structure on S supports a
given set of primitive operations on S using just f(n) =
o(n logσ) extra bits. We present a technique for trans-
forming succinct data structures (which do not change
the binary content of S) into compressed data structures
using nHk + f(n) + O(n(log σ + log logσ n + k)/ logσ n)
bits of space, where Hk ≤ log σ is the kth-order empiri-
cal entropy of S. When k+log σ = o(log n), we improve
the space complexity of the succinct data structure from
n log σ+o(n logσ) to nHk +o(n logσ) bits by keeping S
in compressed format, so that any substring of O(logσ n)
symbols in S (i.e. O(log n) bits) can be decoded on the
fly in constant time. Thus, the time complexity of the
supported operations does not change asymptotically.
Namely, if an operation takes t(n) time in the succinct
data structure, it requires O(t(n)) time in the resulting
compressed data structure. Using this simple approach
we improve the space complexity of some of the best
known results on succinct data structures We extend
our results to handle another definition of entropy.

1 Introduction

Space-efficient data structures are useful in computa-
tionally demanding applications that require all data to
reside in main memory, as is the case of search engines
and portable computing. In this context, it is important
to keep data in compressed format while allowing fast
retrieval and update. Previous work in this direction led
to a plethora of algorithmic solutions for data structures
that are referred to as succinct, compact or compressed.
These solutions share the idea of efficiently supporting a
repertoire of basic functionalities on a succinct encoding
of the data set, without the need to decode data entirely
(only a negligible part is decoded). They combine the

∗Department of Computer Science and Communication Engi-
neering, Kyushu University Hakozaki 6-10-1, Higashi-ku, Fukuoka
812-8581, Japan (sada@csce.kyushu-u.ac.jp). Work supported
in part by the Grant-in-Aid of the Ministry of Education, Science,
Sports and Culture of Japan.

†Dipartimento di Informatica, Università di Pisa, Largo Bruno
Pontecorvo 3, 56127 Pisa, Italy (grossi@di.unipi.it). Work
supported in part by MIUR of Italy.

benefits of data compression with those of sophisticated
search data structures. Examples of succinct encodings
of this kind involve trees [3, 15, 27, 30, 29], graphs [21, 6],
sets and dictionaries [5, 7, 16, 32, 35, 34], permutations
and functions [28, 31], text indexes [11, 19, 36, 37], pre-
fix or range sums [33], polynomials and others [13]. In
general, each of these succinct encodings can be seen
as a sequence S of n symbols drawn from an alpha-
bet A = {1, 2, . . . , σ}, so encoding S uses n log σ bits.

We model a succinct data structure as operating
in the uniform-cost word RAM with word size b =
Θ(log n); in particular, a single access to the memory
can read or write a word of b bits. The data structure
supports a given set of primitive operations on S using
just f(n) = o(n logσ) extra bits of space (i.e. �f(n)/b�
words of memory). Typically, the f(n) bits are em-
ployed to store a set of directories that permit a fast ac-
cess to data and require the decoding of few words in S.
Hence, the space occupancy of succinct data structures
can be expressed as n log σ + f(n) = n log σ + o(n logσ)
bits. The design of succinct data structures is mainly
driven by the need to attain low space occupancy, and
careful analysis is directed to evaluate the term f(n)
that models the number of extra bits. Many primitive
operations are supported in this way, and we discuss a
couple of significant examples in Sections 1.2 and 1.3,
casting their operations into the following classification
of the state of the art:

1. Those operations that probe the explicit sequence S
and some auxiliary directories using f(n) extra bits.

2. Those operations that replace the original encod-
ing S′ by an equivalent sequence S, and probe some
auxiliary directories that use f(n) extra bits.

Note that S itself is already a form of compression.

1.1 Matter of Investigation and Results
In this context, the purpose of our research investigation
can be summarized in one question: “What if we
represent S implicitly by a shorter binary sequence, ξ,
that contains the same information as S does?”

If S is already a form of compression, it is unclear
how much benefit we can expect from using ξ. Although
the ultimate lower bound to space analysis is the
Kolmogorov complexity [23], defined in terms of the

1230
SODA ’06, January 22-26, Miami, FL
©2006 SIAM ISBN 0-89871-605-5/06/01

size of the smallest program that can generate S,
its undecidability naturally motivates the definition
of “sub-optimal” measures in the space complexity.
For instance, entropy is widely adopted for texts [8];
finite set model and encoding of integers are suitable
for dictionaries [7]; counting arguments (such as the
Catalan number and Tutte’s bounds) are employed for
parenthesis representations of trees and graphs [26],
and so on. These are widely accepted lower bounds
for evaluating the nearly optimal space occupancy of
succinct data structures.

Depending on the succinct data structure at hand,
we have room for improvement in ξ by choosing a suit-
able measure that is better than what offered by the
state of the art. We remark that the importance of this
kind of investigation is not merely theoretical, since the-
ory is the basis for studying the possibilities and the
limitations of practical methods for succinct data struc-
tures, analogously to what happened to information the-
ory in data compression [8].

In this paper, we give an answer to the above
question by showing how to improve the best known
space bounds in the literature while preserving the
same asymptotical time bounds. We require that the
operations supported by the succinct data structures
do not change the binary content of S.

We propose a technique that transforms a given
succinct data structure on S that uses f(n) extra bits,
into a compressed data structure with entropy bounds,

nHk + f(n) + O
(

n(log σ + log logσ n + k)
logσ n

)
(1.1)

bits, where Hk ≤ log σ is the kth-order empirical
entropy of the sequence S (see [22]). The idea is
widely usable since it is conceptually simple, and it
is the first to attain high-order entropy for the class
of succinct data structures discussed below, using Ziv-
Lempel compression [38] (lz78) and other properties.
Instead of keeping S explicitly stored, we replace S by
a compressed representation ξ, so that any substring
S[i . . . i + r] can be recovered from ξ in O(1 + r/ logσ n)
time, and so any word of S can be recovered from ξ in
O(1) time. Note that ξ is actually the encoding of a
special succinct data structure that uses no more bits
than S (plus lower order terms) and supports a primitive
operation that decodes an arbitrary substring of S.

When k + log σ = o(log n) in equation (1.1), we
improve the space complexity of the succinct data
structure by replacing S with ξ, reducing the number
of bits from n log σ + o(n logσ) to nHk + o(n log σ).
Note that nHk can be much smaller than n log σ as
discussed in the examples of Sections 1.2 and 1.3.
When a supported operation requires a certain memory

word ω ∈ S, we introduce an intermediate layer that
applies the substring decoding operation for recovering
the word ω from ξ in constant time. Thus, the time
complexity of the supported operations do not change
asymptotically; namely, if an operation takes t(n) time
in the succinct data structure, it requires O(t(n)) time
in the resulting compressed data structure.

Note that the bound on Hk holds for S in equa-
tion (1.1). According to our classification (cf. point 2),
when S replaces the original encoding S ′, we may at-
tempt to compress S ′ directly by means of ξ (if a word
in S can be obtained from S ′ in constant time). In this
case, the bound on Hk in (1.1) refers to S ′. If this is not
the case, Hk = Hk(S) has to be related to the kth-order
empirical entropy of the original encoding S ′.

Using our simple approach we improve the space
complexity of some of the best known results on succinct
data structures (setting σ = 2 and k = O(log log n)),
while preserving the constant-time complexity of their
supported operations. We discuss these implications
in Sections 1.2 and 1.3, along with an alternative
application of our ideas on replacing S by ξ, for a
measure of entropy based on gap encoding. We refer the
reader to Section 3 for a comparison of our results with
related work on entropy-compressed data structures.

1.2 Succinct Dictionaries

Let us examine first the application of our general
method to the problem of succinct dictionaries, improv-
ing the best known bounds. Consider an ordered set
Ŝ ⊂ U = {1, 2, . . . , n} of m ≤ n/2 elements (otherwise,
we take the complement of Ŝ). According to our classi-
fication, the first approach is that of representing Ŝ by a
bit-vector S[1 . . . n], such that S[i] = 1 if the ith element
of U belongs to Ŝ, and S[i] = 0 otherwise (here, σ = 2).
In addition to S, the set of supported operations use
f(n) = o(n) bits for directories implementing the fol-
lowing constant-time functions on S, where x = 0, 1
(see Jacobson [21] and Clark and Munro [25]):
• rankx(S, i) returns the number of occurrences of x

in S[1 . . . i], where 1 ≤ i ≤ n;
• selectx(S, i) returns the position of the ith occur-

rence of x in S[1 . . . n], where 1 ≤ i ≤ m.
Note that checking the membership of element i in Ŝ can
be easily performed by the above two primitives. This
is equivalent to verifying whether S[i] = 1 (or S[i] = 0
if we complemented Ŝ). The rank and select functions
can be extended as follows [27]:
• rankp(S, i) returns the number of occurrences of

pattern p up to the position i, where p is for
example “01” and |p| = O(1).

• selectp(S, i) returns the position of ith occurrence
of pattern p (where |p| = O(1)).

1231

The second approach in our classification is based
on the observation that the above representation of S
has much redundancy when m is small. Since there
are only

(
n
m

)
different sets with m 1’s, we have that

B(m, n) =
⌈
log
(

n
m

)⌉ ≤ n is an information-theoretic
lower bound on the number of bits required to store Ŝ.
Brodnik and Munro [7] were the first to show how to get
this bound. Pagh [32] discussed how to implement the
rank function. Raman, Raman and Rao [34] proposed
data structures for rank and select queries for S called
fully indexable dictionary (fid). In this case, the
representation S becomes a binary string of B(m, n)
bits, and f(n) = O(n log log n/ logn), yielding a nearly
optimal size. This represents the best bound known for
the problem.

We can apply our technique to both approaches and
get the same improved bounds. Setting σ = 2 and k =
O(log log n) in equation (1.1), we obtain a space bound
of nHk + O(n log log n/ logn) bits, still supporting rank
and select in constant time. To appreciate the improve-
ment, note that B(m, n) ≈ m log n

m +(n−m) log n
n−m =

nH0. Since Hk ≤ Hk−1 · · · ≤ H0, our implementation
(which uses fids) improves the space bounds of fids
themselves! We call our dictionaries entropy-bound in-
dexable dictionaries (eids). Note that the auxiliary data
structures in fids can also be employed if the corre-
sponding sequence S is stored in an uncompressed form,
i.e., represented by a bit-vector of length n. The fids
divide the bit-vector into segments of 1

2 log n bits and
store them in a compressed form, along with the point-
ers to the segments.

This improvement can be drastic as it depends on
the distribution of the m 1s in the uncompressed S.
For example, take m = n/2. We have B(m, n) ≈ n bits
independently of the distribution of the 1s. However,
if they occur contiguously in S[i . . . i + m − 1], or in
alternating position S[i], S[i+2], . . . , S[i+2(m−1)], we
expect to represent them in nH1 = O(logn) bits, with
an exponential improvement. Unfortunately, there is a
limit on the maximally attainable improvement because
of the extra term f(n) = O(n log log n/ logn). Indeed,
Miltersen [24] proved that f(n) = Ω(n log log n/ log n)
for constant-time rank and select when S is read-
only. Nevertheless, eids still obtain a better bound
of O(n log log n/ log n) in these cases by equation (1.1),
while fids take n + o(n) bits. 1

When m � n, we cannot expect big improvements
with a small value of k. It is more suitable to define
entropy in terms of the gap bounds. For an integer

1Note that our technique cannot be applied to indexable
dictionaries in [34], which support a restricted form of rank 1

and select 1. This makes a difference as constant-time predecessor
queries cannot be performed in these dictionaries.

g > 0, let δ(g) = 1+ 	log g
 be the minimum number of
bits to represent g in binary. Also, let si denote the ith
smallest element of Ŝ, where s0 = 0. We define

gap(Ŝ) =
m∑

i=1

δ(si − si−1),(1.2)

and we consider only the case for which gap(Ŝ) < n
(which is true when m � n) because otherwise we can
use eids. Then, we can obtain a variant of eids based
on gap encoding that uses gap(Ŝ)+O(n log log n/ logn)
bits. Since it can be proved [18] that gap(Ŝ) ≤ B(m, n),
we obtain another improvement. In summary, we obtain
the first space bound of

min{nHk, gap(Ŝ)} + O(n log log n/ log n)(1.3)

bits for succinct dictionaries supporting constant-time
rank and select. The first argument of min{·, ·} in
equation (1.3) is more pertinent to dense sets while the
second is more suitable to sparse sets.

We believe that our technique can improve other
bounds on succinct dictionaries in the literature. An
example of improvement is performing rankx and selectx
for any x ∈ A as shown by the wavelet trees of
Gupta, Grossi and Vitter [17] and their alternative
implementation by Ferragina, Mäkinen, Manzini and
Navarro [10]. We improve again their space from nH0 +
O(n log log n/logσ n) to nHk+O(n log log n/ logσ n) bits
while preserving the same time bounds, where σ =
|A| = polylog(n) and k = O(log log n). In general,
we are able to preserve the time complexity of the
primitives supported by a succinct dictionary, provided
that they do not change the underlying sequence S.

1.3 Succinct Representation of Trees
Another example of application of our technique is the
succinct representation of trees. Consider a rooted
ordered tree with n nodes. It is well known that the
tree is represented by a balanced parenthesis sequence S
of 2n bits as follows. During a preorder traversal of
the tree, write an open parenthesis when a node is
visited, then traverse all subtrees of the node, and
write a close parenthesis. Any node in the tree is
represented by a pair of open and close parentheses
“(· · ·)”. We use the position of the open parenthesis
in S to indicate the node. This is an interesting case as
the two approaches in our classification coincide, both
yielding nearly 2n bits. Indeed we cannot compress this
sequence by fids because there are n open parentheses
and n close parentheses, implying B(n, 2n) ≈ 2n. The
best bounds use 2n + o(n) bits for supporting several
primitive operations that navigate in the encoded tree
(e.g. [3, 15, 21, 27, 29, 27, 30, 34, 35]).

1232

In this context, our approach compresses S
in min{2nHk, gap(Ŝ)} + O(n log log n/ log n) bits as
in (1.3). However, Hk refers to the kth-order empiri-
cal entropy of the parentheses in S and gap(Ŝ) should
be interpreted by taking the)s in S as elements of a set
Ŝ ⊆ [1 . . . 2n].

Our entropy bound takes into consideration the
skewness of the shape of the encoded tree. For example,
the degenerate case of a tree which is unbalanced to its
left, gives the highly-repetitive sequence of parentheses
“((((· · ·()())· · ·())”, whose symbols can be predicted
by looking at the k = 2 preceding symbols; hence, we
expect to compress it in 2nH2 = O(log n) bits. (Here
the higher-order entropy Hk refers to the sequence of
2n parentheses.) This is especially effective to compress
balanced parenthesis sequences representing a suffix tree
because the latter contains many similar subtrees which
are compressible.

It is worth noting that we can still support the fol-
lowing tree navigational operations in constant time [14,
15, 26, 27], where f(n) = o(n) in equation (1.1): find-
ing the first child, the next sibling, the parent, and
the leftmost and the rightmost descendants, comput-
ing the number of descendants, the number of leaves
of a subtree, the depth of a node, and the preorder
and the postorder of a node, etc. All the queries above
take constant time (where f(n) = O(n log log n/ logn),
see [14, 27]). In addition to these operations, we can
also support the following constant-time operation us-
ing f(n) = O(n log log n/

√
log n) bits:

• anc(S, v, d) returns the level-ancestor of node v that
is of depth d [31].

Once again, we believe that our approach has a wide
applicability, for example, in encoding important sub-
classes of trees in less than 2n + o(n) bits.

2 Entropy-Bound Indexable Dictionary (EID)
We now describe our scheme for transforming succinct
data structures that access (but do not modify) a
sequence S of n symbols drawn from an alphabet
A = {1, 2, . . . , σ}, into compressed data structures with
entropy bounds. We recall that S can be seen as a
binary string of length n log σ. Our purpose is to decode
w = 1

2 logσ n consecutive symbols (i.e. w′ = 1
2 log n bits)

of S from its compressed format ξ in constant time, for
any arbitrary position. In this way, we can support all
the primitive operations defined on S by the succinct
data structure at hand. We reuse all the machinery
from the succinct data structure; when a portion of
S is needed, we plug in our method to provide the
required data from ξ. This simple idea is very effective
for improving the previously known bounds.

We illustrate our technique with a concrete exam-
ple, thus proposing entropy-bound indexable dictionaries
(eids) whose properties are given in Theorem 2.1.

Theorem 2.1. There exists a succinct data struc-
ture for storing a string S[1 . . . n] on alphabet A =
{1, 2, . . . , σ} in

nHk + O
(

n(log σ + log logσ n + k)
logσ n

)
(2.4)

bits for any k ≥ 0, where Hk is the kth-order
empirical entropy of S, such that any substring
S [i . . . i + O(logσ n)] of O(log n) bits can be decoded in
O(1) time on the word RAM, for 1 ≤ i ≤ n.

Corollary 2.1. The above data structure has size
nHk + O(n log log n/ logn) bits when σ = O(1) and
k = O(log log n); in general, it has size nHk +o(n logσ)
when k + log σ = o(log n).

Due to lack of space, we refer the reader to Sec-
tions 1.2 and 1.3 for the improvements on succinct dic-
tionaries and succinct representation of trees that follow
from Theorem 2.1. In Section 2.1, we briefly review the
parsing of Ziv-Lempel compression [38], which is at the
heart of our method, and the lz-trie resulting from that
parsing. To support our substring decoding query, we
need to decode some paths in the lz-trie. We introduce
new succinct data structures for supporting this task
in Section 2.2, and analyze their space complexity. In
Section 2.3, we describe the substring decoding query
algorithms and discuss their time complexity. In Sec-
tion 2.4, we describe an alternative way to compress S
for the dictionary problem, using the gap encoding ac-
cording to equation (1.2), so as to get the bound in (1.3).

2.1 Ziv-Lempel Compression

Ziv-Lempel compression [38], or lz78, is a data com-
pression scheme for strings. When applied to S =
S[1 . . . n], the algorithm works as follows. First initialize
a trie T as empty, the current position p = 1 in S, and
the number of phrases c = 0. Then, parse S into phrases
from left to right as follows. Find the longest string,
t ∈ T , that appears as a prefix of S[p . . . n]. Obtain the
phrase s = S[p . . . p + |t|] = t · S[p + |t|] to be inserted
into T , and determine t’s index in T (which is the identi-
fier of the node in T storing t). Set c = c+1, and output
t’s index (encoded in �log c� bits) followed by symbol
S[p + |t|] (encoded in �log σ� bits). Set p = p + |t| + 1
and repeat the parsing for the next phrase. The result-
ing trie T is called an lz-trie, denoting by c the number
of phrases generated by algorithm lz78 (and thus the
number of nodes in T).

1233

6

4

5

2

3

1

7

8

a

a

a

b

b

b

b

S = aaabbbaaaabbbb
R 2 3 6 7 4 5 8

P 1 2 4 5 7 10 12

2 3 6 74 5 8

E (((())())((())))
1

C a a a b b b b

Figure 1: Encoding of lz-trie for S = aaabbbaaaabbbb
with the first suite of arrays R, P , E, and C.

Lemma 2.1. (Ziv and Lempel [38]) The number of
phrases in lz78 satisfies

√
n ≤ c ≤ n/ logσ n.(2.5)

For strings generated from a stationary ergodic
source, we have c log c

n → H where H is the entropy
of the source [8]. On the other hand, the output
size of lz78 is at most c(log c + log σ). Therefore
the compression ratio of lz78 achieves the optimal
asymptotically. We use Lemma 2.3 from [22] for
bounding c in terms of the kth-order empirical entropy,
Hk, of the string S:

Lemma 2.2. (Kosaraju and Manzini [22]) Let s1,
s2, . . . , sc denote a parsing of the string S, such that
each phrase appears at most M times. For any k > 0,
the number of phrases satisfies

c log c ≤ |S|Hk + c log
|S|
c

+ c log M + Θ(kc + c)(2.6)

2.2 Succinct Data Structures for Substring De-
coding
Our data structures are built around the lz-trie T ,
which is obtained from running the lz78 parsing for S
as described in Section 2.1, where c is the number of
phrases. Let p1, p2, . . . , pc denote the starting positions
of the phrases in S (where 1 = p1 < p2 < · · · < pc ≤ n).
We renumber the indices assigned to the phrases by
lz78, so that they coincide with the preorder numbering
of the corresponding nodes in the lz-trie T . (The node
corresponding to a phrase is defined as the node storing
that phrase in T .) We denote by rj the “preorder” index
of phrase j, for 1 ≤ j ≤ c.

We succinctly represent the lz-trie T by storing two
suites of arrays. The first suite contains the following
arrays, illustrated by the example shown in Figure 1 and
summarized in Table 1.

• R[1 . . . c] contains the preorder indices r1, r2, . . . , rc

of the phrases in S generated by lz78. Note that
they are a permutation of 1, 2, . . . , c. (We actually
store a subset of these indices.)

• P [1 . . . c] contains the starting positions p1, p2, . . . ,
pc of the phrases in S. It is stored as a subset
of c elements from the universe 1 . . . n, using a
fid of B(c, n) + O(n log log n/ logn) ≤ clog n

c +
1.44c + O(n log log n/ log n) bits of space, since
(n − c) log n

n−c ≤ 1.44c. (We refer the reader to
Section 1.2 for the operations supported by fids.)

• E[1 . . . 2c] contains the balanced-parenthesis se-
quence representing the tree shape of the lz-trie T .
It is stored as a binary sequence in 2c bits aug-
mented with auxiliary directories to navigate in the
tree, using further O(c log log c/

√
log c) = o(c) bits.

(We refer the reader to Section 1.3 for the primitive
operations supported by the tree encoding E.)

• C[2 . . . c] contains the symbols of A labeling the
edges of the lz-trie T , when traversed in preorder.
In particular, C[i] is the label of the edge (u, v),
where u is v’s parent and v is the node in T
represented by the ith open parenthesis “(” in E.
(C[1] is not defined because the first node has no
parent.) Array C stores c symbols in c log σ bits.
The purpose of the first suite of arrays is to support

navigational operations in the lz-trie T , retrieve its edge
labels, and map positions and phrases of S into T ’s
nodes. However, we need the second suite of arrays
to decode arbitrary substrings of w = 1

2 logσ n symbols
using T , namely, w′ = 1

2 log n bits. Here, we set up the
following machinery, as summarized in Table 2.

We define short phrases as those which consist of
less than w symbols, and long phrases as the opposite.
For short phrases, we introduce a succinct data struc-
ture for decoding consecutive short phrases. For long
phrases, we need succinct data structures for decoding
the labels in the length-w path from v upward to the
root, for any given node v ∈ T . (If v is at depth w̄ < w,
then w̄ symbols are returned.) For this, we define three
types of nodes: jump nodes, macro nodes, and micro
nodes. (We adopt these terms from Bender and Farach-
Colton [2].) We define a jump node as a node v such that
v has at least w/2 = 1

4 logσ n descendants (including v
itself) while every child of v has less than w/2 descen-
dants. There exist at most 4c/ logσ n jump nodes. A
macro node is a node which is an ancestor of a jump
node (including the jump node). Finally, micro nodes
are the non-macro nodes. We also define a micro tree as
a maximal connected component of micro nodes. Each
micro tree contains less than w/2 nodes (otherwise it
would contain a macro node). Also, if a node belongs
to a micro tree Q, all of its descendents belong to Q.

1234

array R[1 . . . c] (∗) P [1 . . . c]§1.2 E[1 . . . 2c]§1.3 C[2 . . . c]

#bits see Lemma 2.3 B(c, n) + O(n log log n/ log n) 2c + o(c) c log σ

(∗) Array R is actually shorter than declared. See Lemma 2.3 for the actual space occupancy.

Table 1: First suite of arrays for representing the lz-trie T and their space occupancy in bits. The array tagged
with §1.2 is a fid and the one tagged with §1.3 is a succinct representation of trees.

We define a tree T̃ as the induced subtree consisting
of all macro nodes of the lz-trie T . All leaves of T̃ are
jump nodes. For representing T̃ , we store the following.
• Ẽ[1 . . . 2c] contains the balanced-parenthesis se-

quence representing T̃ . It is stored as a binary se-
quence in at most 2c bits augmented with auxiliary
directories of O(c log log c/ log c) bits.

• C̃[1 . . . c] contains edge labels of T̃ , when traversed
in preorder.

• F [1 . . . c] stores flags to show which nodes in T are
macro nodes. A node in T whose preorder number
is i is a macro node if and only if F [i] = 1. The
preorder number of the corresponding node in T̃ is
computed by rank(F, i).

For decoding a path in T̃ , we use the following.
• B[1 . . . c], WB[1 . . . 4c/ logσ n− 1]: We consider the

length-w path for each branching node of T̃ . There
are at most 4c/ logσ n − 1 such nodes. We mark
all branching nodes by using a bit-vector B[1 . . . c],
which is stored as a fid in c + O(c log log c/ log c)
bits. The node in T̃ with preorder number v is
marked as branching node if and only if B[v] =
1. We store the labels along the length-w paths
leading to branching nodes (from the root) into
an array WB , where the labels on the path for v
are stored in entry WB [rank(B, v)], using less than
2c logσ bits. (For unary nodes, with exactly one
child, we will decode paths by using the array C̃ .)
As previously mentioned, we also need a succinct

data structure for decoding consecutive short phrases.
If there is a region in S of r > 1 consecutive phrases,
all of them shorter than w, we replace the storage
of the indices in R with the direct storage of the
orderly concatenation of these phrases. We define a
dense region to be a region with the largest number
r > 1 of consecutive phrases, provided that their
total length does not exceed w. We also impose the
constraint that any two dense regions must be separated
by a (either short or long) phrase. We guarantee this
property, uniquely identifying the dense regions in S, by
scanning S from left to right in greedy fashion.

Let d denote the number of dense regions thus
identified. We employ the following data structures.

• D[1 . . . c], WD[1 . . . d]: We use a bit-vector D[1 . . . c]
to mark the dense regions in S, with r > 1
consecutive short phrases. Namely, the jth phrase
is in a dense region if and only if D[j] = 1.
Note that by our constraint, two regions cannot
be consecutive, so there is at least a 0 in D
separating them. Again, D is stored as a fid in
c + O(c log log c/ log c) bits. In array WD[1 . . . d],
we store the length-w substrings of S that contain
the dense regions in S (since a dense region can be
shorter than w).
Note that we do not store anymore in R the

preorder indices of the short phrases contained in the
dense regions of S. For the remaining phrases (i.e. the
short phrases not contained in any dense region and the
long phrases), we store their preorder indices in R as
usual. Let R′ denote the resulting array, which contains
a subset of the indices in R. We can simulate the access
to R as R[j] = R′[rank 0(D, j)] where j is the preorder
index of a phrase not contained in a dense region. In the
following, we will use the notation R in place of R′, so
that its length can be shorter than that given in Table 1.

Lemma 2.3. Arrays R and WD[1 . . . d] use together at
most c log c bits.

Proof. Recall that WD stores the dense regions of S,
allocating w′ = 1

2 log n bits per region. We show that
the space bound of WD is smaller than the number of
bits originally allocated in R for storing the preorder
indices of the short phrases that are currently in the
dense regions. (Note that we do not store anymore
their preorder indices.) Recall that a dense region
consists of r phrases, for some r > 1. We would use
r log c bits if we had to store these phrases in R. By
Lemma 2.1, we know that c ≥ √

n in equation (2.5).
Therefore, r log c > 1

2 log n because r > 1. This implies
that w′ < r log c, meaning that the short phrases in
the dense region uses less bits than storing their r > 1
preorder indices in R. Hence the claim follows.

Finally, we need a lookup table for the micro trees,
which are the subtrees of T rooted at the children of
the macro nodes. Each micro tree, Q, contains at most

1235

array B[1 . . . c]§1.2 WB[1 . . . 4c/ logσ n − 1] Ẽ[1 . . . 2c]§1.3 C̃[1 . . . c]

#bits c + o(c) 2c log σ 2c + o(c) c log σ

array D[1 . . . c]§1.2 WD[1 . . . d] F [1 . . . c]§1.2 L[α, β, γ]

#bits c + o(c) see Lemma 2.3 c + o(c) O(n3/4 log2 n)

Table 2: Second suite of arrays for representing the lz-trie T and their space occupancy in bits. The arrays
tagged with §1.2 are fids while the array tagged with §1.3 is a succinct representation of trees.

w/2 = 1
4 logσ n nodes by definition. Hence, Q can be

represented by a segment, α, of at most w/2 symbols
from array C and by the corresponding binary seg-
ment, β, of array E to encode its shape, with a to-
tal of w/2 × (log σ + 2) ≤ 3

4 log n bits for any σ ≥ 2.
Hence, there are O(n3/4) distinct micro trees Q in T .
Moreover, the preorder numbering of T implies that the
nodes in Q are numbered consecutively. So, we can
easily transform the global preorder number of a node
u ∈ Q into a local preorder number, γ, by subtracting
the preorder number of the root of Q from u’s preorder
number. Using these facts, we use a lookup table, L, of
O(n3/4 log2 n) = o(n log log n/ logn) bits of space, such
that entry L[α, β, γ] stores the labels on the path from
u ∈ Q to the root of Q (using at most w symbols). Each
entry can be retrieved in constant time by a simple table
lookup into L, using the proper segments α of C and β
of E, along with the local preorder number γ of u.

We can sum up the sizes for all the data structures
in the suites, as reported in Tables 1 and 2. The first
suite, except R, occupies B(c, n) + c logσ + 2c + o(c) +
O(n log log n/ logn) bits of space. The second suite,
except WD, occupies 3c logσ+5c+o(c)+O(n3/4 log2 n)
bits of space. By Lemma 2.3, arrays R and WD

together contribute for further c log c bits at most. Since
B(c, n) ≤ clog n

c + 1.44c + O(c), the total is c log c +
c log n

c + O(c logσ) + O(n log log n/ logn) bits. From
Lemma 2.1, we know that c ≤ n/ logσ n, and so we can
bound c log n

c = O(n log logσ n/ logσ n) and c log σ =
O(n logσ/ logσ n). Thus, the total space is upper
bounded by c log c+O(n(logσ+log logσ n)/ logσ n) bits.
We now apply Lemma 2.2 to the latter bound. In
particular, we use equation (2.6) on the term c log c,
where M = 1 and |S| = n.

Lemma 2.4. The two suites of data structures reported
in Tables 1 and 2 use a total of

nHk + O
(

n(log σ + log logσ n + k)
logσ n

)
bits of space for any k ≥ 0, where Hk is the kth-order
empirical entropy of the sequence S of n symbols drawn
from an alphabet A = {1, 2, . . . , σ}.

2.3 Substring Decoding Query Algorithms
We aim at decoding the substring q = S[i . . . i + w − 1]
in constant time, where w = 1

2 logσ n is the number of
symbols in q, by providing in input its starting position i
in S. It is simple to extend the query so as to decode
a substring of O(w) consecutive symbols (i.e. O(log n)
bits) in constant time. Starting from the lz78 parsing
of S into phrases at positions 1 = p1 < p2 < · · · <
pc ≤ n, we have set up a structure on these phrases
in Section 2.2, so that we can see S as partitioned
into dense regions, short phrases not contained in dense
regions, and long phrases. Before showing how to
compute q, we relate the structure of S’s phrases to q.

Lemma 2.5. In the lz78 parsing of S, no two dense
regions are consecutive, and if two short phrases not
contained in dense regions are consecutive their total
length is at least w. Hence, substring q overlaps a
constant number of dense regions, short phrases not
contained in dense regions, and long phrases.

We exploit the properties described in Lemma 2.5 for
decoding substring q as follows:

1. Determine the phrase j containing S[i] by comput-
ing j = rank(P, i) and the position of the phrase
pj = select(P, j) (note that pj ≤ i).

2. Determine the phrase j′ containing S[i+w−1] and
its position pj′ , analogously to what done in Step 1.

3. Decode q = S[i . . . i + w − 1] using the phrases
j, j+1, . . . , j′ and the data structures of Section 2.2,
according to the following cases (distinguishable in
constant time by comparing j to j ′ and pj to pj′):

(a) q is entirely contained in phrase j (i.e. j ′ = j);

(b) q is contained in two consecutive phrases j and
j′ = j + 1, each phrase of at least w symbols;

(c) q is contained in more than one phrase, one of
which has length less than w.

Below we describe the algorithms for handling
cases (a)–(c) in some detail. Note that there can

1236

be a non-constant number of phrases in case (c), but
Lemma 2.5 reduces them to a constant number of seg-
ments to decode. In the following, we identify a node v
(in T or T̃) with its preorder number v in the tree.

Case (a): We first find the node v ∈ T such
that S[pj . . . i + w − 1] is stored along the path from
the root of T to v. (Hence, q is a suffix of the
latter substring.) This is done by computing the level-
ancestor query v = anc(E, rj , i + w − pj) in constant
time, where rj = R[j] = R′[rank 0(D, j)] is the node
in T storing phrase j (and so rj descends from v since
S[pj . . . i + w − 1] is a prefix of phrase j).

Consequently, we focus on the problem of decoding
the labels on the length-w downward path leading to
node v, since q is made up of these symbols. We first
check if v is a micro node by examining F [v]. If so,
v belongs to a micro tree, Q, rooted at a child of t,
the lowest macro-node ancestor of v. We can identify t
by finding the rightmost F [t] such that F [t] = 1 and
t < v (found using rank and select on F). We can
obtain a suffix of q as follows. Let α be the segment
of the array C corresponding to Q, and β the segment
of E corresponding to Q. Let γ = v − t be the local
preorder number of v in Q. A lookup at entry L[α, β, γ]
returns the labels from the child of t to v. We can
easily get the label from t to its child using C. If the
number of decoded character is less than w, we obtain
the character C[t] on the edge connecting t to its parent.
We continue decoding from t, which is a macro node,
following the scheme described for v below.

If v is a macro node, we find the lowest ancestor s
of v that is a branching node in T̃ . This task is made
easy by the observation that all the nodes are unary
(in T̃) along the path connecting v to s. Hence, s
corresponds to the position of the rightmost 1 in B such
that s < ṽ because of the preorder numbering, where ṽ
is the preorder of v in T̃ as computed by rank(F, v).
Hence, we can find s in constant time, and we can
decode the path from the array C̃ as the symbols in
C̃[s + 1 . . . ṽ]. If that path is shorter than w, we have
to decode the upward path from the branching node.
We obtain the labels on the path by accessing B and
WB, as discussed in Section 2.2. Finally, we obtain q
as a length-w substring of concatenation of the paths
decoded above.

Case (b): This case is similar to Case (a). Since q
is included in just two long phrases and the w symbols of
each phrase can be decoded in constant time, the claim
holds.

Case (c): In this case, the number of phrases
covering q may not be a constant. We use Lemma 2.5
to circumvent this drawback by decoding a constant
number, 	, of segments. We parse q as q = q1q2 · · · q� on

the fly, from left to right, such that each qi is contained
in a dense region, a short phrase not in a dense region,
or a long phrase. (Actually, q1 can be a suffix, q� can be
a prefix, while the other qis are equal to their companion
phrases or regions.) We discussed how to deal with long
phrases in case (a). Indeed, dealing with short phrases
is also very similar to case (a), since we know that qi is
contained (or equal) to the phrase. We therefore focus
on the case that qi is in a dense region.

Without loss of generality, we consider q1, namely,
the beginning of q’s parsing on the fly. Recall that
phrase j contains the first symbol of q (hence, of q1). We
check if D[j] = 1, that is, phrase j is in a dense region.
If not so, we know how to treat long and short phrases,
as previously mentioned. Hence, let us assume that
D[j] = 1. We obtain the index m of the dense region
by executing m = rank 01(D, j) since the beginning of a
dense region is indicated by the pattern 01 in D. (The
border case when the region is the leftmost in S can be
easily handled.) All that remains is to decode the string
from entry WD[m]. By Lemma 2.5, we have no more
than 	 = O(1) decoding steps, yielding a constant-time
cost for decoding q also in this case.

Lemma 2.6. For any sequence S of n symbols drawn
from alphabet A, we can decode any substring of S
of O(logσ n) consecutive symbols (i.e. O(log n) bits) in
constant time on a word RAM, using the two suites of
data structures reported in Tables 1 and 2.

2.4 Gap Encoding Measure of Entropy
We show how to apply our general method as described
in Section 1.1, to the special case of succinct dictionaries
when σ = 2. We have the problem of encoding a set
Ŝ ⊂ U = {1, 2, . . . , n} with m elements. We follow
our general approach described in the Introduction.
Let si be the ith smallest elements of Ŝ, and s0 = 0.
We conceptually construct an implicit binary string
S[1 . . . n] such that S[i] = 1 for each si ∈ Ŝ, and
construct auxiliary data structures for rank and select
in O(n log log n/ logn) bits using a fid. Then we
compress S by the concatenation of a binary encoding
of the gaps, namely, the differences (si − si−1) for
i = 1, 2, . . . , m. For their encoding we can use for
example the δ-code [9, 4], which encodes a positive
integer g in 1+	log g
+2	log(1+	log g
)
 bits. Now, any
consecutive O(log n) bits of S are decoded in constant
time, using the fact that consecutive δ-codes stored in
O(log n) bits can be decoded in constant time using
table lookup.

We adopt another measure of entropy based on gap
encoding to evaluate this method. In order to establish
a matching lower bound on the space complexity, let

1237

δ(g) = 1 + 	log g
 be the minimum number of bits
needed for representing g ≥ 1. We define gap(Ŝ) as in
equation (1.2), and measure the size of the dictionary
in terms of this gap function. We consider only the
case gap(Ŝ) < n because otherwise we can use the data
structure of Theorem 2.1.

Theorem 2.2. When gap(Ŝ) < n, there exists a data
structure for storing a set Ŝ ⊂ U = {1, 2, . . . , n} in

gap(Ŝ) + O(n log log n/ log n)(2.7)

bits, such that rank and select can be supported in O(1)
time on the word RAM.

Proof. We consider two cases, namely, (i) m =
O(n/ logn) and (ii) m = Ω(n/ logn). In case (i), we use
the data structure of Theorem 2.1. Since it is gap(Ŝ) =
O
(
m log(n/m)

)
= O(n log log n/ logn), the claim holds

observing that nHk ≤ B(m, n) = O(n log log n/ log n)
as well. In case (ii), we use δ-codes for encoding Ŝ in
gap(Ŝ) + O(n log log n/ log n) bits. In order to decode
these δ-codes, we divide the encoding into blocks of logn
bits each, and store the position of the first δ-code in
each block that does not overlap the previous block.
These positions are encoded in

O

(
gap(Ŝ)
log n

log
gap(Ŝ)

gap(Ŝ)/ logn

)
= O

(
gap(Ŝ) log log n

log n

)

bits by fid. This bound is O(n log log n/ logn) bits
because gap(Ŝ) < n. We also store the values si cor-
responding to the δ-codes whose positions are stored
above by fid. Since m = Ω(n/ log n) implies gap(Ŝ) =
Ω(n/ logn), the size is

O

(
gap(Ŝ)
log n

log
n

gap(Ŝ)/ log n

)
=O

(
gap(Ŝ)
log n

log
n log n

n/ logn

)

which can be upper bounded as O(n log log n/ log n)
bits, yielding equation (2.7).

3 Related Work and Concluding Remarks

We have presented a general approach for reducing the
space complexity of succinct data structures to high-
order empirical entropy bounds while preserving their
asymptotical time complexity. We have made con-
crete examples of application in succinct dictionaries
and succinct representation of trees. The idea of us-
ing the high-order empirical entropy, Hk, for analyzing
the space complexity of data structures has been intro-
duced by Ferragina and Manzini for the text indexing
problem [11], using the the Burrow-Wheeler transform,
and recently extended to labeled trees, with applications

to XML [12]. Their methods, and the subsequent re-
sults by others, cannot be easily adapted to support the
constant-time operation of decompressing a substring of
O(log n) bits.

The high-order entropy data structuring approach
has been confined to text algorithms until recently.
Poon and Yiu [33] have proposed the first succinct data
structure for range sum queries over a sequence S of n
ω-bit integers with lz78’s entropy bounds, where ω =
O(log n). The size of the data structure converges to
3nH bits where H is the entropy of S generated by a
stationary ergodic information source. The query time
is O

(
log log n

log log log n + ω
)

on the word RAM.
We designed the first suite of our data structures

in Section 2.2, based on Poon and Yiu’s idea of using
lz78. Therefore we describe our improvements. First,
we improve the multiplicative constant in the data
structure size from 3 to 1. This is achieved by the re-
numbering of phrases in array R, which can also be
applied to other lz78-based data structures. Second,
we improve the query time from O

(
log log n

log log log n + ω
)

to
constant time. Though they also propose a variation
of the data structure whose size is nH + o(n) bits, the
query time complexity increases to O(log n). The most
important improvement of ours is that we can decode
consecutive O(log n) bits of S in constant time using
our novel idea of encoding edge labels of the lz-trie
and encoding dense regions separately. As previously
mentioned, we obtain a general approach to improve
previous bounds.

An independent and complementary approach to
ours is that of Gupta, Hon, Shah and Vitter [20],
who squeeze the space below the Ω(n log log n/ logn)
bound of [24], so as to design succinct data structures
that match the non-constant predecessor bound of [1].
Finally, the idea of getting the gap encoding bound of
equation (1.2) for dictionaries has been proposed by
Rajeev Raman at a Dagstuhl seminar in 2002.

Acknowledgments. The first author would like to
thank Prof. C.K. Poon, who kindly provided [33]. The
second author is in debt to Ankur Gupta, Rajeev Ra-
man, and Jeff S. Vitter for many enlightening discus-
sions on compressed data structures, and to Rajeev Ra-
man for pointing out the attention to the gap bound.

References

[1] P. Beame and F. E. Fich. Optimal Bounds for the
Predecessor Problem. In Proc. ACM STOC, pp. 295–
304, 1999.

[2] M. Bender and M. Farach-Colton. The level ancestor
problem simplified. Theoretical Computer Science,
321(1):5–12, 2004.

1238

[3] David Benoit, Erik D. Demaine, J. Ian Munro, and
Venkatesh Raman. Representing trees of higher degree.
In Proc. WADS, LNCS 1963, pp. 169–180, 1999.

[4] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K.
Wei. A Locally Adaptive Data Compression Scheme.
Comm. of the ACM, 29(4):320–330, April 1986.

[5] Daniel K. Blandford and Guy E. Blelloch. Compact
representations of ordered sets. In Proc. ACM-SIAM
SODA, pp. 11–19, 2004.

[6] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash.
Compact representations of separable graphs. In Proc.
ACM-SIAM SODA, pp. 679–688, 2003.

[7] Andrej Brodnik and J. Ian Munro. Membership in
constant time and almost-minimum space. SIAM
Journal on Computing, 28(5):1627–1640, October 1999.

[8] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley-Interscience, 1991.

[9] P. Elias. Interval and Recency Rank Source Cod-
ing: Two On-Line Adaptive Variable-Length Schemes.
IEEE Trans. Inform. Theory, IT-33(1):3–10, 1987.

[10] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro.
Succinct Representation of Sequences. Tr/dcc-2004-
5, August 2004. ftp://ftp.dcc.uchile.cl/pub

/users/gnavarro/sequences.ps.gz.
[11] Paolo Ferragina and Giovanni Manzini. On compress-

ing and indexing data. Journal of the ACM, 2005.
[12] P. Ferragina, F. Luccio. G. Manzini, and S. Muthukr-

ishnan. Structuring labeled trees for optimal succinct-
ness, and beyond. Proc. IEEE FOCS, 2005.

[13] Anna Gál and Peter Bro Miltersen. The cell probe com-
plexity of succinct data structures. In Proc. ICALP, em
LNCS 2719, pp. 332–344, 2003.

[14] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A
simple optimal representation for balanced parentheses.
In Proc. CPM, LNCS 3109, pp. 159–172, 2004.

[15] Richard F. Geary, Rajeev Raman, and Venkatesh Ra-
man. Succinct ordinal trees with level-ancestor queries.
In Proc. ACM-SIAM SODA, pp. 1–10, 2004.

[16] A. Golynski, J.I. Munro, and S.S. Rao. Rank/select
operations on large alphabets: A tool for text indexing.
In Proc. ACM-SIAM SODA, 2006, to appear.

[17] R. Grossi, A. Gupta, and J. S. Vitter. High-Order
Entropy-Compressed Text Indexes. In Proc. ACM-
SIAM SODA, pp. 841–850, 2003.

[18] R. Grossi, A. Gupta, and J. S. Vitter. When Indexing
Equals Compression: Experiments with Compressing
Suffix Arrays and Applications. In Proc. ACM-SIAM
SODA, pp. 636–645, 2004.

[19] R. Grossi and J. S. Vitter. Compressed Suffix Arrays
and Suffix Trees with Applications to Text Indexing
and String Matching. In Proc. ACM STOC, pp. 397–
406, 2000. Also, in SIAM Journal on Computing, 2005.

[20] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter.
Compressed Data Structures: Dictionaries and Data-
Aware Measures. Manuscript, 2005.

[21] G. Jacobson. Space-efficient static trees and graphs. In
Proc. IEEE FOCS, pp. 549–554, 1989.

[22] R. Kosaraju and G. Manzini. Compression of low
entropy strings with Lempel-Ziv algorithms. SIAM
Journal on Computing, 29(3):893–911, 1999.

[23] M. Li and P. Vitanyi. An Introduction to Kolmogorov
Complexity and Its Applications. Springer Verlag, 1997.

[24] P. B. Miltersen. Lower bounds on the size of selection
and rank indexes. In Proc. ACM-SIAM SODA, pp.
11–12, 2005.

[25] J. I. Munro. Tables. In Proc. FSTTCS, LNCS 1180,
pp. 37–42, 1996.

[26] J. I. Munro and V. Raman. Succinct Representation of
Balanced Parentheses and Static Trees. SIAM Journal
on Computing, 31(3):762–776, 2001.

[27] J. I. Munro, V. Raman, and S. S. Rao. Space Efficient
Suffix Trees. J. of Algorithms, 39(2):205–222, 2001.

[28] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Succinct representations of permuta-
tions. In Proc. ICALP, LNCS 2719, pp. 345–356, 2003.

[29] J. Ian Munro and Venkatesh Raman. Succinct rep-
resentation of balanced parentheses and static trees.
SIAM J. on Computing, 31(3):762–776, June 2002.

[30] J. Ian Munro, Venkatesh Raman, and Adam J. Storm.
Representing dynamic binary trees succinctly. In Proc.
ACM-SIAM SODA, pp. 529–536, 2001.

[31] J. Ian Munro and S. Srinivasa Rao. Succinct represen-
tations of functions. In Proc. ICALP, LNCS 3142, pp.
1006–1015, 2004.

[32] Rasmus Pagh. Low redundancy in static dictionaries
with constant query time. SIAM Journal on Comput-
ing, 31:353–363, 2001.

[33] C. K. Poon and W. K. Yiu. Opportunistic Data
Structures for Range Queries. In Proc. COCOON,
LNCS 3595, pp. 560–569, 2005.

[34] Rajeev Raman, Venkatesh Raman, and S. Srinivasa
Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proc. ACM-
SIAM SODA, pp. 233–242, 2002.

[35] Rajeev Raman and S. Srinivasa Rao. Succinct dynamic
dictionaries and trees. In Proc. ICALP, LNCS 2719,
pp. 357–368, 2003.

[36] Kunihiko Sadakane. Succinct representations of lcp
information and improvements in the compressed suffix
arrays. In Proc. ACM-SIAM SODA, pp. 225–232, 2002.

[37] Kunihiko Sadakane. New text indexing functionali-
ties of the compressed suffix arrays. J. Algorithms,
48(2):294–313, 2003.

[38] J. Ziv and A. Lempel. Compression of individual se-
quences via variable-rate coding. IEEE Trans. Inform.
Theory, IT-24(5):530–536, September 1978.

1239

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

